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Abstract

Incretin-based treatments, such as glucagon-like peptide-1 receptor (GLP-1R) agonists
(eg liraglutide and semaglutide), have rapidly transformed obesity treatment. The well-
documented weight loss effect from these agents is considered to be primarily a result of their
actions on food intake, but frequent anecdotal reports from varied sources have suggested that
they might also broadly affect consummatory behavior, including alcohol and drugs of abuse,
suggesting a potential modulatory effect on reward behavior. Herein, we critically review the
extant literature on the behavioral effects of GLP-1R agonists in humans, including their impact
on feeding behavior, alcohol/drug intake, and overall reward response. We also consider the
physiological and neurobiological underpinnings of GLP-1 actions, with a focus on its distinct
central and peripheral roles, as well as its relationships with the broader energy homeostasis
network. We conclude with a discussion on the implications of this line of research on how
behavior is conceptualized, and the potential future directions for research.

Highlights

• GLP-1R agonists promote weight loss through their effect on feeding behavior
• An overall modulatory effect of these agents on reward behavior has been proposed
• However, the evidence supporting this hypothesis in humans is very limited
• Metabolic signals, such as GLP-1, are known to modulate the reward neural circuits
• Better understanding of the brain–body connection can offer novel insights into behavior

Introduction

There has been increasing interest and speculation on the potential behavioral effects of incretin-
based pharmacological agents. Glucagon-like peptide-1 receptor (GLP-1R) agonists
(eg liraglutide and semaglutide) and the newer glucose-dependent insulinotropic polypeptide
(GIP) receptor and GLP-1R dual agonists (eg tirzepatide) are highly effective at reducing body
weight.1–3 These agents have revolutionized obesity treatment, for individuals with or without
type 2 diabetes mellitus (T2DM), and have been increasingly utilized off-label for a variety of
conditions.4 The mechanisms underlying the weight loss effects of incretin-based treatments are
incompletely understood, however, a reduction in food consumption has been consistently
reported.5–8 Anecdotal reports from patients, healthcare providers, media, and scientific pub-
lications have also suggested that these agents might have overall anti-consummatory effects.
Dual and GLP-1R agonists have been reported to reduce the intake of alcohol, tobacco, cannabis,
cocaine, and opioids,9 as well as mitigate a range of addictive/compulsive behaviors, including
shopping and hair-pulling.10 A number of clinical trials are currently underway to evaluate the
efficacy of incretin-based agents for substance use disorders. As the best of our knowledge on
these drugs rapidly evolves, what is actually known about the effects of GLP-1R agonists on
behavior, and what does it tell us about its nature?

GLP-1 receptor agonists and behavior

The most robustly documented effect of incretin-based treatments is a sustained reduction in
body weight. Weight loss is achieved when energy expenditure exceeds energy intake, that is a
state of negative energy balance.11 Any biological, behavioral, or environmental factor that affects
body weight necessarily acts through one or more components of energy balance.11 In humans,
GLP-1 receptor agonists have been associated with neutral to negative effects on energy
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expenditure, including in volitional physical activity, thus it is likely
that a decrease in caloric intake is the main driver of the negative
energy balance.8,12 Studies using ad libitum (ieunrestricted) food
intake assessments have documented a reduction of 30–40% in
energy intake, compared to a placebo, in participants using an
incretin-based treatment.5–8 This reduction in food intake has been
similarly reported in healthy individuals.13,14 The distribution of
nutrients (% energy consumed) was not significantly different, with
reductions reported for all macronutrients (ie fat, carbohydrates,
and protein),8 although separate studies have reported a decreased
subjective preference for high-fat foods.15

