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Abstract
Double-zero-event studies (DZS) pose a challenge for accurately estimating the overall treatment effect in meta-
analysis (MA). Current approaches, such as continuity correction or omission of DZS, are commonly employed,
yet these ad hoc methods can yield biased conclusions. Although the standard bivariate generalized linear mixed
model (BGLMM) can accommodate DZS, it fails to address the potential systemic differences between DZS and
other studies. In this article, we propose a zero-inflated bivariate generalized linear mixed model (ZIBGLMM)
to tackle this issue. This two-component finite mixture model includes zero inflation for a subpopulation with
negligible or extremely low risk. We develop both frequentist and Bayesian versions of ZIBGLMM and examine
its performance in estimating risk ratios against the BGLMM and conventional two-stage MA that excludes
DZS. Through extensive simulation studies and real-world MA case studies, we demonstrate that ZIBGLMM
outperforms the BGLMM and conventional two-stage MA that excludes DZS in estimating the true effect size
with substantially less bias and comparable coverage probability.

Highlights
What is already known?
• Double-zero-event studies (DZS) are challenging for meta-analysis (MA) due to division by zero errors.
• Current methods to address this include continuity correction or omitting DZS.
• These existing methods might produce biased conclusions.

What is new?
• The article introduces and discusses the rationale for proposing zero-inflated bivariate generalized linear

mixed model (ZIBGLMM), a novel method for handling DZS in MA.
• The ZIBGLMM addresses issues by using a data-driven approach to identify subpopulations with extremely

low risks and model population heterogeneity.
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Potential impact for Research Synthesis Methods readers

• The proposed ZIBGLMM can potentially provide a more accurate estimation of effect sizes, especially in
MA with excess DZS.

• Using a data-driven approach, ZIBGLMM provides a more robust solution to handle DZS compared to
existing methods, which could lead to better conclusions in research synthesis.

1. Introduction

Meta-analysis (MA) serves as an important tool for synthesizing evidence from multiple studies,
providing a systematic and comprehensive understanding of the overall treatment effect. However,
double-zero-event studies (DZS)—those with no events in both arms—present critical statistical
challenges, leading to potential numerical instability and bias in estimating treatment effects1,2. Such
studies are particularly prevalent in fields associated with rare events, such as surgical complications or
adverse drug reactions.3–5

Various strategies have been proposed for handling single-zero-event or double-zero-event studies in
MA. For common effect size measures such as risk ratio (RR) and odds ratio (OR), there are divergent
views on how to handle DZS. When there are zero events in one arm, the continuity correction with
a fixed value of 0.5 is commonly added to each cell of a 2×2 table for those studies.1,6 This approach
allows the calculation of effect sizes such as RRs and ORs without encountering division by zero.
If there are zero events in both arms, conventional practice omits these DZS from MAs of OR and
RR, arguing that they contribute no information to the magnitude of the treatment effect.1 Bayesian
approaches have also been proposed.7,8 However, even with non-informative priors, selecting the right
prior distribution is crucial as it can significantly impact the analysis results, particularly in cases
involving rare events.9–11

If risk difference is of interest, Tian et al.12 developed an exact inference procedure to synthesize
evidence from DZS in an MA. Rücker et al.13 proposed to use the arcsine difference as a way to define
treatment effects in MAs with double-zero studies. However, the limitation of the arcsine difference
method is that the practical usage and interpretation of this difference in the arcsine scale is restricted.14

Notably, while continuity correction and omission are commonly used for handling DZS, these
methods can lead to biased conclusions.13 Both the statistical significance and the direction of
intervention effect can change after excluding DZS, as shown in both simulation studies and empirical
data analyses.14–16 Although the continuity correction method can avoid computational errors, it usually
could bias study estimates toward no difference and overestimate variances of study estimates.4 In
addition, using different continuity corrections may result in different conclusions.1

Excluding DZS is straightforward to implement but may lead to misleading inference. Böhning
and Sangnawakij17 showed that double-zero studies do not contribute to the conditional log likelihood
when using one-stage method using a Poisson regression model and a conditional binomial model to
include the double-zero studies. However, as Xu et al.3 pointed out, this may not hold true for some
other models such as the multilevel logistic regression model18 and beta-binomial model.19 In addition,
excluding DZS does not fully utilize all the available evidence and can potentially lead to misleading
inference if the excluded studies are systematically different from the included studies.3,20–22 Also, if the
assumed underlying population event probabilities are not zero, DZS contain information for inference
on the parameters such as the common OR in MA and can contribute to the estimation of treatment
effects and thus cannot be left out in our analysis.23 Figure 1a illustrates how the effect sizes could
change significantly depending on whether we include or exclude double-zero studies based on 1,111
MAs from Cochrane Database of Systematic Reviews (CDSR) (see details in Section 0.5).

Generalized linear mixed models (GLMMs) offer a flexible approach for modeling effect sizes and
can incorporate information from DZS without ad hoc continuity correction.18,24 Bivariate generalized
linear mixed models (BGLMMs) have been proposed to include random effects (REs) and potential
correlation between treatment groups.25–28 These models can handle studies with zero events by
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Figure 1. Estimated effect size differences using four methods, that is, bivariate generalized linear
mixed model (BGLMM) including double-zero-event studies (DZS), BGLMM excluding DZS, con-
ventional two-stage meta-analysis (MA) excluding DZS (MA), and zero-inflated bivariate generalized
linear mixed model (ZIBGLMM) including DZS. In each subfigure, the y-axis is the difference in log risk
ratios (RRs) between the two methods, and the x-axis is the average of the log RRs of the two methods
being compared. Subfigure (a) contrasts the BGLMM with and without DZS. Subfigure (b) explores
the difference in effect size between ZIBGLMM and MA, both excluding DZS. Subfigure (c) presents a
similar comparison between ZIBGLMM including DZS and BGLMM excluding DZS. Subfigures (a–c)
shed light on how the inclusion or exclusion of DZS significantly impacts effect sizes based on 1,111
Cochrane meta-analyses. Subfigure (d) provides a comparison between ZIBGLMM and BGLMM, both
incorporating DZS. It illustrates a more concentrated distribution, signifying a smaller difference in log
RR. Each subfigure displays the number of MAs lying outside the 95% limits of agreement, the mean
difference between log RRs, 95% limits of agreements, and 99% range of the averages of log RRs at its
upper left corner.
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specifying an appropriate link function and error distribution. For example, BGLMM has been applied
to assess whether including DZS impacts the conclusions in a recent systematic review on prevention
measures for preventing person-to-person transmission of COVID-19.29

Despite their utility, all the models mentioned above fail to address one potential key cause of
DZS, that is, non-exchangeable heterogeneity in the population. DZS may occur if the study involves
subpopulations with a negligible or extremely low probability of experiencing the event of interest.
For instance, healthy subjects less than 65 years old only have negligible risks of experiencing
hospitalization or death due to severe symptoms from COVID-19, compared to immunocompromised,
unhealthy, or older subjects. The study populations with negligible or extremely low risks are
fundamentally different from the remaining populations with low or moderate risks due to intrinsic
differences in patient characteristics. Since the BGLMM assumes study populations are exchangeable,
the above heterogeneity cannot be modeled properly with BGLMM.

