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Abstract. We say that a semigroup of matrices has a submultiplicative spectrum if the
spectrum of the product of any two elements of the semigroup is contained in the product
of the two spectra in question (as sets). In this note we explore an approximate version of
this condition.

1. Introduction

A semigroup S of complex n×n matrices has a submultiplicative spectrum if for every pair
A,B ∈ S, every eigenvalue of the product AB is equal to a product of an eigenvalue of A and
an eigenvalue of B. This property was introduced by Lambrou, Longstaff, and Radjavi in
1992 [8] and has since been extensively studied. It has led to numerous nice structure results
for matrix groups and semigroups. Irreducible semigroups with this property are essentially
finite nilpotent groups [12, Thm. 3.3.4, Thm. 3.3.5] (see also [8]). In the original paper
[8], the authors proved that such irreducible groups exist in all odd dimensions. Kramar
considered even dimensions in [4] and showed that for even n, there exist irreducible groups
of n× n matrices with submultiplicative spectra if and only if n is divisible by 8. In [11] the
structure of irreducible 2-groups was studied and in [5] this study was extended to include
p-groups for general p. In [6] the class (ŝ) of groups G with the property that all their
irreducible sub-representations are submultiplicative was introduced. A systematic study of
this class of finite groups was initiated in [3].

In this note, we start the study of an approximate version of submultiplicativity. The
idea of replacing exact conditions with approximate ones has a rich (recent) history. The
first “approximate version” result in the context of simultaneous triangularization of matrix
semigroups is [2]. There, the authors ask “how small can the spectra of nonzero commutators
in a unitary group of matrices be?” They show that for a non-commutative unitary matrix
group G, there always exist elements A,B ∈ G such that the spectral radius ρ(AB −BA) of
their ring commutator is at least

√
3. Alternatively, this means that for unitary groups, the

exact triangularizing condition (actually diagonalizing in this case)

ρ(AB −BA) = 0

and be replaced by an equivalent approximate condition

ρ(AB −BA) <
√
3.

Since then a number of analogous results have been proven. For example, in [1], the authors
prove, among other things, that the exact triangularizing condition for semigroups of matrices

tr(ABC −BAC) = 0
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can be replaced by an approximate version

| tr(ABC −BAC)| < 3

for unitary groups. They also explore to what extent a similar result can apply to more
general semigroups of matrices. In [7] the authors show (using Chabauty topology) that for
unitary groups G in Mn(C) every continuous multi-variate triangularizing condition

f(A1, . . . , Ak) = 0

can be replaced by an approximate version

|f(A1, . . . , Ak)| ≤ εf,n

for some εf,n > 0 that depends on f and n. Naturally, in concrete cases, it can also be
important to find the largest possible εf,n. In particular, the question of whether εf,n is

bounded below by some polynomial in 1
n is of interest.

We say that a semigroup S of complex n×nmatrices is ε-submuliplicative if for all A,B ∈ S
and for every eigenvalue γ of AB, there exist eigenvalues α of A and β of B such that

|γ − αβ| ≤ ερ(A)ρ(B).

It is almost immediate that irreducible such semigroups do not contain any nonzero nilpotent
elements. However, such semigroups need not be groups. For any value of ε > 0, there are
irreducible semigroups of matrices of rank at most 1, that satisfy this condition. In this note
we focus primarily on unitary groups. In this case, the condition becomes

|γ − αβ| ≤ ε.

It also turns out that it is more convenient to consider a multiplicative analogue of this
condition. We say that a group G of unitary n× n matrices is ε-argument-submultiplicative
(or ε-ASM) if for every pair A,B ∈ G and every eigenvalue γ of AB, there exist eigenvalues
α of A and β of B such that

1

2π

∣∣∣∣arg(αβ

γ

)∣∣∣∣ ≤ ε.

(Here arg(z) ∈ (−π, π] denotes the principal argument of z.) We show, among other things,
that for a unitary group, and ε = 1

2n2 , the ε-argument-submultiplicativity implies that the
group is finite modulo its centre. We show, by example, that the order of ε above is sharp:
there exist 2

n2 -ASM groups of unitary matrices that are not finite modulo their centre. We
do not know at this point whether the quadratic order is still sharp if we additionally assume
irreducibility. More precisely: there are easy examples of irreducible ε-ASM groups that are
not essentially finite for ε > 1

