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Abstract

We discuss complete mapping polynomials of finite fields, which are a special class of permutation
polynomials. Complete mapping polynomials of small degree are classified. Results are obtained on a
class of complete mapping binomials and on permutation binomials.

1980 Mathematics subject classification (Amer. Math. Soc): 12 C 05.

1. Introduction and general properties

We discuss a special class of mappings of a finite field into itself which arises in
connection with combinatorial and algebraic problems. We start with the follow-
ing general definition.

DEFINITION 1. Let G be a group and ^: G -> G a bijection of G. Then a
bijection 6: G -» G is called a ^-complete mapping of G if T: G -> G defined by
T(g) — O(g)yp(g) for g G G is also a bijection of G. If \p = l c the identity
mapping on G, we speak of a complete mapping of G.

Complete mappings were introduced in [8], where they were shown to be
pertinent to the problem of constructing orthogonal latin squares. Considerable
attention has been given to the question of determining which groups possess
complete mappings (see for example [3]), and one result obtained is that every
group of odd order possesses at least one complete mapping. From the following
result we see that a problem involving ^-complete mappings can be reduced to a
problem involving only complete mappings.
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198 Harald Niederreiter and Karl H. Robinson [2)

PROPOSITION 1. Let G be a group and $: G -> G a bijection of G. Then a mapping
0: G -» G is a ^/-complete mapping of G if and only if the composition 0 ° \p~l is a
complete mapping of G.

PROOF. Let T: G -» G be defined by r(g) = 0(g)t(g). Then 0 is a ^-complete
mapping of G if and only if 0 and T are both bijections of G. Now, since \p is a
bijection of G, 0 and T are bijections of G if and only if 0 ° \p~l and T ° ^" ' are
bijections of G. But (T ° ip'^Xg) = (0 ° $'"')(£)# for all g G G. Hence, 0 is a
^--complete mapping of G if and only if 0 ° ^" ' is a complete mapping of G.

If F7 is a finite field with q elements, then 0: Fq -> Fq is called a complete
mapping of Fq if it is a complete mapping of the additive group of Fq. In [9] it was
shown that nonsimple Bol loops of order pr, p > r odd primes, can be char-
acterized by pairs of complete mappings of Fp. This raises the problem of finding
interesting classes of complete mappings of finite fields. The present paper
addresses itself to this question.

By known interpolation techniques, for example Lagrange's interpolation for-
mula, one shows that any mapping 0 of an arbitrary finite field Fq into itself can
be represented by a polynomial, in the sense that there exists/ G Fq[x] such that
0{c) = / (c) for all c G Fq. The polynomial/is unique if we require deg(/) < q.
In fact, for f,h& Fq[x] we have / (c) = h(c) for all c G Fq if and only if
f(x) = h(x) mod(x'7 — JC). The degree of the reduction of / modulo (xq — x) is
called the reduced degree of/. Thus, the reduced degree is always less than q.

A polynomial/ €E Fq[x] is called a permutation polynomial of Fq if the induced
mapping c G Fq\^f(c) is a bijection (see [7]). By analogy, we call / G Fq[x] a
complete mapping polynomial of Fq if c G Fq ̂ f(c) is a complete mapping of Fq,
that is if both f(x) and f(x) + x are permutation polynomials of Fq. Trivial
examples of complete mapping polynomials are the linear polynomials/(x) = ax
with a =£ 0, - 1 . One of our aims will be to find complete mapping polynomials of
reduced degree > 1. The following result, stated and proved in [5], [7], provides a
useful criterion for permutation polynomials.

PROPOSITION 2. A polynomial f G Fq[x] is a permutation polynomial of Fq if and
only if the following two conditions are satisfied:

(i)fhas a unique root in Fq;
(ii) for each integer n with 1 < n < q — 2 and gcd(«, q) = I, the nth power f" of

f has reduced degree < q — 2.

A consequence of this result is that if / G Fq[x] has reduced degree m > 1 and
m divides q — 1, then/ is not a permutation polynomial of Fq. We also obtain the
following restriction on the reduced degree of a complete mapping polynomial.
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THEOREM 1. For a finite field Fq with odd q > 3, any complete mapping poly-
nomial of Fq has reduced degree < q — 3.

PROOF. By (ii) of Proposition 2, a complete mapping polynomial/(x) of Fq has
reduced degree *£ q — 2. Similarly, /(x)2 and (/(x) + x)2 have reduced degrees
< q - 2. But (/(x) + x)2 = /(x)2 + 2xf(x) + x2, and since (/(x) + x)2,f(x)2,
and x2 have reduced degrees < q — 2, then 2x/(x) has reduced degree < q — 2
and the result follows.