To appropriately handle DZS and account for non-exchangeable heterogeneity in study populations,
we propose a zero-inflated bivariate generalized linear mixed model (ZIBGLMM). Zero-inflated
models have been commonly applied in other areas to model excess zero counts. Zero-inflated Poisson
models have been applied to RE MA.30 Beisemann et al.31 compared three models (RE Poisson
regression, RE zero-inflated Poisson regression, and binomial regression) to the standard methods in
conjunction with different continuity corrections and different versions of beta-binomial regression.

Our article is the first to apply zero-inflated models in MAs to address non-exchangeable hetero-
geneity across study populations. It assumes that an

MA with a proportion of zero-event studies potentially contains two subpopulations: one with a
near-zero risk and another with a higher risk. The ZIBGLMM can account for non-exchangeable
heterogeneity as well as the correlation among studies in a data-driven fashion. Further, it can properly
estimate the overall effect size by avoiding the biases in ad hoc solutions and can accurately infer the
proportion of the low-risk population in each MA study.

Our contributions in this article are twofold. First, we introduce a novel method, ZIBGLMM, to
incorporate DZS into MAs. Our model takes into account potential population heterogeneity and
demonstrates its utility through both real-world and simulation studies. Second, we provide both
frequentist and Bayesian implementations of the model. SAS and R implementations are publicly
available in the GitHub repository.32

The rest of the article is organized as follows. Section 0.2 provides a motivating example that
involves numerous DZS with various sample sizes ranging from 22 to 144 to demonstrate the rationale
behind ZIBGLMM. Section 0.3 introduces the zero-inflated models and formulates both a frequentist
and a Bayesian version of the model. Section 0.4 reanalyzes the example case study in Section 0.2 to
demonstrate the clinical usefulness of the proposed method. Sections 0.5 and 0.6 present 1,111 real-
world MAs from CDSR and 18,000 simulated MAs to compare the performance of various methods
for estimating the RRs under various scenarios. Finally, Section 0.7 summarizes our key findings and
limitations.

2. A motivating example

We explain the rationale behind the ZIBGLMM method using an example MA taken from the CDSR.
The study investigates whether misoprostol could help prevent or treat excessive bleeding and reduce
maternal deaths among women after birth.33 This review involves 19 studies, 5 of which are DZS. These
DZS, with sample sizes ranging from 100 to 900, were excluded from the MA. Table 1 displays the
specific data for these studies. The original analysis suggests that when comparing misoprostol using
600 𝜇g misoprostol or more versus placebo or other uterotonics, the results for “maternal death or
severe morbidity” are statistically nonsignificant (RR 1.67, 95% CI 0.80–3.45). In Section 0.4, we will
revisit this case study to illustrate how including these DZS could yield different clinical conclusions.

The rationale of the ZIBGLMM method is based on the observation that in an MA with a low overall
event probability, the probability of encountering large studies with double-zero events should be low.
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Table 1. Motivation example study data.33

Experimental Experimental Control Control Posterior probability
Study Number of Sample Sample Number of of belonging to the
ID events size size events “structual”-zero

1 10 407 4 402 0
2 0 1,026 1 1,032 0
3 1 30 0 30 0
4 66 488 0 490 0
5 0 257 0 257 0.98
6 0 79 2 81 0
7 4 630 3 599 0
8 1 330 0 331 0
9 1 97 5 99 0
10 0 100 0 100 0.73
11 2 812 2 808 0
12 0 900 0 900 1
13 1 29 0 32 0
14 0 533 0 583 1
15 1 32 1 32 0
16 5 117 0 121 0
17 28 705 13 717 0
18 0 702 0 698 1
19 15 9,225 15 9,230 0

For instance, given an event probability of 1%, the likelihood of a DZS with a sample size of 1,000
is approximately 0.991,000 ≈ 4/100, 000. Thus, it is improbable that these large DZS belong to the
same population as the other studies included in the MA. This suggests that using the BGLMM method
to incorporate all DZS and treating them as exchangeable with other studies may be inappropriate.
Conversely, some smaller DZS may have double-zero events by chance, which means that completely
excluding all DZS may not be the best approach either. The ZIBGLMM method addresses these issues
by using a data-driven approach to identify the proportion of populations with extremely low risks and
model population heterogeneity.

The proposed method is only intended to be used for MAs with a moderate to large size (≥10
studies). We acknowledge that most of the real-world MAs are of smaller sizes.34,35 However, the
sophistication of the proposed statistical model, which includes a bivariate outcome, a 2×2 matrix of
REs, and a mixture distribution, might lead to convergence issues in more realistic scenarios with fewer
studies. Although this will potentially limit the broad impact of our method, we would like to avoid
misleading conclusions when applying sophisticated models like ours to a limited number of studies.

3. Methods

3.1. Notation

Let 𝑁𝑖𝑘 be the number of subjects, and let 𝑃𝑖𝑘 be the probability of an event for the 𝑖th study (𝑖 =
1, 2, . . . , 𝑚), where 𝑘 = 1 represents the treatment (or exposed) group and 𝑘 = 0 represents the control
(or unexposed) group, respectively. Let 𝑋𝑖 𝑗𝑘 denote a Bernoulli random variable, with a value of 1
denoting an event and a value of 0 denoting a nonevent for the 𝑗 th subject ( 𝑗 = 1, 2, . . . , 𝑁𝑖𝑘 ) of the 𝑖th
study in the 𝑘th treatment group. Let 𝑌𝑖𝑘 = Σ𝑁𝑖𝑘

𝑗=1 𝑋𝑖 𝑗𝑘 be the total number of events in the 𝑘th treatment
group in the 𝑖th study. The event counts𝑌𝑖𝑘 follow a binomial distribution,𝑌𝑖𝑘 ∼ 𝐵𝑖𝑛 (𝑁𝑖𝑘 , 𝑃𝑖𝑘 ). Denote
n as the total number of studies within an MA. The notations are summarized in Table 2.
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Table 2. Descriptions of notation.

Notation Description

𝑖 Index of study
𝜋 proportion of zero inflation
k Index of treatment arm, 𝑘 = 0 represents control group and 𝑘 = 1

represents treatment group
𝑌𝑖𝑘 No. of events in the 𝑘th group in the 𝑖th study
n No. of studies in a meta-analysis
𝑁𝑖𝑘 No. of subjects in the 𝑘th group in the 𝑖th study
𝑃𝑖𝑘 Probability of an event for the 𝑘th group in the 𝑖th study
𝜇𝑘 Fixed effects on the logit scale for the 𝑘th group across entire

population
𝜈𝑖𝑘 Random effects on the logit scale for the 𝑘th group in the 𝑖th study

3.2. Zero-inflated models

The zero-inflated model proposed by Lambert36 has been widely applied to count data with excess zeros
in various scientific fields such as industrial manufacturing,36 biomedical horticulture,37 and healthcare
data.38 It is formulated as a mixture of a point mass at zero, which generates the excess zeros, and
a count distribution that generates the remaining values. The zero-inflated models are particularly
useful for data with a higher-than-expected number of zeros under standard count models. Besides
commonly used zero-inflated Poisson models, Ghosh et al.39 extend the models to include a broad class
of distributions (e.g., power series distributions). Böhning et al.30 apply the zero-inflated Poisson to RE
MA. To the best of our knowledge, this work is the first application of zero-inflated models for handling
DZS in the context of MAs with two arms using BGLMM.