2n , but we do not know if such examples exist when ε = c
n2 for

some fixed constant c.
Our approximate results are quite different from those in the literature. Most similar

sounding results deal with studying conditions that imply reducibility or triangularizability
of matrix collections (groups, semigroups, etc.). In the case of submultiplicativity (and its
approximate version) the situation is different. We mainly deal with irreducible (or at least
completely reducible) groups and semigroups; the condition in question then implies some-
thing about their structure. Another important distinction is that in most other situations
in the literature, the approximate condition actually implies the exact condition for small ε
(and not much is said about the structure when ε is not sufficiently small to ensure this).
In our paper, this is not the case. Even for an ε that is sufficiently small to imply struc-
ture results (e.g., essential finiteness) we have interesting examples of matrix groups that are
approximately submultiplicative, but not submultiplicative.
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2. Preliminaries

We start by reminding the reader of some definitions that we briefly mentioned in the
introduction. Throughout the section S ⊆ Mn(C) will denote a semigroup of complex n× n
matrices and G ⊆ Mn(C) will denote a group of unitary matrices. We say that S is ε-
submultiplicative if for all A,B ∈ S and every eigenvalue γ of AB, there exist eigenvalues α
of A and β of B such that

|γ − αβ| ≤ ερ(A)ρ(B).

Recall that a semigroup S is essentially finite if S ⊆ CS0 where S0 is some finite semigroup. A
semigroup is irreducible if it has no nontrivial invariant subspaces, and reducible otherwise. It
has been shown [12, Thm. 3.3.4.] that for an irreducible semigroup S with submultiplicative
spectrum, S \ {0} is an essentially finite group. The following example will show that this
does not hold for approximately submultiplicative semigroups.

Example 1. Define the semigroup Sr of matrices for 0 < r < 1 as

Sr =

{
λ

(
1 x∗

y yx∗

)
: x, y ∈ Cn−1, ||x||, ||y|| < r, λ ∈ C

}
.

In [2, Ex. 2.3.] it has been shown that Sr is irreducible. It is easy to see that Sr cannot
be essentially finite. Indeed, it is obvious that two distinct elements of Sr whose (1, 1)-
entries are both equal to 1 cannot be multiples of each other and (again obviously) there
are infinitely many pairwise-distinct such elements. It is fairly straightforward that Sr is

4r2

(1−r2)2
-submultiplicative (see below). Note that for any ε > 0 we have that for a sufficiently

small r, 4r2

(1−r2)2
< ε. Let

A = λ

(
1 a∗

b ba∗

)
, B = µ

(
1 x∗

y yx∗

)
.

Then the unique nonzero eigenvalue of A is α = λ(1+ a∗b), the unique nonzero eigenvalue of
B is β = µ(1 + x∗y), and the unique nonzero eigenvalue of AB is γ = λµ(1 + a∗y)(1 + x∗b).
A quick direct computation shows that

|γ − αβ|
ρ(A)ρ(B)

=
|γ − αβ|
|α||β|

=

∣∣∣∣ γ

αβ
− 1

∣∣∣∣
=

∣∣∣∣(1 + a∗y)(1 + x∗b)

(1 + a∗b)(1 + x∗y)
− 1

∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣(1 + a∗y)(1 + x∗b)

(1 + a∗b)(1 + x∗y)

∣∣∣∣− 1

∣∣∣∣ .
Note that each of the factors |(1 + a∗b)|, |(1 + a∗y)|, |(1 + x∗b)|, |(1 + x∗y)| lies in the interval[
1− r2, 1 + r2

]
and therefore the value of

∣∣∣ (1+x∗b)(1+a∗y)
(1+x∗y)(1+a∗b)

∣∣∣must be between (1−r2)2

(1+r2)2
and (1+r2)2

(1−r2)2
.

Subtracting 1 from these values then yields the promised estimate.

3. Main Results

As mentioned in the introduction, a scaled multiplicative version of approximate submul-
tiplicativity is more convenient in the context of unitary groups: in this case the eigenvalues
always lie on the unit circle in C and we find it more convenient to consider the “arc-distance”
between them. The scaling factor 1

2π was chosen so that the distance between two consecutive

n-th roots of unity is 1
n (and, more generally, for x ∈ [0, 1), the distance between 1 and e2πxi

is x).
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Definition 2. We say that the spectrum of a group G ⊆ Mn(C) of unitary matrices is ε′-
argument-submultiplicative (or ε′-ASM) if for every A,B ∈ G and every γ ∈ σ(AB), there
exist elements α ∈ σ(A), β ∈ σ(B) such that

1

2π

∣∣∣∣arg(αβ

γ

)∣∣∣∣ ≤ ε′.

We remark, that for unitary groups ε′-ASM implies (2πε′)-submultiplicativity and
ε-submultiplicativity implies (12ε)-ASM. This is because for complex numbers z, w of modulus
one we have that |z−w| ≤ | arg(z/w)| and | arg(z/w)| ≤ π|z−w|. The second inequality can

be substantially improved when |z − w| is small as limz→w
|z−w|

| arg z/w| = 1. We will sometimes

refer to 1
2π

∣∣arg ( z
w

)∣∣ as the scaled-argument-distance between z and w.