This bound is in a sense best possible since /(x) = x4 + 3x is a complete
mapping polynomial of F-, of reduced degree 4. It would be of interest to
determine whether Theorem 1 holds also for even q. Let F£ denote the multiplica-
tive group of nonzero elements of Fq.

THEOREM 2. If f(x) is a complete mapping polynomial of Fq, then so are the
following polynomials:

(i)/(x + a) + b for all a, b G Fq\
(ii) af(a~lx)for all a G F*\
(iii) any polynomial representing the inverse mapping of c G Fqq i

PROOF, (i) is trivial. For (ii) write f(a\x) = af(a~}x) and g(x) = f(x) + x,
then f{a\x) + x = af{a~xx) + aalx = ag(a~lx), so that both f{a\x) and
/ ( a )(x) + x are permutation polynomials being compositions of permutation
polynomials. For (iii) let h G Fq[x] be any polynomial representing the inverse
mapping of c G Fqt->f(c). Then h is a permutation polynomial and h(c) + c —
h(c) + f(h(c)) = g(h(c)) for all c G F, so that h(x) + x is a permutation
polynomial.

2. Complete mapping polynomials of small degree

We shall determine all complete mapping polynomials of degree < 6, as well as
those of degree 6 for finite fields of order prime to 6. To do this, we make use of
the classification given by Dickson [4], [5] of the corresponding set of permutation
polynomials.

Let / G Fq[x] be a polynomial of degree n 2* 1. If gcd(n, q) — 1, let f(x) =
aox" + naxx"~' + a1x"~2 + • • • +an. The normalized polynomial / of / is de-
fined by

f{x) = a-o
l[f{x - a.ao1) -f{-axa-0%
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If gcd(«, q) > 1, let /(x) = aox" + a,x""' H +an. The normalized poly-
nomial/is then defined by

f(x) = aj[f(x)-an].

The normalized polynomial has the property of being monic of degree n and
having no constant term. Furthermore, when %cA(n,q) — 1, the coefficient of
x"~' in/(x) is zero.

Let / G Fq[x] have degree n > 1 and leading coefficient a0, and let / be its
normalized polynomial. If gcd(w, q) = 1, then /(x) = aof(x + b) + c for some
b, c e Fq, and if gcd(n, q) > 1, then /(x) = aof(x) + c for some c e Fq. Note
that/is a permutation polynomial of Fq if and only if/is one.

We include here Dickson's results in the form of a table listing all normalized
permutation polynomials of Fq of degree < 6 and those of degree 6 for finite
fields Fq with gcd(q, 6) = 1.

TABLE 1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

2

3

3 - a x ,
4 ± 3 x
4 + ax2

5

5 - a x ,
s + ax,
5 ±2x 2

5 + ax3

5 + ax3

5 + ax3

5 - 2ax
6 ± 2 x
6 _+_ a*x

6 ± 4a2.

+

-t-

+
+
3 .

x3

Normalized Permutation Polynomials

a not a

bx if x

a not a
a2 = 2

x2 + 3a
5-'a2x,
3a2x,

fa 2 x ,

h a2x2 ±
+ ax2±

square in Fq

— 0 is its only root in Fq

fourth power in Fq

2x, a not a square in Fq

a £ Fq arbitrary
a not a square in Fq

a not a square in Fq

5x, a * 0
4x, a = 0 or a not a square in Fq

q

alia
a = 0
02 1

a = 0

a = 0
^ 1
a = 0

q=±

q = 0

mod
mod
mod
7
mod
mod
mod
9
7
7

2
3
3

2
5
5

2 mod 5
13
mod
11
11
11

5

The following result provides the connection between complete mapping poly-
nomials and normalized permutation polynomials.
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THEOREM 3. Let f £ Fq[x] be of degree n with n > 3 ifgcd(n, q) = 1 and n>2

if gcd(n, q) > 1, and let f be the normalized polynomial of f. Then f is a complete

mapping polynomial of Fq if and only if there exists a normalized polynomial g such

that:

(i) / and g are permutation polynomials of Fq;

(ii) g(x) — f(x) — a^x, where a0 is the leading coefficient off.

PROOF. If gcd(/i, q) = 1, let f(x) = aox" + naxx"~x + a2x"~2 + ••• +an.

Then

fix) = a-o
l[f(x - a.ao1) - f{-axaj)}

and the normalized polynomial g(x) of f(x) + x is given by

g(x) = *o'[/(* - a\aoi) + {x

Hence g(x) — f(x) — a^x. If/is a complete mapping polynomial of Fq, then (i)
and (ii) follow. Conversely, if (i) and (ii) hold, then f(x) = aof(x + b) + c for
suitable d , c £ Fq, and so f(x) and aog(x + b) + c — b — ao[f(x + b) + a^x
+ a^b] + c — b = f(x) + x are permutation polynomials of Fq, that is / is a
complete mapping polynomial of Fq.