Zero-inflated models, by design, segregate observed zeros into two distinct categories. The first
category, often referred to as “structural” zeros, represents individuals who are not susceptible to a
specific event, thereby having no chance of a positive count. The second category, known as “at-risk”
or “chance” zeros, corresponds to a latent group of individuals who are at risk for an event but have a
recorded count of zero. The zero-inflated binomial (ZIB) model can then be formulated as follows:

𝑌𝑖𝑘 ∼
{

0, with probability 𝜋,

Binomial(𝑁𝑖𝑘 , 𝑃𝑖𝑘 ), with probability 1 − 𝜋,

where 𝜋 is the proportion of zero inflation, that is, the probability that a given subject belongs to the
low-risk subpopulation.

For instance, in our study examining the number of people experiencing adverse events for
probiotics, structural zeros might be indicative of patients in good health, resulting in experiencing
no adverse events. Conversely, the at-risk zeros could represent patients who are more susceptible
to adverse events, due to various circumstances, and experienced no adverse events by chance.
Consequently, zero-inflated models can be interpreted as latent class models, where the classes are
defined by these two types of zeros.40

Hall37 discusses classical statistical approaches that utilize the maximum likelihood estimation and
the likelihood ratio (LR) test for zero-inflated Poisson regression. In the context of non-normal data,
classical inference often relies on approximation theory, which is based on large sample sizes and may
involve the application of nonstandard asymptotic theory.41 However, Ghosh et al.39 showed that the
classical procedure does not perform well in estimating the zero-inflation probability when the sample
size is finite, and the zero-inflation probability is close to unity, but the Bayesian estimates performed
very well with respect to interval width and coverage probability.

https://doi.org/10.1017/rsm.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2024.4


Research Synthesis Methods 257

3.3. Bivariate generalized linear mixed models

To estimate the effect sizes using conventional two-stage MA, one needs to estimate the event
probabilities as �̂�𝑖𝑘 = 𝑌𝑖𝑘/𝑁𝑖𝑘 . For DZS, �̂�𝑖𝑘 values are zero for both the treatment and control arms,
creating numerical difficulty in estimating the effect sizes using RRs or ORs due to division by zero.

One approach to include DZS is to use the BGLMM method to directly model the event counts 𝑌𝑖𝑘
with binomial likelihoods instead of estimating the effect sizes of individual studies. The BGLMM can
be specified as follows: let 𝑔(·) denote the link function that transforms event probabilities into linear
forms. We have

𝑌𝑖𝑘 ∼ 𝐵𝑖𝑛(𝑁𝑖𝑘 , 𝑃𝑖𝑘 ) (likelihood),

𝑔 (𝑃𝑖0) = 𝜇0 + 𝜈𝑖0 (link function),

𝑔 (𝑃𝑖1) = 𝜇1 + 𝜈𝑖1 (link function),

(𝜈𝑖0 , 𝜈𝑖1)� ∼ 𝑁
(
(0, 0)�, Σ

)
, Σ =

(
𝜎2

0 𝑟𝜎0𝜎1
𝑟𝜎0𝜎2 𝜎2

1

)
(REs).

To implement the natural constraint of −1 < 𝑟 < 1, one can use Fisher’s z transformation as 𝑟 =
[exp(2𝑧)−1]
[exp(2𝑧)+1] .

We consider the logit link function for 𝑔(·). The parameters 𝜇0 and 𝜇1 are fixed effects and represent
the average risks in the control and treatment groups in the logit scale. Study-specific REs in the logit
scale, 𝜈𝑖0 and 𝜈𝑖1, are assumed to follow a bivariate normal distribution with a covariance matrix Σ.
The parameters 𝜎2

0 and 𝜎2
1 are between-study variances for the control and treatment groups due to

heterogeneity, respectively, and r is the correlation between the two groups.

3.4. Zero-inflated bivariate generalized linear mixed models

One important limitation of the above BGLMM is its inability to account for excess DZS. This is
because BGLMM ignores the intrinsic difference between DZS and the others by treating all studies as
exchangeable, even if some studies may be conducted on different subpopulations.

To take into account the population heterogeneity, we introduce the ZIBGLMM method, which is
a two-component finite mixture model. Specifically, we assume that the event probability in a certain
study subpopulation, referred to as a “healthy population,” is extremely low, approximately equal to
zero. In contrast, we assume that the other subpopulation, referred to as a “sicker population,” has a
relatively high event probability. We denote 𝜋 as the proportion of studies with healthy populations
representing individuals who have approximately zero risk for the event of interest.

In the first stage, the ZIBGLMM combines two zero-generating processes for the number of events
𝑌𝑖𝑘 . The first process generates double zeros for both arms from extremely low-risk subpopulations.
The second process is governed by a binomial distribution that generates the numbers of events, some
of which may be zero by chance. The mixture is described as follows:

Pr (𝑌𝑖0 = 0, 𝑌𝑖1 = 0) = 𝜋 + (1 − 𝜋)
1∏

𝑘=0
(1 − 𝑃𝑖𝑘 )𝑁𝑖𝑘 ,

Pr (𝑌𝑖0 + 𝑌𝑖1 > 0) × Pr (𝑌𝑖0 = 𝑦𝑖0, 𝑌𝑖1 = 𝑦𝑖1 | 𝑌𝑖0 + 𝑌𝑖1 > 0)

= (1 − 𝜋)
1∏

𝑘=0

(
𝑁𝑖𝑘

𝑦𝑖𝑘

)
(𝑃𝑖𝑘 )𝑦𝑖𝑘 (1 − 𝑃𝑖𝑘 )𝑁𝑖𝑘−𝑦𝑖𝑘 ,

𝑔 (𝑃𝑖0) = 𝜇0 + 𝜈𝑖0,
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𝑔 (𝑃𝑖1) = 𝜇1 + 𝜈𝑖1,

(𝜈𝑖0 , 𝜈𝑖1)� ∼ 𝑁
(
(0, 0)�, Σ

)
,

Σ =

(
𝜎2

0 𝑟𝜎0𝜎1
𝑟𝜎0𝜎2 𝜎2

1

)
.

Of note, Dong et al.42 proposed a ZIB model for MA with sparse binary outcomes. However, they
allowed for different proportions of zero-inflation for different treatment arms, which might not be the
case for randomized control trials (RCTs), where the proportion of zero inflation for the two treatment
arms should be the same. In contrast to their approach, we restrict the proportion of the healthy
subpopulation to be equal across two treatment arms, which is more realistic given the setting of RCTs.