Feeding behavior is complex and multidimensional. It has been
parsed in multiple constituent elements, starting with hunger and
the incentive salience of food (ieanticipation and valuation), to the
consummatory, including the hedonic response, and termination
(ie satiation) phases, all modulated by cognitive (eg learning and
memory), and decision-making processes. The effects of incretin-
based treatments have been primarily assessed by exploring the
subjective impression of participants on their eating behavior,
using standardized questionnaires and visual analogue scales. Mul-
tiple studies have reported a reduction in feelings of hunger, and
increased fullness and satiety. These effects are independent of
nausea, a common side effect of GLP-1R agonists.5–7,16 Addition-
ally, decreased prospective food consumption (ie howmuch people
think they could eat), and better control of eating, with fewer and
less strong food cravings, and less difficulty resisting food, have
been consistently documented.5–7,16 Furthermore, neuroimaging
studies have reported decreased anticipatory responses, to food
cues or consumption of highly palatable foods, in various brain
regions (eg parietal and orbitofrontal cortex, insula, putamen, and
amygdala).17,18 In contrast, the hedonic response to food seems to
be preserved, with reports of no change in palatability or general
food aversion.6 A recent neuroimaging study reported that treat-
ment with liraglutide did not result in an altered hedonic experi-
ence or neural response while consuming a high-calorie food.19

Accumulating preclinical evidence has indicated that the
administration of a GLP-1 receptor agonist results in a reduction
in the intake of alcohol and drugs of abuse.9 However, evidence
from clinical studies, albeit very limited, is more mixed. A recent
non-controlled study documented a lower self-reported intake of
alcohol and decreased frequency of binge drinking episodes in
obese individuals on semaglutide or tirzepatide.20 Dulaglutide
was reported to reduce alcohol intake in a secondary analysis of a
randomized clinical trial (RCT) testing this GLP-1 receptor agonist
as a therapy for smoking cessation.21 The primary outcome of this
RCT was negative, as dulaglutide was not more effective than a
placebo at promoting abstinence from smoking.22 In the only
published RCT in patients with alcohol use disorders, exenatide
was not superior to placebo at reducing the number of heavy
drinking days and total alcohol intake, although an exploratory
analysis suggested a significant effect of the treatment in a subgroup
with comorbid obesity.23 In patients with a cocaine use disorder,
acute treatment with exenatide, when compared to placebo, did not
change cocaine self-administration, self-reported euphoria, or
wanting of cocaine.24

Hitherto, 2 studies assessed the effects of liraglutide on reward
behavior (ie the responses to positive stimuli) using objective
tasks.25,26 Hanssen et al. (2021)25 evaluated how the drug affected
the willingness to exert physical effort for food and monetary
rewards, using a task whereby varying amounts of food and money
could be earned by squeezing a handgrip device. The results
indicated that liraglutide increased the motivation to work for both

food and monetary rewards in insulin-resistant participants,
restoring it to a similar level when compared to insulin-sensitive
individuals. Hanssen et al. (2023)26 probed adaptive learning,
through a paradigm that assessed the ability of participants to learn
associations between auditory cues and subsequent visual out-
comes, which shifted in predictability throughout the experiment.
The key finding was that insulin-resistant participants exhibited a
reduced adaptive learning rate (ie the extent to which participants
learned from their errors), which was then normalized by a one-
time liraglutide administration.

Therefore, the emerging picture is that incretin-based agents
affect food intake, primarily through a modulation of the anticipa-
tion and valuation of foods, rather than a hedonic action. Evidence
on consummatory behavior of non-foods is more uncertain, but
with potential effects onmotivation to work and learning reported,
specifically in subgroups with metabolic dysfunction (ie obesity
and/or insulin resistance). Whereas the connection between incre-
tin function and food intake is more direct, if not necessarily
straightforward, it is worth questioning further why and how
would this system also affect the consumption of non-food
rewards, which have vastly different physiological roles (or, in
the case of drugs, are thought to work by “hijacking” the reward
neurocircuitry, but still through targets that are not necessarily
involved in the signaling of nutrient availability).