If gcd(«, q) > 1, let /(*) = aox" + a,*""1 + • • • +an, then f(x) = aj[f{x)
— an] and the normalized polynomial g(x) of f(x) + x is given by g(x) =
aoXif(x) + x — an]. Hence g(x) — f(x) = a^x. The proof is completed in the
same way as in the case where gcd(n, q) = 1.

Degree < 1. /(x) = ax + b E. Fq[x] is a permutation polynomial of Fq if and
only if a ¥= 0. Thus /(*) is a complete mapping polynomial of Fq if and only if
a T^O, - 1 .

Degree 2. If f(x) = ax2 + bx + c G .FJx] is a complete mapping polynomial
of F? of degree 2, then by Theorem 3 and Table 1 we have q even and
f(x) = g(x) = x2. Thus a~lx = g(x) — f(x) = 0, a contradiction. There are thus
no complete mapping polynomials of degree 2.

Degree 3. If f(x) — aox
3 + • • • +a3 E Fq[x] is a complete mapping poly-

nomial of Fq of degree 3, then by Theorem 3 and Table 1 either q = 2 mod 3 or
q = 0mod3. If q = 2 mod 3, then/(.x) = g(x) = x3, thus a^x = g(x) - f(x) -
0, a contradiction. Let q = 0mod3. Then f(x) ¥= g(x), otherwise we obtain a
contradiction. Thus either (i) g(x) = x3 — ax and/(;c) = x3; (ii) g(x) = x3 and
f(x) = x3 — ax; or (iii) g(x) = x3 — ax and f(x) = x3 — bx, where a ¥= b and
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both are nonsquares in Fq. If (i) holds, then aQ
lx — g(x) — f(x) = -ax, therefore

a0 = -a~x. If (ii) holds, then a^x = g(x) — f(x) = ax, thus a0 = a~l. If (iii)
holds, then a^x = g(x) — f(x) — (b — a)x, thus a0 — (b - a)"1. Thus f(x) G
Fq[x] is a complete mapping polynomial of Fq of degree 3 if and only if
q = 0mod3 and either f{x) = -ax3 + c, f(x) = ax3 — x + c, or f(x) - (b —
a)~lx3 — b(b — a)~]x + c, where a ¥= b are nonsquares in Fq and c G Fq is
arbitrary.

In like manner, the complete mapping polynomials of degree 4 and 5 can be
determined, as can be those of degree 6 for fields of order relatively prime to 6.
These results are summarized in the following table.

TABLE 2

Complete Mapping Polynomials

ax + b, a, b G Fq,

-ax3 + c, ax3 — x
a, b, c G Fq, a ¥= b

-(x + af + 3x + b

a ¥= 0 , -1

+ c, (b- a)-lx3 - b(b - a)~lx + c,
nonsquares in Fq

(x + a)4 + 3x + b, a,bEF7 arbitrary

a'\xA + bx2 + ex) + d, a, b,c,dE Fq, a ¥= 0,
such that x4 + bx2 + ex and x4 + bx2 + (a + c)x
each have x — 0 as the unique root in Fq

5a~2[(x + bf + a(x
Sa~2[(x + bf + a(x
a, b,c G i7^, a not

a(x + bf + c, a(x

-ax5 + c, ax5 — x
a, b, c G Fq, a ¥= b

-5(x + bf + x + c,
5(x + bf + x + c,
5(x + bf - 2x + c,
-5(x + bf -2x +
b,cEFn arbitrary

+ bf + Sa2x] + c,
+ bf + 3a2x] + c,
a square in F] 3

+ bf ± x + c, b,c E F9 arbitrary, a2 = 2

+ c, (a- by]x5 - a(a - bylx + c,
not fourth powers in Fq

-2(x + bf - 4x + c, 2(x + bf - Ax + c,
-3(x + bf + 5x + c, 3(x + bf + 5x + c,
-2(x + bf + 3x + c, 2(x + bf + 3x + c,

c, 4(x + bf + 5x + c, -4(x + bf + 5x + c,

q

all q

q = 0 mod :

7

q = 0 mod 'A

13

9

q = 0 mod f

11
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3. A special class of complete mapping binomials

In this section we obtain a necessary and sufficient condition for a binomial in
Fq[x] of the form ax(q+n"X)/n + bx, ? = l m o d n , n> 2, to be a complete
mapping polynomial of Fq, and the case n = 2 is examined more closely. In this
way we will establish the existence of complete mapping polynomials of reduced
degree > 1 for all Fq with q > 5.