In this article, we focus on the overall treatment effect in the at-risk population measured by
the marginal RR as suggested by McCullagh,43,44 which is defined as RR = 𝐸 (𝑝0)

𝐸 (𝑝1) . The marginal
event probabilities can be obtained through a well-established approximation formula: 𝐸 (𝑝𝑘 ) ≈

expit

(
𝜇𝑘√

1+𝐶2𝜎2
𝑘

)
for 𝑘 = 0, 1, with 𝐶 = 16

√
3

15𝜋 for the bivariate logit RE model.45

Our formulation of ZIBGLMM leverages zero-inflated models to account for subpopulations with
an extremely low risk of experiencing the studied outcome. It uses a data-driven approach to capture
the heterogeneity in the population, leading to improved model fitting and more reliable results in MAs.

3.5. Bayesian formulation

This section introduces a Bayesian formulation of the ZIBGLMM method. It is based on the Bayesian
hierarchical model formulation of the RE MA model46,47 and the Bayesian zero-inflated models.40

Specifically, the Bayesian model can be formulated as follows, using the notations in Table 2:

𝑌𝑖𝑘 ∼ (1 − 𝜸𝑖)Bin (𝑁𝑖𝑘 , 𝑃𝑖𝑘 ) , 𝑖 = 1, . . . , 𝑛, 𝑘 = 0, 1,
logit (𝑃𝑖𝑘 ) = Θ𝑖𝑘 ,

𝜸𝑖 ∼ Bernoulli(𝜋),
Θ𝑖 ∼ multivariate normal (𝝁,Σ) ,
𝝁,Σ, 𝜋 ∼ priors.

Here, logit(𝑃𝑖1) − logit(𝑃𝑖0) is the log OR. Adopting the same approach, an equivalent model on the
RR replaces the logit function with the log function. That is, log(𝑃𝑖1) − log(𝑃𝑖0) is the log RR. We
employ a general procedure of data augmentation by including latent variables 𝜸 to the data Y such
that 𝑌𝑖𝑘 = (1 − 𝜸𝑖)𝑉𝑖𝑘 + 𝛾𝑖𝑊𝑖𝑘 , where 𝑊𝑖𝑘 is the random variable with point mass distribution at 0,
𝑉𝑖𝑘 ∼ Bin(𝑁𝑖𝑘 , 𝑃𝑖𝑘 ),48 that is, 𝜸𝑖 is a latent variable indicating whether the study is coming from the
extremely low-risk population.

The Bayesian approach requires specifying prior distributions for 𝝁,Σ, and 𝜋. Given the
parametrization on logit scale, the event probabilities 𝑃𝑖𝑘 are forced to be between 0 and 1, and 𝜃𝑖𝑘 can
range over the whole real line. A natural class of prior distributions for 𝜃𝑖𝑘 is the class of multivariate
normal distributions. We assign the inverse-Wishart distribution, which is a multivariate analog of
the gamma distribution, as the semi-conjugate prior distribution for the covariance matrix Σ and the
multivariate normal distribution as the prior for 𝝁. We use weakly informative priors for the parameters
of 𝝁 and Σ that are weakly centered around estimates derived from the observed data, that is, the
population mean and covariance of 𝜇0 and 𝜇1. These are commonly specified in normal hierarchical
models.46 We use a beta prior for 𝜋, that is, 𝜋 ∼ Beta(𝑎, 𝑏). Note that 𝑎 = 𝑏 = 1 gives the uniform prior
on (0, 1) for 𝜋.

The joint posterior distribution is given by

𝑝 (𝚯, 𝝁, 𝜸,Σ | 𝑌 ) ∝ 𝑝 (𝑌 | 𝚯, 𝜸) 𝑝 (𝚯 | 𝝁, Σ) 𝑝 (𝝁) 𝑝 (Σ) 𝑝(𝜸 | 𝜋)𝑝(𝜋)
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and

Pr(𝑌𝑖0 = 𝑦𝑖0, 𝑌𝑖1 = 𝑦𝑖1 | Θ𝑖 , 𝜋) = 𝜋I{𝑌𝑖0=0,𝑌𝑖1=0} + (1 − 𝜋)
1∏

𝑘=0

(
𝑁𝑖𝑘

𝑦𝑖𝑘

)
(𝑃𝑖𝑘 )𝑦𝑖𝑘 (1 − 𝑃𝑖𝑘 )𝑁𝑖𝑘−𝑦𝑖𝑘 ,

where 𝑃𝑖𝑘 = expit(Θ𝑖𝑘 ).
We use the Gibbs sampling approach49 for the estimation of our full posterior distribution of

𝝁, Σ, 𝜸, 𝜋 by sampling them from their full conditional distributions:

1. 𝑝(𝝁 |Σ,𝚯, 𝜸, 𝜋,𝑌 ) ∝ 𝑀𝑉𝑁 (𝝁𝑛,Λ𝑛), where

Λ𝑛 = (Λ−1
0 + 𝑛Σ−1)−1, 𝝁𝑛 = (Λ−1

0 + 𝑛Σ−1)−1(Λ−1
0 𝝁0 + 𝑛Σ−1�̄�)

and 𝝁0 and Λ0 are the prior mean and variance of 𝝁, respectively, and �̄� is the vector of treatment-
arm-specific averages �̄� = ( 1

𝑛

∑𝑛
𝑖=1 Θ𝑖,1,

1
𝑛

∑𝑛
𝑖=1 Θ𝑖,2)ᵀ.

2. 𝑝(Σ |𝝁,𝚯, 𝜸, 𝜋,𝑌 ) ∝inverse-Wishart
(
𝜂0 + 𝑛,

[
𝑆0 + 𝑆𝜇

]−1
)
, where 𝑆𝜇 =

∑𝑛
𝑖=1 (Θ𝑖 − 𝝁) (Θ𝑖 − 𝝁)𝑇 ,

and we take 𝑆0 = Λ0 but only loosely center Σ around this value by taking 𝜂0 = 𝑝 + 2 = 4, where p
is the number of treatment arms.

3. 𝑝(𝜸𝑖 |𝚯,𝝁, 𝜋, Σ, 𝑌𝑖𝑘 ) ∝ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖

(
𝜋1{𝑌𝑖0=0,𝑌𝑖1=0}∏1

𝑘=0 (1−𝑃𝑖𝑘 )𝑁𝑖𝑘−𝑌𝑖𝑘 (1−𝜋)+𝜋1{𝑌𝑖0=0,𝑌𝑖1=0}

)
, where 𝑃𝑖𝑘 = expit(Θ𝑖𝑘 ).

4. 𝑝(𝜋 |𝜸,𝚯,𝝁,Σ, 𝑌 ) ∝ 𝐵𝑒𝑡𝑎
(
1 +

∑𝑛
𝑖=1 𝜸𝑖 , 1 +

∑𝑛
𝑖=1 (1 − 𝜸𝑖)

)
.

We then use a Metropolis step50 for the estimation of the full posterior distribution of REs 𝚯.46,47

The complete Metropolis–Hastings approximation algorithm is:

1. Sample 𝝁 (𝑠+1) from 𝑝(𝝁 |Σ (𝑠) ,Θ(𝑠) , 𝜸 (𝑠) , 𝜋 (𝑠) , 𝑌 ).
2. Sample Σ (𝑠+1) from 𝑝(Σ |𝝁 (𝑠) ,Θ(𝑠) , 𝜸 (𝑠) , 𝜋 (𝑠) , 𝑌 ).
3. Sample 𝜸 (𝑠+1)

𝑖 from 𝑝(𝜸𝑖 |Θ
(𝑠)
𝑖 , 𝝁 (𝑠) , 𝜋 (𝑠) ,Σ (𝑠) , 𝑌 ) for 𝑖 = 1 . . . 𝑛.