GLP-1 physiology and behavior

Incretins are multifaceted peptides. Endogenous GLP-1 acts both
as a gut hormone and as a neuropeptide within the central nervous
system (CNS)27. The central and peripheral GLP-1 systems are
considered to be, at least partially, functionally separate.28,29 GLP-1
originates from 2 separate locations, the enteroendocrine L cells
of the intestine and the preproglucagon (PPG) neurons in the
nucleus tractus solitaries (NTS).28,30 Gut-derived hormonal
GLP-1 is synthesized and secreted after nutrient ingestion,31 it
stimulates pancreatic insulin secretion and biosynthesis in a
glucose-dependent manner, in addition to having numerous reg-
ulatory effects.31 Central GLP-1 secretion is stimulated by gastric
distension, or endocrine factors, such as leptin and oxytocin.27

The central GLP-1 system is probably not directly activated by
peripheral endogenous GLP-1, as PPG neurons do not express
GLP-1Rs,29 and active GLP-1 in the circulation is rapidly metabo-
lized to inactive by the enzyme dipeptidyl peptidase 4 (DPP-4); it is
unlikely then thatGLP-1 released by the intestine reaches the brain.32

PPG neurons are the main source of brain GLP-1.33 These are
projecting neurons; their axons containing GLP-1 vesicles are pre-
sent in varied regions of the brain. Neuronally produced GLP-1 is
transported to the axon terminals and stored in synaptic vesicles
until its eventual release.34 GLP-1Rs are widely expressed in the CNS
and are thought to modulate, directly or indirectly, multiple regions.
These include “homeostatic” feeding areas (eg brainstem–hypotha-
lamic circuit), associative networks (eg parietal cortex) as well as
regions relevant to motivation (eg mesolimbic pathway) and
general cognitive function (eg hippocampus).17,35–38

The effects of GLP-1 on food intake are considered to result
from the activation of its receptors in the CNS.28,30,39 Evidence
indicates that the peripheral and central GLP-1 systems suppress
food intake independently, through distinct behavioral mecha-
nisms.29,30 Postprandial release of intestinal GLP-1 is thought to
convey a satiation signal, primarily mediated by vagal afferent
neurons,40,41 thus reducing ad libitum energy intake.42 In contrast,
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physiological central GLP-1 signaling does not seem to be involved
in ad libitum feeding, glucose tolerance, or long-term energy
balance, but is instead activated by different forms of metabolic
and psychogenic stressors, including unusually large meals and
prolonged fasting, as well as acute stress, modulating stress-
induced hypophagia.29,33 Systemically administered GLP-1R ago-
nists are degradation-resistant and long-acting, and are thus con-
sidered to mimic the action of postprandial gut-derived GLP-1.
These agents additionally access GLP-1Rs within the CNS,
although the extent to which they access the areas protected by
the blood–brain barrier (BBB) is still unclear.43–45 Therefore, it is
unclear if GLP-1R agonists are also correlated with central GLP-1
actions. Preclinical evidence indicates that liraglutide and semaglu-
tide do not activate PPG neurons, nor require them for their
feeding suppression effects.29 Interestingly, concurrent activation
of PPG neurons was shown to augment semaglutide’s effects on
eating behavior, indicating that brain-specific GLP-1 action might
not be fully reflected by existing GLP-1R agonists, and could be
additional pharmacological targets.29

A reasonable synthesis of the extant literature is that peripheral
GLP-1 is involved in day-to-day energy balance, serving as a meal
termination signal. Elevating the tone of peripheral GLP-1 signal
with long-acting and degradation-resistant GLP-1R agonists would
then promote feelings of satiety, facilitating the cessation of feeding
(improving subjective feelings of control), and decreasing the
subjective value of food (reducing the anticipation and valuation
of food rewards), which are all consistent with the reported behav-
ioral effects of incretin-based treatments. On the other hand,
central GLP-1 is more context-dependent and is activated by
stressful situations, whereby the termination of feeding behavior
is more urgent. Based on the reported inputs to NTS PPG neurons,
these can be related to somatic signals (e.g. excess gastric distention),
but also to metabolic stress and perceived imminent threats.46

Conceivably, these could also be disease states and/or intermediate
phenotypes, such as the excess accumulation of adipose tissue or
insulin resistance. Evidence indicates that central GLP-1 signaling
can promote feelings of satiety even in conditions of negative energy
balance,29 suggesting that it is activated in situations where respond-
ing to a threat, internal or external, takes priority over replenishing
energy resources.46 Nonetheless, despite interest in the role of the
GLP-1 system in the overall response to stress,47 the behavioral
correlates, in humans, of these actions have not been directly
explored. If, and to what extent, the currently documented behav-
ioral effects of GLP-1R agonists in humans are attributable to central
versus peripheral GLP-1 activation is still to be determined.