From Theorem 8.92 of [7] it follows that, for q sufficiently large, permutation
polynomials of Fq of the form x(i+"-v/" + bx, q = I mod n, n > 2, exist. Poly-
nomials of the form x(-q+Y)/1 + bx, <jfodd, have been studied in [1], [2], and
sufficient conditions were obtained for such binomials to be permutation poly-
nomials of Fq.

If n> 2 is an integer and q = 1 mod n, let <o be a primitive nth root of unity in
Fq. Let +n: Fq -> Fq be the mapping defined by ^n(c) = c(q~l)/n, c £ Fq. Then </<„
maps F* homomorphically onto the subgroup of F* generated by w.

LEMMA \.Ifn^2 is an integer such that q = 1 mod n, then x
(q+"~])/" + bx G

Fq[x] is a permutation polynomial of Fq if and only if the following conditions hold:
( i ) (_f t )»^l ;

(ii) i//n((ft + «')(* + wy)~') ¥= u 7 " ' for all 0 < / <j < n, where w is a fixed
primitive nth root of unity in Fq.

PROOF. Pu t / (x ) = JC<'?+"^1)/'> + f,x Le t ^ satisfy (i) and (ii) of the lemma. If
/(c) = 0 for some c G F*, then for some 0 < / < n we have 0 = be + c(<?+"~ " /"
= (b + c(q~^/n)c - (b + J)c. Now {-b)n ¥= 1 implies that b + J ¥= 0, hence
c = 0, a contradiction. If / (c , ) = / ( c 2 ) , c,, c2 G F*, then (ft + c^- 1 ) / B )c , = (b
+ c2*"1)/n)c2, thus for some 0 < /, j < n we have (b + « ' > , = (ft + wJ)c2.
Without loss of generality we may assume /' < / Thus (ft + «')(ft + to7)"1 = c2cj~',
hence î n((ft + w'Xft + w7')"1) = ^n(c2)</-„(cf1) = w7"', which is a contradiction
unless / =j. In this case c2cf' = (ft + w')(ft + w')"1 = 1, thus c, = c2. Therefore
/ (x ) is a permutation polynomial of Fq.

To prove the necessity, suppose first that (-b)n = 1. Then ft + co' = 0 for some
0 < i; < n. Let c E Fq be such that ^ ( c ) = «'. Then c ^ 0 and/(c) = 0 = /(0), so
that/(x) fails to be a permutation polynomial of Fq.

Suppose ^n((ft + u'\b + w7)"1) = to7"' for some 0 *s / <j < n. Let a = (ft +
u'Xft + w7)-' and let d G 7^ be such that tyn(d) = uj. Then (ft + to')(ft + w7)"1

= a = dd'^a and \pn(da~l) = w'. Therefore (ft + oil)da'x = (ft + w7)c/ and
f(da~l) = f(d), so that / ( * ) fails to be a permutation polynomial of F since
a ^ 1.
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204 Harald Niederreiter and Karl H. Robinson [81

THEOREM 4. Ifn > 2 is an integer such that q = 1 mod n, then ax(q+n~l)/" + bx
G Fq[x], a ¥= 0, is a complete mapping polynomial of Fq if and only if the following
conditions hold:

(i)bn*(-ay,(b+ir^(-ay;
(ii) ifin((b + a«')(6 + aujyl) ¥= uJ~' and \f,n((b + 1 + aa')(b + 1 + auJyl)

T̂  w7"' for all 0 < /' <j < n, where a is a fixed primitive nth root of unity in Fq.

PROOF. f(x) = ax(<?+""1)/" + bx is a complete mapping polynomial of Fq if
and only if a~xf(x) and a'\f(x) + x) are permutation polynomials of Fq. But by
Lemma 1, a'lf(x) and a~\f(x) + x) are permutation polynomials of Fq if and
only if:

(A) i-a-'b)" # 1, (-a-\b + 1))" ¥* 1;
(B) «M(a-'6 + w')(a"'/> + w7)"1) *= w7"' and ^n[(a~\b + 1) + «''Xa"'(6 + 1)

+ w7)'1] =̂ wj~' for all 0 < / <j < n.
(i) is equivalent to (A) and (ii) is seen to be equivalent to (B) by noting that

(a']b + w'Xa"^ + uJyl =(b + au'Xb + auJyl and (a~\b + 1) + w')(a"'(*
+ 1) + ujyx = (6 + 1 + aw')(ft + 1 + aaJyl.