4. Sample 𝜋 (𝑠+1) from 𝑝(𝜋 |𝜸 (𝑠) ,Θ(𝑠) , 𝝁 (𝑠) ,Σ (𝑠) , 𝑌 ).
5. For each 𝑗 ∈ 1, . . . , 𝑛,

(a) sample Θ∗
𝑗 ∼ multivariate normal(Θ(𝑠)

𝑗 , 1
2Σ

(𝑠) );
(b) compute the acceptance rate

𝑟 =
𝑝(𝑌 | Θ∗

𝑗 , 𝜋
(𝑠) , 𝜸 (𝑠) , 𝝁 (𝑠) ,Σ (𝑠) )𝑝(Θ∗

𝑗 | 𝝁 (𝑠) ,Σ (𝑠) )

𝑝(𝑌 | Θ(𝑠)
𝑗 , 𝜋 (𝑠) , 𝜸 (𝑠) , 𝝁 (𝑠) ,Σ (𝑠) )𝑝(Θ(𝑠)

𝑗 | 𝝁 (𝑠) ,Σ (𝑠) )
;

(c) sample 𝑢 ∼ uniform(0, 1). Set Θ(𝑠+1)
𝑗 to Θ∗

𝑗 if 𝑢 < 𝑟 and to Θ(𝑠)
𝑗 if 𝑢 > 𝑟 .

We used 100,000 iterations with thinning to keep every 100th value and set the burn-in period to be
10, 000. We manually examined the trace plot and autocorrelation for a few example datasets to make
sure the autocorrelation between the samples was low and the acceptance rate was around 50%.

3.6. Implementation

The frequentist BGLMM and ZIBGLMM were implemented using PROC NLMIXED in SAS Studio
3.81 (Enterprise Edition). The REs were approximately integrated by the default adaptive Gaussian
quadrature, and likelihood maximization used the conjugate gradient optimization algorithm. The
Bayesian models were implemented using R version 4.2.2. In addition to our custom Bayesian Gibbs
Sampler, we have implemented a version of the model using the RStan package using R version
4.2.2. This alternative provides a flexible framework, facilitating the customization and experimentation
with various prior distributions. It is worth noting that our original model utilizes an inverse Wishart
distribution for the priors and adapts the scale matrix dynamically during sampling, which can be
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complex to replicate in Stan. Consequently, the RStan implementation uses an LKJ correlation prior to
the covariance matrix instead of the inverse Wishart distribution. The source SAS and R implementation
code along with simulation and Cochrane datasets can be found in the GitHub repository.32

4. Case study

We apply our ZIBGLMM method to the MA of 19 studies conducted by Hofmeyr et al.,33 which
involves 33,041 participants. This MA compares misoprostol use of greater than or equal to 600 𝜇g
dose versus placebo in terms of reducing maternal deaths or severe morbidity.33 The original analysis
suggests that when comparing misoprostol use of greater than or equal to 600 𝜇g versus placebo, the
results for “maternal death or severe morbidity” are statistically nonsignificant (RR 1.67, 95% CI 0.80–
3.45). In the original analysis, 5 of the 19 studies were DZS, with sample sizes ranging from 100 to
900, and were excluded from the analysis.

To evaluate the impact of using different strategies for handling the DZS on the results, we applied
various methods to the same data as in Hofmeyr et al. When using the Mantel–Haenszel estimate51

of the risk difference, the estimated risk difference is 0.005 when including the DZS and changes
to 0.006 when excluding the DZS. The estimated RR using the Mantel–Haenszel method is 2.84
(95% CI 2.03–3.99). Our Bayesian ZIBGLMM method yielded an RR of 2.98 (95% CI 1.97–4.62),
which suggests a 198% increase in the risk of maternal death or severe morbidity associated with high
dosage use of misoprostol compared with placebo. This conclusion is also consistent with the general
recommendation of using the lowest effective dose of misoprostol to treat/prevent maternal bleeding
after giving birth. Using the Bayesian BGLMM method yielded an RR of 2.81 (95% CI 1.78–4.37).
This investigation underscores that neglecting DZS can lead to nonnegligible differences in the final
estimated effects in MAs.

We note that the difference between the original analysis and the ZIBGLMM method might be due
to the fact that they used conditional effects, while we focused on marginal effects.52 Nonetheless, the
difference between the BGLMM and ZIBGLMM methods is 0.17, suggesting that accounting for DZS
could lead to estimates that differ to a large degree.

The estimated proportion of structural zeros 𝜋 is 0.246. For every single study, the posterior
probabilities of belonging to the “structural”-zero or “nonstructural”-zero study cluster are reported in
Table 1. The estimated 𝜌 is 0.062, which suggests a slight positive correlation between the treatment
and control outcomes within studies. The estimated variances are 0.079 and 0.061 for the treatment and
control groups, respectively, which provide insights into the variability of the effect sizes within each
group. The Akaike information criterion (AIC) of the frequentist version of the ZIBGLMM model is
1,756.3, and the AIC of the BGLMM model is 1,761.7. The deviance information criterion (DIC) of
the Bayesian ZIBGLMM model is 979.02, and the DIC of the Bayesian BGLMM is 973.84.

5. Cochrane meta-analyses

To evaluate the practical impacts of our ZIBGLMM method on a wide spectrum of MAs across
different clinical domains, we conducted a meta-meta-analysis using a large number of datasets in the
CDSR collected in our previous work.53 We identified 1,111 MAs, each containing between 15 and 50
studies (inclusive), with proportions of double-zero studies ranging from 0.15 to 0.4. Figure 2 shows
the PRISMA (preferred reporting items for systematic reviews and aeta-analyses) flowchart detailing
how we selected the 1,111 studies.54 Note that we do not know the true effect sizes for these real-world
studies.

We meta-analyzed each dataset using a conventional two-stage method that excludes DZS, as well
as both the frequentist and Bayesian versions of BGLMM and ZIBGLMM. When using the frequentist
approach, 1,015 datasets converged for ZIBGLMM, while 1,084 datasets converged for BGLMM. The
Bayesian BGLMM and ZIBGLMM successfully converged and provided the estimated effect sizes for
all 1,111 studies.
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Figure 2. PRISMA plot of the 1,111 Cochrane Database of Systematic Reviews meta-analyses included
in this article. We extracted 1,111 studies with sample sizes between 10 and 50 and with double-zero
ratios between 0.15 and 0.4 from a total of 72,716 studies.

To explore the impact of excluding DZS versus including DZS in an MA, we contrasted four
methods based on the inclusion or exclusion of DZS, focusing on estimated effect size differences.
The comparisons are listed below:

A. BGLMM with DZS versus BGLMM without DZS: to investigate the impact of excluding DZS in
one-stage method BGLMM.

B. ZIBGLMM with DZS versus conventional two-stage MA without DZS: to investigate the impact
of excluding DZS in conventional MA.