How could then the GLP-1 system affect the intake of non-
foods, as well as overall reward behavior? One of the underlying
concepts is that responses to food and non-food rewards converge
on a common neural network, the mesolimbic pathway.48 Meso-
limbic regions, such as the ventral tegmental area and the nucleus
accumbens, express GLP-1R and receive projections from NTS
PPG neurons.27 Activation of GLP-1R in the mesolimbic pathways
has been shown tomodulate dopaminergic neurotransmission, one
of the key molecular mediators of reward response, in preclinical
models.9 Conversely, studies have reported that the effects of
GLP-1 on alcohol and drug intake in animals are mediated by
central rather than peripheral mechanisms.9 Notably, the effects of
GLP-1 on alcohol intake seem to be related to modulation of its
rewarding/reinforcing properties, rather than a byproduct of
GLP-1 overall influence on nutrient and fluid intake, as a study
showed that a GLP-1R agonist was able to attenuate intravenous
ethanol self-administration in mice.49

Nonetheless, findings from human studies have been mixed.
Two studies failed to document an effect of GLP-1R agonists on an
indicator of dopamine function in vivo, the availability of striatal
dopamine transporter (DAT), measured using molecular neuro-
imaging (e.g. positron emission tomography); Jensen et al. (2020)50

following the acute administration of exenatide in healthy volun-
teers and Athauda et al. (2017)51 following 48 weeks of exenatide
treatment in patients with Parkinson’s disease, despite improve-
ment in motor symptoms. In contrast, Klausen et al. (2022)23

reported a decrease in striatal DAT availability after 26 weeks of
treatment with exenatide in patients with alcohol use disorder.
These discrepant findings might be a result of methodological
limitations from the aforementioned studies, including relatively
small sample sizes. It is also worth considering the possibility that
these might reflect the distinct roles of the central and peripheral
GLP-1 system. The more context-dependent nature of central
GLP-1 signaling indicates that its activation, which is likely neces-
sary for the potential broader effects on reward behavior, might
only be meaningful in specific situations, determined by certain
physiological and/or environmental conditions. Indeed, reinfor-
cing this hypothesis, the effects of GLP-1R agonists on non-food
reward in humans, including alcohol intake and response to mon-
etary rewards, have hitherto only been shown in individuals with
obesity and/or insulin resistance.23,25,26

An additional explanation for the potential role of the GLP-1
system on non-food rewardmight be in the non-specific properties
of GLP-1 signaling. Activation of GLP-1 receptors has been con-
sistently associated with neuroprotective effects in preclinical
models, including preventing or reversing the effects of a range
of toxic conditions on neuronal survival, by decreasing apoptosis
and increasing neurogenesis, angiogenesis, and cerebral blood
flow.52–54 Some of these actions seem to be mediated by the
modulation of oxidative stress and inflammatory processes; recent
work documented that central GLP-1 signaling was required for
the anti-inflammatory effects of GLP-1R agonists.55 These actions
have substantiated the hypothesis that GLP-1R agonists may also
have pro-cognitive effects, which has been tested in diverse clinical
populations.56–59 Conversely, the GLP-1 system has been impli-
cated in the regulation of cerebral glucose metabolism. The human
brain is highly dependent on glucose as its primary substrate and is
considered to be particularly vulnerable to fluctuations in glucose
supply and consumption. Evidence from human studies indicates
that GLP-1 modulates the transport of glucose across the blood–
brain barrier and the cerebral metabolic rate of glucose, in a
glucose-dependent manner.60 In a 6-months RCT testing the use
of liraglutide as a treatment for Alzheimer’s disease (AD), the
GLP-1R agonist was shown to prevent the decline of cerebral
glucose metabolism, a pathological feature of AD’s progression,
although the trial failed to document treatment effects on its
primary outcome, cognitive function.61