Let n = 2 and q be odd. We shall denote x|/2 simply by v̂ . In this case w = - 1 ,
and \{/(c) — 1 if and only if c =£ 0 and c is a square in F

THEOREM 5. Let q be odd and f(x) = x(<?+1)/2 + fcc e /^[JC]. Then f(x) is a
permutation polynomial of Fq if and only ifip(b2— 1) = 1.

PROOF. By Lemma 1 with n = 2 and w = - l , / ( x ) is a permutation polynomial
of F, if and only if b2 - 1 ¥= 0 and ^[(b + l)(b - I)"1] ^ - 1 . But i//[(6 + l)(fe-
I)"1] = +[(b + 1X6 " 1)-']«K(6 - I)2) = '/'C*2 " 1), and b2 - 1 * 0 if and only
if (̂Z>2 - 1 ) ^ 0 . Thus f(x) is a permutation polynomial of Fq if and only if
\l>(b2 - 1) ¥=0,-1. Since the image of \p is (0, ± 1), the result follows.

REMARK 1. It is easily seen that ty{b2 — \) — 1 precisely if b is of the form
b = (c2 + l)(c2 - I)"1 for some c G Fq with c2 ¥= 0,1. Carlitz [1] has shown that
for elements b of this form, xiq+1)/2 + bx is a permutation polynomial of F . One
arrives at a simpler form for b by noting that \p(b2 — 1) = 1 if and only if
b = 2~\c + c~]) for some c & Fq with c2 =£ 0,1.

THEOREM 6. Let q be oddandf(x) = ax ( i ? + l ) / 2 + bx G F^x], a =̂  0. Then f(x)
is a complete mapping polynomial of Fq if and only if \p(b2 — a2) — ^((b + I)2 ~
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[9 ] Complete mappings of fim'te fields 205

PROOF. Using arguments similar to those in the proof of Theorem 4, this
follows from Theorem 5.

REMARK 2. It can be verified that the family of polynomial mappings in Fq[x]
of the form ax( < ? + l ) / 2 + bx is closed under composition. In fact, if / , (*) =
ax(i+n/2 + bx and/.,(;<) = cx(q+X)/1 + dx are in Fq[x], q odd, then

(/i ° fi)(x) = (ae + bc)x(q+X)/2 + ( a / + bd)xmod(x" ~ x),

where e + f = (c + d)("+ " / 2 and e - f = (d - c)(<?+1) /2.

REMARK 3. Let q > 3 be odd and f(x) = bx"~2 + x(<?~3)/2 G Fq[x]. By argu-
ments similar to those in Lemma 1 and Theorem 5 one shows that f(x) is a
permutation polynomial of Fq if and only if 4>(b2 — I) — 1. It should be noted,
however, that for b ^ 0, f(x) is never a complete mapping polynomial of Fq. This
follows from Theorem 1 and the fact that / (x) has reduced degree q — 2.

The criterion in Theorem 6 leads to enumerative results which indicate that
there are comparatively many complete mapping polynomials of Fq of the form

bx.

THEOREM 7. The number N of elements b G Fq such that x(q+X)/1 + bx is a
complete mapping polynomial of Fq satisfies

if Fq is of characteristic > 3. If F is of characteristic 3, we have

q-9

(2)
if q = 3 mod 4.

if q = 1 mod 4,

PROOF. Let rj be the quadratic character of Fq. Then from Theorem 6 and the
definition of \p we get for F of characteristic > 3,

= ± 2 [l + v{b2 ~ l)][l + v{(b + I)2 - l)] - |(4 -

2 v(b2 ~ 1) + i 2 v((b ~ \)b{b + \)(b + 2))
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Now

(3)

by [6], Lemma 14.1.1, and so

forcuc
uc2

= U ~ \ ~ | TJ(-I)) - l)b(b + l)(ft + 2)).
fceF,

According to Weil's estimate for character sums (see [11, page 43, Theorem 2C'])
we have

r,((b-\)b(b+\)(b

hence (1) follows. If Fq is of characteristic 3, then

71/2

b¥-0,±\

b£Fq

b¥-0,±]

by (3). Thus (2) follows since T; ( -1) = 1 for q = 1 mod 4 and TJ(-1) = -1 for
q = 3 mod 4.

COROLLARY 1. Complete mapping polynomials of Fq of the form x<<7+1>//2 + bx
exist exactly for all odd q > 13 and for q = l.

PROOF. The lower bound in (1) and the expressions in (2) are positive for
q > 25. Thus it remains to consider the odd prime powers q < 25. We can take
b = 2 for q = 23 and 25, b = 3 for q — 7 and 17, ft = 5 for q = 19, and ft = 6 for
q = 13. The cases q = 3 and 9 can be eliminated by (2), and for q = 5 and 11 one
shows by inspection that there is no complete mapping polynomial of the desired
form.