C. ZIBGLMM with DZS versus BGLMM without DZS: to investigate the impact of including DZS
versus not between two one-stage methods.

D. ZIBGLMM versus BGLMM, both incorporating DZS: to investigate the impact of using different
one-stage methods to incorporate DZS.

Specifically, we applied the Bland–Altman analysis55 to determine the difference in each compari-
son. The results are displayed in Figure 1. Notably, the mean effect size difference can reach up to 0.16
when comparing methods that differ in DZS inclusion (ZIBGLMM with DZS vs. MA without DZS).
However, when both ZIBGLMM and BGLMM include DZS, this mean effect size difference narrowed
down to 0.06. This suggests that omitting DZS can significantly alter effect size estimates.
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Table 3. Summary of the comparative analysis of different methods in Figure 1.

Subfigure (a) Subfigure (b) Subfigure (c) Subfigure (d)
BGLMM w/ ZIBGLMM w/ ZIBGLMM ZIBGLMM

DZS vs. DZS vs. two-stage w/DZS vs. w/DZS vs.
Subfigure BGLMM w/o meta-analysis w/o BGLMM w/o BGLMM w/
Methods being compared DZS DZS DZS DZS

No. of meta-analyses 1,067 1,015 998 990
Mean absolute difference in

log RRsa
0.13 0.16 0.13 0.06

No. of meta-analyses with
direction changesa

98 (9.29%) 130 (12.96%) 101 (10.22%) 37 (3.78%)

No. of meta-analyses with
significance changesa

74 (7.01%) 108 (10.77%) 79 (8.00%) 51 (5.20%)

95% limit of agreements of
log RRs

(−0.60, 0.44) (−0.55, 0.55) (−0.59, 0.42) (−0.33, 0.34)

No. of meta-analyses with
RRs increaseda

324 (30.71%) 465 (46.36%) 278 (28.14%) 428 (43.67%)

No. of meta-analyses with
RRs decreaseda

731 (69.29%) 533 (53.14%) 708 (71.66%) 466 (47.55%)

𝑎Denotes using the middle 99% of data to exclude extreme values.

Table 3 presents the results for further quantifying the impact of the exclusion of DZS and the
methodological differences in both the magnitude and direction of log RRs. We detail the percentages
of increase and decrease and document the count and proportion of pairs with different directions.
The effect changed the direction if the RRs flipped, that is, log RR changing from “< 0” to “> 0.”
The significance is flipped if the p-value transitioned from nonsignificant to significant, using a 0.05
threshold. We used the middle 99% of the RRs to leave out outliers.

The highest percentage of direction change is observed in comparison B (ZIBGLMM with DZS vs.
MA without DZS) at 12.96%, while the lowest percentage is observed in comparison D (ZIBGLMM
vs. BGLMM both including DZS) at 3.78%. This indicates excluding DZS can lead to changes in effect
directions. Comparison B (ZIBGLMM with DZS vs. MA without DZS) records the highest percentage
of significance flip at 10.77%, with comparison D (ZIBGLMM vs. BGLMM both including DZS)
having the lowest at 5.20%. The findings suggest that excluding DZS could lead to significant changes,
that is, difference with a magnitude of greater than 0.1, in estimated effect sizes in MA. This finding is
consistent across various methods, including conventional two-stage MA that excludes DZS, BGLMM,
and ZIBGLMM.

Finally, we compared the frequentist and Bayesian methods of BGLMM and ZIBGLMM in terms
of their goodness of fit using AIC and DIC. Figure 3b displays the distribution of AIC and DIC
differences for the Cochrane MAs, with the y-axis representing the difference in goodness of fit between
ZIBGLMM and BGLMM. The violin plot included a box plot where the box limits indicated the range
of the central 50% of the data (i.e., the range between the 25th and 75th percentiles), and the median
value was marked by a central black line, along with a kernel smoothed density plot representing the
probability distribution. ZIBGLMM outperformed BGLMM in 365 of 1,010 (36.13%) Cochrane MAs
as measured by AIC, and in 986 of 1,111 (88.74%) datasets based on DIC.

In summary, our meta-meta-analysis study suggests that the inclusion or exclusion of DZS in
MAs can influence effect size estimates, with disparities in mean effect size differences reaching up
to 0.16. Additionally, both the direction and significance of effect sizes can be altered depending
on the methodologies employed. The findings underscore the importance of carefully considering
methodological choices in MAs, particularly when handling datasets with double-zero studies.
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Figure 3. Model goodness of fit in terms of Akaike information criterion (AIC) and deviance
information criterion (DIC) differences between the ZIBGLMM and BGLMM methods for simulation
meta-analyses (MAs) in subfigure (a) and Cochrane MAs in subfigure (b). Each violin plot66 included a
box plot where the box limits indicated the range of the central 50% of the data (i.e., the range between
the 25th and 75th percentiles), and the median value was marked by a central black line, along with
a kernel smoothed density plot representing the probability distribution. The y-axis in each subplot
represents the goodness of fit of ZIBGLMM subtracting the goodness of fit of BGLMM. The dashed line
represents when the difference is 0. Subfigure (a) illustrates the distribution of AIC and DIC differences
for 18,000 simulation datasets. The ZIBGLMM exhibited superior fit for 8,839 of 16,215 (54.51%)
simulation studies as measured by AIC, and for 17,805 out of 18,000 (98.92%) simulation studies
when measured by DIC. Subfigure (b) illustrates the distribution of AIC and DIC differences for 1,111
Cochrane MAs. The ZIBGLMM exhibited superior fit for 365 of 1,010 (36.13%) Cochrane MAs as
measured by AIC and for 986 out of 1,111 (88.74%) Cochrane MAs when measured by DIC.

6. Simulations

In addition to the Cochrane datasets, we conducted extensive simulation studies to evaluate our methods
in various settings. We simulated MAs with small (10), moderate (25), and large (50) numbers of studies
of sample size 50. The nonzero-inflated data were generated using the BGLMM. The number of DZS
for each MA was generated from a binomial distribution with proportions of zero-inflation of 25% and
50%. The baseline event risk in the control group was set at 3%, and the average marginal RR was
established at 1, 1.5, and 2. Detailed settings of the simulation studies can be found in Table 4. A total
of 1,000 MAs were simulated for each of the 18 combinations of settings.

We applied both the frequentist and Bayesian versions of BGLMM and ZIBGLMM to each
simulated MA, assessing their goodness of fit with AIC and DIC. The distribution of AIC and DIC
differences across the 18,000 simulation datasets is depicted in Figure 3a, with the y-axis representing
the goodness of fit differences between ZIBGLMM and BGLMM. The violin plot included a box plot
where the box limits indicated the range of the central 50% of the data (i.e., the range between the 25th
and 75th percentiles), and the median value was marked by a central black line, along with a kernel
smoothed density plot representing the probability distribution. ZIBGLMM outperformed BGLMM in
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Table 4. Specifications for the simulation studies.