In an attempt to reconcile these broad and relatively disparate
functions attributed to the GLP-1 system, it should be considered
that GLP-1, and the concerted effects of physiological or pharma-
cological GLP-1 activation, can also function as a signal of energy
availability. Extensive literature indicates that energy substrates
(ie glucose) and its accompanying network of regulatory peptides,
including, but not limited to, insulin, leptin, and ghrelin, affect
human behavior and decision-making, beyond food-related
rewards.62–68 Importantly, in manipulation studies, the effects of
glucose on motivated behavior seem to be a direct result of glucose
ingestion, with the consequential elevation in blood glucose and
counterregulatory hormonal response, rather than a hedonic or
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perceptual process, as artificial sweeteners or glucose mouth rinses,
had either none or opposite effects on decisionmaking.69,70 Indeed,
the mesolimbic pathway is known to be modulated by a variety of
homeostatic signals.71 Replicated evidence indicates that oral glu-
cose administration stimulates dopaminergic activity in the stria-
tum.72 Furthermore, mesolimbic dopamine neurons also express
receptors for insulin,73 leptin,74 and ghrelin.75

The precise mechanisms whereby energy availability and its
signals affect reward response remain unclear, but it has been
suggested that more demanding behaviors and actions are thought
to require greater energetic resources, and thus higher glucose
availability and utilization.76,77 Circulating glucose and regulatory
hormones also have a signaling function, as indicators of the body’s
“energy budget.” Furthermore, recent work has highlighted the role
of dopaminergic neurotransmission in the mesolimbic pathway in
cost–benefit decision-making. Every action has an energetic cost,
actual and/or opportunity. Dopamine signaling has traditionally
been implicated in arousal, motivation, and psychomotor activa-
tion (that is incentive salience models), and reward learning/rein-
forcement (that is prediction error models).78–80 Recent work has
suggested that dopamine can potentially signal relative value (that
is the available reward for a certain cost of effort), thus integrating
cost and benefit factors, which can then be employed for both
learning and motivational functions.80–82 Conceptually, homeo-
static input to striatal dopamine neurons can then serve as signals
of the current and anticipated energy resources. Therefore, even
complex behaviors can potentially be affected by each individual’s
internal energy milieu, and their perception of their energy envi-
ronment.83,84

Conclusions

Behavior has a context and a purpose.85 The process of obtaining
nutrients from the environment, as well as transforming and
allocating those nutrients to build cellular structures and maintain
the function of body tissues, is crucial for survival and reproduc-
tion. The central and peripheral GLP-1 systems are critical nodes of
the energy homeostasis network, and as such, are expected to
modulate behavior, potentially beyond its direct effects on feeding.
Nonetheless, the intricacies of this system, vis-à-vis the subtle but
physiologically meaningful differences in the roles of central and
peripheral GLP-1, and the complexity of its relationship with other
metabolic signals and the reward pathway, suggest that broad and
indiscriminate anti-consummatory effects are unlikely. On the
other hand, effects on specific behavioral domains in well-defined
subpopulations are not only theoretically possible but are already
well supported by accumulating preclinical and clinical studies.
Within this context, pragmatic studies focusing on establishing the
efficacy of GLP-1R agonists for alcohol and substance use disorders,
or more broadly on conditions related to “reward dysfunction”86,87

are needed. Nonetheless, there is also a need for more mechanisti-
cally focused efforts, aimed at parsing the specific behavioral effects
ofGLP-1R agonists, considering its physiological and environmental
determinants.

The study of GLP-1R agonists is also a tremendous opportunity
to broaden our understanding of normal and dysfunctional behav-
ior, particularly those related to neuropsychiatric conditions. His-
torically, psychopathology has primarily focused on describing and
analyzing behavior at the psychological and neurocircuitry level,88

often neglecting its physiological causal factors. But, as the literature
on GLP-1R agonists highlights, the brain has a body.89 A better

understanding of the brain–body connection, and appreciation for
the role of whole-body physiology, can fundamentally reframe the
conceptualization of behavior and provide novel insights for a
deeper, more contextualized consideration of its related conditions.
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