A basic question for the applications (see for example [9]) is that of the
existence of complete mapping polynomials of reduced degree > 1, which can
now be settled as follows.
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THEOREM 8. For any finite field Fq with q > 5 there exist complete mapping
polynomials of Fq of reduced degree > 1.

PROOF. For q = 7 and all odd q > 13, this follows from Corollary 1. For q = 9
and 11, polynomials of the desired type can be obtained from Table 2. For even
q > 5, we use the following argument to show that there exist complete mapping
polynomials of Fq of degree 4. The number of monic irreducible polynomials over
Fq of degree 3 is given by (q3 — q)/3. On the other hand, there are q2 ordered
pairs of elements of Fq. Since (<jr3 — q)/3 > q2 for q > 5, there exist an ordered
pair (a,, a2) with a,, a2 £ Fq and two distinct elements dx, d2 6 Fq such that
x3 + axx

2 + a2x + dt is irreducible over Fq for / = 1,2. Changing x into x — ax,
we get two irreducible polynomials x3 + bx + c,, i = 1,2, over i^ with cx¥= c2.\i
follows then from Table 2 that (c2 — c , ) " 1 ^ 4 + bx1 + c,x) is a complete map-
ping polynomial of Fq.

REMARK 4. Theorem 8 is best possible in the sense that for q < 5 every
complete mapping polynomial of Fq is of reduced degree 1. This is trivial for
q — 2. For q — 3 it is obvious and for q — 4,5 it follows, respectively, from the
remark after Proposition 2 and Theorem 1 that every complete mapping poly-
nomial of Fq has reduced degree < 2. Since there are no quadratic complete
mapping polynomials (see Section 2), the claim is established.

REMARK 5. Theorem 8 can also be proved elementarily, that is without using
Corollary 1 which depends on Weil's estimate. If Fq is of characteristic > 7, then
Theorem 6 shows that 24x<q+1)/2 + 25x is a complete mapping polynomial of Fq

of reduced degree > 1. If F is of characteristic 3 or 5, then suitable polynomials
can be obtained from Table 2. If Fq is of characteristic 7, then x<<7+1>/2 + 3JC is
suitable by Theorem 6. For Fq of characteristic 2 the same argument as in the
proof of Theorem 8 is used. We note that "almost universal" complete mapping
polynomials obtained from Theorem 6, such as 24x<<?+1)/2 + 25x, are obviously
connected with Pythagorean triples.

4. Permutation binomials

In the preceding section we considered binomials axk + bx with k depending
on q, and many complete mapping polynomials were obtained. If k is fixed
independently of q, the situation changes. In fact, apart from some obvious
exceptions, such a binomial is not even a permutation polynomial of Fq once q is
sufficiently large. One such exception is the case b = 0, since it is known that axk,
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a G F*, is a permutation polynomial of Fq if and only if gcd(fc, q - 1) = 1, and
from this it follows easily that for fixed k s* 1 there exist infinitely many q such
that xk is a permutation polynomial of i y For if k is odd, take the infinitely
many primes q = 2 mod £. If A: is even, consider q — 2r and note that
gcd(ft, 2r — 1) > 1 if and only if 2r = 1 mod pt for one of the odd prime divisors
pt of k. But the latter condition is equivalent to r = 0 mod e, for some i, where et

is the multiplicative order of 2 mod pjt and there are of course infinitely many r
which do not satisfy any of these congruences.

LEMMA 2. The binomial axk + bx G Fq[x] with ab ^ 0 is permutation polynomial
of Fq if and only if the equation

(4) yk'1 + ab~](xk~l + xk~2 + • • • +x + l) = 0

only has solutions (x0, y0) G FqX Fq with either x0 = 1 or y0 = 0.

PROOF. Suppose the condition of the Lemma is satisfied. Now let ack + bcx =
ack + bc2 with cx, c2 G F, c, ¥= c2. Without loss of generality, we can assume
c2 ¥= 0. Then

ack[(clc-2>)k-l]+bc2(clc-2
i-l)=0.

Put x0 = cxc2
l # 1, y0 = c2

x ¥= 0. Then ay^x!^ - 1) + ^ ' ( x o - 1) = 0, hence
y^x + ab~\x^'x + x%~2 + ••• +x0 + 1) = 0, a contradiction. Thus axk + bx

is a permutation polynomial of Fq. The converse is shown similarly.

We note that when k = 2, we cannot have a permutation polynomial of Fq of
the form ax2 + bx, ab ¥= 0. This follows either from Lemma 2 or directly from
the fact that such a binomial has two distinct roots in Fq. Thus we can assume
k>2.