Parameter Value

Proportion of zero inflation 25%, 50%
No. of studies 10 (small), 25 (moderate), 50 (large)
Average event probabilities for the

nonzero-inflated part
3% for the control group on average, generated from

a BGLMM model
Marginal RR 1, 1.5, 2
Study size 50
No. of double-zero studies Binomial (no. of studies, proportion of zero inflation)

Figure 4. Coverage probability and mean CI length of conventional two-stage meta-analysis (MA),
bivariate generalized linear mixed models (BGLMM), Bayesian BGLMM, zero-inflated bivariate
generalized linear mixed models (ZIBGLMM), and Bayesian ZIBGLMM for meta-analyses with 10
studies (a), 25 studies (b), and 50 studies (c). The y-axis displays the coverage probability, and the
x-axis displays the mean 95% confidence/credible interval widths. The number of studies in an MA
is denoted by n. The Bayesian BGLMM and Bayesian ZIBGLMM displayed comparable, consistently
high coverage probabilities to MA, while maintaining the shortest mean credible interval widths across
all settings. The coverage probabilities for all methods decreased as the average marginal risk ratio
increased and as the size of studies increased.

8,839 of 16,215 (54.51%) simulation studies in terms of AIC and in 17,805 of 18,000 (98.92%) studies
based on DIC. These findings underscore ZIBGLMM’s robustness in the simulated scenarios.

We compared the coverage properties of conventional two-stage MAs excluding DZS and both
the frequentist and Bayesian versions of BGLMM and ZIBGLMM. Figure 4 shows the coverage
probabilities, along with the mean lengths of confidence intervals (frequentist models) and credible
intervals (Bayesian models), while detailed coverage probabilities can be found in Table 5. Remarkably,
the Bayesian BGLMM and Bayesian ZIBGLMM display comparable, consistently high coverage
probabilities to MA, while maintaining the shortest mean confidence interval widths across all settings
among all five methods. The coverage probabilities for all methods decrease as the average marginal
RRs increase and as the size of studies increases. The coverage properties of frequentist BGLMM and
ZIBGLMM were calculated contingent on the number of MAs that attained convergence.

Figure 5 shows the bias in the estimation of RR obtained from conventional two-stage MA excluding
DZS, along with the frequentist and Bayesian versions of BGLMM and ZIBGLMM. The frequentist
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Table 5. Coverage probability of the five methods: two-stage meta-analysis
excluding DZS (MA), BGLMM, Bayesian BGLMM, ZIBGLMM, and Bayesian
ZIBGLMM..

Frequentist Bayesian

𝜋 = 0.25 𝜋 = 0.5 𝜋 = 0.25 𝜋 = 0.5

MA 𝑛 = 10 RR = 1 98.3% 98.5% — —
RR = 1.5 97.3% 96.7% — —
RR = 2 96.3% 96.3% — —

𝑛 = 25 RR = 1 98.1% 98.1% — —
RR = 1.5 95.2% 96.1% — —
RR = 2 91.9% 93.7% — —

𝑛 = 50 RR = 1 97.6% 97.8% — —
RR = 1.5 92.4% 94.9% — —
RR = 2 82.8% 91.3% — —

BGLMM 𝑛 = 10 RR = 1 97.2% 96.8% 98.3% 98.8%
RR = 1.5 96.1% 96.1% 97.4% 98.4%
RR = 2 95.8% 94.7% 97.3% 96.6%

𝑛 = 25 RR = 1 92.4% 92.4% 94.8% 94.7%
RR = 1.5 93.5% 92.4% 94.3% 93.6%
RR = 2 93.1% 89.3% 93.6% 92%

𝑛 = 50 RR = 1 91.9% 92.4% 92.5% 93.1%
RR = 1.5 90.8% 91.5% 90.7% 92.2%
RR = 2 88.5% 88.9% 89.6% 91.6%

ZIBGLMM 𝑛 = 10 RR = 1 94% 94.3% 98.3% 98.6%
RR = 1.5 91.1% 93.4% 96.8% 98%
RR = 2 90% 88.3% 96.9% 96.3%

𝑛 = 25 RR = 1 95.4% 91.8% 94.9% 95.2%
RR = 1.5 91.1% 89.9% 94.6% 93.9%
RR = 2 87.2% 85.1% 93.6% 92.1%

𝑛 = 50 RR = 1 92.7% 91.9% 92.2% 93.4%
RR = 1.5 89.7% 88.6% 91.1% 92.3%
RR = 2 85.2% 80% 90.1% 91.7%

ZIBGLMM obtains the least bias for MAs of small size (10 studies), while the Bayesian BGLMM
manifests the least bias for MAs of moderate size (e.g., with 25 studies) among the five methods. The
Bayesian BGLMM and ZIBGLMM obtain effect size estimates with a comparatively small bias for
large MAs (e.g., with 50 studies).

Moreover, the frequentist ZIBGLMM consistently demonstrates less bias than the frequentist
BGLMM. For all settings, both frequentist and Bayesian BGLMM and ZIBGLMM consistently yielded
smaller biases compared to conventional two-stage MAs that exclude DZS. We observe an increased
number of convergence issues for frequentist ZIBGLMM, especially for smaller MAs with 10 studies.
Possible contributing factors could be the absence of DZS or an excessive presence of DZS within
an MA. Comprehensive details on the convergence issues for n = 10 can be found in Table 6 in the
Supplementary Material. This convergence issue by the zero-inflated models is consistent with the
observations made by Beisemann et al.31

An important advantage of the proposed ZIBGLMM method is its capability of capturing population
heterogeneity by estimating the proportion of zero inflation. To evaluate the empirical performance
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Figure 5. Bias in the estimation of risk ratio from conventional two-stage meta-analysis excluding DZS
(MA), alongside the frequentist and Bayesian versions of BGLMM and ZIBGLMM. For meta-analyses
(MAs) with a smaller size (10 studies), the frequentist ZIBGLMM exhibits the least bias. For MAs with
a moderate size (25 studies), Bayesian BGLMM manifests the least bias. The Bayesian BGLMM and
ZIBGLMM archives the smallest bias for large (50 studies) MAs. Frequentist ZIBGLMM consistently
demonstrates less bias than the frequentist BGLMM. For all settings, both frequentist and Bayesian
BGLMM and ZIBGLMM consistently yield smaller biases compared to MA.

of ZIBGLMM under various settings, Figure 6 summarizes the bias of the estimated proportion of
zero inflation with respect to the frequentist and Bayesian ZIBGLMM methods. We observe that
Bayesian ZIBGLMM produces estimates of the proportion of zero inflation with smaller biases than the
frequentist ZIBGLMM across MAs of all sizes and proportions of zero inflation. In addition, Bayesian
ZIBGLMM yields more accurate estimates when the proportion of zero inflation is 50% than when
the proportion of zero-inflation is 25%. In contrast, the frequentist ZIBGLMM appears to have a more
substantial bias as the size of the MAs grows.