Equation (4) is of the form yd — f(x) = 0, which has been studied extensively
both by the methods of algebraic geometry and by the well-known elementary
methods of Stepanov and Schmidt. When k > 2, then for equation (4) we have
d = k — 1, m = deg( f) = k— 1, thus we have here a case where Stepanov's
standard condition gcd(w, d) = 1 is not satisfied. We will therefore use Schmidt's
more general results for absolutely irreducible equations (see [10], [11]). By an
absolutely irreducible equation we mean an equation G(x, y) = 0 with G(x, y)
absolutely irreducible over Fq, that is irreducible over the algebraic closure Fq.

LEMMA 3. Let k> 2. Then yk~x + c(x*~' + xk~2 + • • • +x + 1), c G F*, is
absolutely irreducible over Fq if and only if k is not a power of the characteristic of
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PROOF. We use the fact that yd — f(x) is absolutely irreducible over Fq if and
only if D = gcd(d, dx,.. .,ds) = 1, where */,,... ,ds are the multiplicities of roots
of f(x) (see [11], page 11, Lemma 2C). In our case/(x) = -c(xk - l ) / (x - 1).
Let p be the characteristic of Fq and k = p'u, gcd(p, u) = 1. If t = 0, then f{x)
has only simple roots, hence D = 1. If t > 0, u 3* 2, then f(x) has the root 1
of multiplicity p' — 1 and u — 1 roots ^ 1 of multiplicity p', hence D =
gcd(/t - 1, p' - 1, />',...,/?') = 1. If t > 0, M = 1, then f(x) has the root 1 of
multiplicity p' - 1 = k - 1, thus Z> = gcd(fc — 1, A: — 1) > 1 since A: > 2.

THEOREM 9. Let k > 2. T/ien: (i) */& w not a prime power, then for all finite fields
Fq with q ^ (A;2 — 4k + 6)2 there is no permutation polynomial of Fq of the form
axk + bx G Fq[x] with ab ¥=0; (ii) if k is a power of the prime p, then for all finite
fields Fq with q > (k2 — 4k + 6)2 and characteristic ¥= p there is no permutation
polynomial of Fq of the form axk + bx G Fq[x] with ab ¥= 0.

PROOF. If the equation (4) is absolutely irreducible, then the number N of
solutions ( x o j o ) e F , X f f satisfies

(5) | J V - < 7 | < ( A : - 2 ) V / 2

by [11, page 80]. On the other hand, the number N* of solutions with either
xQ = 1 or y0 - 0 satisfies #* < 2(A; - 1). For q > (k2 - 4k + 6)2 we get from
(5),

N > q'/2[q'/2 ~{k- if] > (k2 -4k + 6)[k2 - 4k + 6 - (k - if]

= 2(k2 - 4k + 6) > 2(k - 1) > N*.

Thus there exists a solution (x0, y0) of (4) with x0 ¥= 1 and y0 ¥= 0. The result
follows now from Lemmas 2 and 3.

COROLLARY 2. / / k and q are as in Theorem 9, then there is no complete mapping
polynomial of Fq of the form axk + bx G Fq[x] with a ¥= 0.

In the exceptional case of Theorem 9, namely when A; is a power of the
characteristic of Fq, one can show that the conclusion of Theorem 9 is not valid.

THEOREM 10. For fixed k — p' > 2, p prime, there are infinitely many finite fields
Fq of characteristic p for which there exist complete mapping polynomials of Fq of the
form axk G Fq[x]. If p > 3, one can find complete mapping polynomials of this form
for any Fq of characteristic p.
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PROOF. If Fq is of characteristic/?, then axk, a G F*, is always a permutation
polynomial of Fq. Thus it remains to show that for infinitely many F there exist
permutation polynomials of Fq of the form axk + x, a G Ff. Since the mapping
c G Fq^>ack + c is a linear operator on Fq considered as a vector space over Fp,
axk + x is a permutation polynomial of Fq if and only if the polynomial only has
the root 0 in Fq, or equivalently, if and only if -a'] is not a (k — l)st power of an
element of Fj[. Such an element a G Fj can be found precisely if gcd(A; — 1,
q - 1) > 1. If p > 3, then gcd(fc - 1, q - 1) = gcd(/>' - \,q-\)> p - \, so
the condition is always satisfied. If p — 2, then k = 2' with ? s* 2, and one can
find infinitely many powers q of 2 with gcd(& — 1, <? — 1) > 1, for example take q
to be any power of k.