In summary, our extensive simulation studies suggest that ZIBGLMM, especially the Bayesian
method, is a promising tool for MAs, particularly when dealing with datasets that have varying
proportions of DZS. This method provides robust model fit, smaller bias in effect size estimation, and
comparatively high coverage probabilities as conventional two-stage MA. Moreover, the capability
of Bayesian ZIBGLMM to estimate the proportion of zero inflation accurately, especially in smaller
and moderate-sized MAs, further emphasizes its significance in capturing the underlying population
heterogeneity. However, practitioners need to be cautious while interpreting results from larger MAs,
as there may be a tendency to overestimate the proportion of zero-inflation. It is also worth noting the
potential convergence issues faced by the frequentist ZIBGLMM method in certain scenarios, which
might be solved by using different optimization algorithms.

7. Discussion

In this article, we proposed a ZIBGLMM as a new method for handling DZS in MA. This model is
motivated by the hypothesis that zeros in DZS may arise due to heterogeneity in the population, making
the segregation of “structural” and “chance” zeros essential for accurate analysis.
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Figure 6. Bias in the estimation of proportion of zero inflation 𝜋. Bayesian ZIBGLMM produces an
estimate of the proportion of zero inflation with a smaller bias than the frequentist ZIBGLMM across all
study sizes and proportions of zero inflation. However, it tends to overestimate the proportion of zero
inflation for larger meta-analyses (MAs) (50 studies). In addition, Bayesian ZIBGLMM yields better
estimates when the proportion of zero inflation is 50% than when it is 25%. The frequentist ZIBGLMM
appears to have a more substantial bias as the size of the MAs grows.

The main estimate that we derive from our model is a marginal risk ratio (RR). Alternatively, one
could use the OR as the estimate. We chose RR over OR as the estimate mainly because of the non-
collapsibility issues of the OR. There has been an ongoing debate on the choice between OR and
RR.56–59 Another option is to use a GLMM with a log link assuming a Poisson distribution within
studies as Böhning et al.30 to report cluster-specific effects instead of marginal effects.60 The choice
between reporting the cluster-specific effects versus the marginal effects depends on the population
we are interested in generalizing to. Marginal effects should be used if the goal is to generalize to the
whole population, while cluster-specific effects should be used if we are only interested in the study-
level effects. One potential issue with the bivariate approach to MA is that it may permit intertrial
information to be recovered, which in theory can lead to bias.61 However, as Senn61 has pointed out, in
practice, the size of this bias is likely to be small and can rarely cause an issue in real-world applications.

There are two ways of defining the treatment effects in our model setting. Let 𝑝𝑖𝑘 denote the
probability of success for the ith study for the kth treatment arm. Then, we could estimate the treatment
effects based on the overall population (both ZI and non-ZI population), and the formula is 𝜋+(1−𝜋)𝑝𝑘 ,
where 𝑝𝑘 = E(𝑝𝑖𝑘 ). The argument for this approach is that this aligns more with our model of the two
mixture parts or only the non-ZI population, and the formula is 𝑝𝑘 = E(𝑝𝑘𝑖). The argument for this is
that since the population is ZI and is healthier, then there are little treatment effects for that population.
We have chosen the latter way of defining the treatment effects.
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Using 1,111 real-world MAs with DZS selected from the CDSR and 18,000 simulated MAs, we
demonstrated the strengths and potential benefits of both the frequentist and Bayesian versions of
ZIBGLMM. The Bayesian ZIBGLMM provided consistently better goodness of fit than the Bayesian
BGLMM across varying scenarios. We further identified that Bayesian BGLMM and Bayesian
ZIBGLMM generally accomplished comparable coverage probabilities to two-stage MAs, shorter
confidence interval lengths, and less bias in estimating RR.

The ZIBGLMM method has several limitations compared with the standard bivariate generalized
linear model or conventional two-stage MA excluding DZS. Notably, convergence issues might occur
for the frequentist versions of ZIBGLMM and BGLMM models, especially for MAs with a smaller
number of studies. This issue potentially stems from the absence of DZS or the excessive presence of
DZS in an MA. The frequentist ZIBGLMM method has a higher chance of encountering convergence
issues than the BGLMM method. Specifically, 1,015 datasets converged for ZIBGLMM, while 1,084
datasets converged for BGLMM for the 1,111 CDSR MAs. A potential way of avoiding convergence
issues is to change the optimization algorithms used. Alternatively, using the Bayesian BGLMM and
ZIBGLMM can avoid the convergence issues.

The limitation of the Bayesian BGLMM and ZIBGLMM is that they typically might take longer
time to compute than the frequentist counterparts. For example, fitting a Bayesian ZIBGLMM on an
MA with 25 studies takes around 4 minutes, and fitting on an MA with 50 studies takes around 9
minutes on a MacBook Pro with an Apple M1 Pro 10-core CPU and 32 GB RAM.

Our general recommendation to practitioners is to opt for Bayesian ZIBGLMM in the presence of
DZS, as it provides a more accurate estimation of the RR and the proportion of zero inflation. Bayesian
ZIBGLMM in general achieves better goodness of fit in terms of deviance of information (DIC) than
Bayesian BGLMM. In addition, the Bayesian methods are not subject to convergence issues that the
frequentist ZIBGLMM might face. The main limitation of the Bayesian methods is that the computation
time might be longer for a single MA than their frequentist counterparts.

If computation time is a major limitation, we recommend using the frequentist ZIBGLMM, which
can provide a more accurate estimation of the RR than the frequentist BGLMM. For MAs comprising
10 or fewer studies, we recommend using Bayesian ZIBGLMM for MAs with 10 studies or fewer since
the computation time would not increase too much and the frequentist ZIBGLMM are more likely to
experience convergence for the small MAs as observed in the simulation studies. We also recommend
exercising caution with large MAs when using Bayesian ZIBGLMM, as there might be a tendency to
overestimate the proportion of zero inflation.

We note that when the true data-generating mechanism is BGLMM rather than ZIBGLMM, using
ZIBGLMM might be misspecified. In fact, the BGLMM is a submodel of the ZIBGLMM. In practice, if
there are excessive numbers of zeros in the data, we recommend the investigators to fit the ZIBGLMM
to avoid substantial biases due to underfitting. Further, we can also formally test between the BGLMM
and ZIBGLMM models, as they are nested models. Score tests and LR tests can be developed following
the work by Hall et al.62 and Huang et al.63 For the LR test, one needs to properly account for the
fact that under the null hypothesis, the mixing probability parameter 𝜋 = 0 lies at the boundary of its
parameter space [0, 1].41,64,65

Meta-regression remains a challenging yet vital aspect of enhancing the robustness and applicability
of our findings. In particular, when many zero events occur in MAs, the effect sizes tend to be more
homogeneous, making it difficult to identify appropriate study-level summary covariates that could
explain small between-study heterogeneity. One direction for future work is to expand the current model
to incorporate covariate meta-regression, which would allow for a more detailed examination of how
specific study characteristics influence the treatment effects.

In conclusion, our study proposes the ZIBGLMM as a novel approach to handling DZS, which can
effectively reduce the biases in conventional MA methods by properly accounting for the between-
population heterogeneity. We expect the ZIBGLMM method to be useful in pharmacoepidemiological
and pharmacovigilance studies where the event probabilities are rare and DZS are prevalent.
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