More generally, one can study the question of finding permutation polynomials
of Fq which are binomials

(6) axk + bxJ G Fq[x], ab ¥= 0, 1 <j'< k.

In the same way as Lemma 2, one shows the following criterion.

LEMMA 4. The binomial (6) is a permutation polynomial of Fq if and only if the
equation

yk-j(xJ'1 + xJ~2 + • • • +x + 1)

+ ab-](xk~l + xk~2 + • • • +x + 1) = 0

only has solutions (x0, yQ) G Fq X Fq with either x0 = 1 or y0 = 0.

Let e - gcd(&, j), then we can write axk + bxj = a(xe)k/e + b(xe)j/e. Since
the composition of two polynomials is a permutation polynomial if and only if
each constituent is one, we get the following.

LEMMA 5. The binomial (6) is a permutation polynomial of Fq if and only if
gcd(e, q — 1) = 1 and axk^e + bx^e is a permutation polynomial of Fq, where
e - gcd(fc, j).

We can thus concentrate on the case where gcd(A:, j) = 1. The following
auxiliary results are needed.

LEMMA 6. Let gcd(k, j) = 1 and k, j > 1. Then for f(x) = c(xk~l + xk~2

+ • • • +x + 1) G Fq[x], c^O, and g(x) = x^1 + x^2 + • • • +x + 1 G Fq[x]
we have:

(i)f(x) and g(x) are relatively prime;
(ii) if d and h are integers with 0 < h < d, then f(x)hg(x)d~h is not a dth power.
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PROOF. Since gcd(A:, j) = 1, / ( * ) = c(xk - 1)/(JC - 1) and g(x) = (JC> -
\)/(x — 1) are relatively prime. Furthermore, one of k and j is not divisible by
the characteristic of Fq, and so one of / ( x ) and g{x) has only simple roots.
Property (ii) is then clear.

LEMMA 7. There exists a sequence M3 < M4 < • • • o/ positive integers with the
following property: for k > 2 and any finite field Fq with q > Mk, there is no
permutation polynomial of Fq of the form axk + bxJ £ Fq[x] with ab ¥= 0, 1 <j < k,
andgcd(k, j) = 1.

PROOF. If ab ¥= 0, 1 <j < k, and gcd(k, j) — 1, then it follows from Lemma 6
that the equation (7) satisfies the conditions of [11, page 175, Theorem 7B]. It
follows from this theorem that the number N of solutions (x0, yQ) £ Fq X Fq of
(7) satisfies

\N-q\<C(k-l,k-jW/2

for some positive constant C(k — 1, k — j) depending on k — 1 and k — j : With
C(k) = maxjC(k — 1, k — j) we get

Let N* be the number of solutions with either x0 = 1 or y0 = 0. If x0 — 1, then
(7) yields jy£~J + kab~x = 0, and since we cannot havey = k — 0 in Fq because of
gcd(A:, j) = 1, we get at most k —j values for y0. If y0 = 0, we obtain at most
k — 1 values for x0. Altogether,

N* < (k -j) + (k - 1) < 2k - 3.

Now choose Af3 < M4 < • • • such that

tf- C(k)ql/2>2k- 3 for all q>Mk.

Then N > N* for q> Mk, and the result follows from Lemma 4.

THEOREM 11. Let e — gcd(k, j). If e — k/2, then there is no permutation
polynomial of Fq of the form (6). If either e < k/2, e <j, or e < k/2, e = j and k/e
is not a prime power, then there exists Mk such that for all finite fields Fq with
<7 3* Mk there is no permutation polynomial of Fq of the form (6). If e < k/2, e = j ,
and k/e is a power of the prime p, then for all Fq with q 3s Mk and characteristic ^ p
there is no permutation polynomial of Fq of the form (6).

PROOF. If e = k/2, theny = e, and the resulting binomial ax2e + bxe is never a
permutation polynomial of Fq. If e < k/2 and e <j, then by Lemmas 5 and 7 we
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will not get a permutation polynomial of Fq of the form (6) if q > Mt / e , thus a
fortiori not if <7 > AfA. If e < fc/2 and e =7, then by Lemma 5 and Theorem 9 we
get the desired results in the remaining cases.

REMARK 6. In the case not covered by Theorem 11, namely e < k/2, e =j, and
k/e a power of the characteristic/? of Fq, say k/e = p', the binomials are of the
form axjp' + bxJ G Fq[x]. If gcd(y, q — 1) > 1, no binomial of this form can be a
permutation polynomial of Fq. If gcd(y, q — 1) = 1, then by Lemma 5 and
Theorem 10 there are infinitely many Fq of characteristic p for which there exist
permutation polynomials of F of the form axjp> + xJ with a G F*
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