In this section we will show that 1
2n2 -ASM groups of unitary n × n matrices are finite

modulo their centres (hence essentially finite when irreducible).
But first we show by example, that for infinitely many n, there exist 2

n2 -ASM groups of
unitary n × n matrices that are not finite modulo their centres. Let p be an odd prime, let
D be any p × p unitary diagonal matrix of determinant 1, and let C to be the p × p cycle
matrix, i.e.,

C =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
1 0 . . . 0 0

 .

We will use the following well-known fact about the spectra of DCk. We include a sketch of
the proof for the sake of completeness.

Lemma 3. Suppose k is some positive integer. Then for C and D as above we have that

σ(DCk) =

{
σ(D), if k is divisible by p

{1, θ, θ2, . . . , θp−1}, otherwise

where θ = e
2πi
p is a fixed primitive p-th root of unity.

Proof. First note that if k is a multiple of p, then Ck = I, so σ(DCk) = σ(DI) = σ(D).
Now suppose 1 ≤ k ≤ p− 1. Then an easy direct computation shows that the characteristic
polynomial p(λ) of DCk is λp − 1.

Alternatively, it is in fact possible to see directly, that the matrices DCk and Ck are

similar: the matrix form of the linear map corresponding to DCk in basis fj =
(∏j

i=1 di

)
ej ,

j = 1, . . . , p is Ck (here di denotes the i-th diagonal entry of D). It is also well-known that
the matrices Ck and C are similar by the change of basis gj = e1+(j−1)k, j = 1, . . . , p (here

(ej)
p
j=1 denotes the standard orthonormal basis of Cp, we use the convention that for j > p

we have ej = ej−p). □

Example 4. Let (as above) C be the p × p cycle matrix and let ξ = e
2πi
p2 (i.e., ξ is a fixed

primitive p2-th root of unity). For a unitary diagonal matrix D, and integer parameters
k ∈ {0, 1, 2, . . . , p − 1}, and aj ∈ {0, 1, 2, . . . , p − 1} with j = 1, 2, . . . , p − 1, we define the
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corresponding “tadopole matrix” A ∈ M2p(C) by

A = A
(
D, k, (aj)

p−1
j=1

)
=



DCk

1
ξk+a1p

ξ2k+a2p

. . .

ξ(p−1)k+ap−1p


.

We will use notation AH = DCk to denote the “head” of the tadpole matrix, DA = D to
denote the “weight” of the head, and

AT =


1

ξk+a1p

. . .

ξ(p−1)k+ap−1p


to denote the “tail” of the tadpole matrix. With this notation in mind, we write (purposefully
abusing the notation somewhat):

A =

(
AH

AT

)
=

(
DAC

kA

AT

)
.

Let T be the set of all such tadpole matrices (i.e., tadpole matrices corresponding to all

possible choices ofD, k, (aj)
p−1
j=1). We claim that T forms a group under matrix multiplication.

Clearly, the identity matrix is in T and the inverses of elements from T are again in T . We are

left to show that the product of any two elements of T is also in T . Let A = A
(
D, k, (aj)

p−1
j=1

)
be as above and let B ∈ T be written as

B =



DBC
ℓ

1
ξℓ+b1p

ξ2ℓ+b2p

. . .

ξ(p−1)ℓ+bp−1p


,

with ℓ ∈ {1, 2, . . . , p − 1} and bj ∈ {0, 1, 2, . . . , p − 1} for j = 1, 2, . . . , p − 1. Then observe
that

AB =



DABC
r

1
ξr+c1p

ξ2r+c2p

. . .

ξ(p−1)r+cp−1p


,

where DAB = DA(C
kDBC

−k), r ≡ k+ ℓ− p = k+ ℓ (mod p), and cj ≡ aj + bj + j (mod p).
Note that

ξjr+cjp = ξjk+ajpξjℓ+bjp = ξj(k+ℓ)+(aj+bj)p = ξj(k+ℓ−p)+(aj+bj+j)p.

So the exponents in the tail of AB are of the required form for AB to belong to T .
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Theorem 5. The group T is 1
2p2

-argument-submultiplicative.

Proof. Let A,B ∈ T . Due to symmetry we have four possible cases to consider.
Case 1. Suppose that both A and B are diagonal. In this case we obviously have σ(AB) ⊆

σ(A)σ(B).
Case 2. Suppose that A is diagonal, but B is not. Then k = 0 and hence σ(DAC

k) =
σ(DA). Note that

σ(A) = σ(DA) ∪ {1, ξk+a1p, ξ2k+a2p, . . . , ξ(p−1)k+ap−1p}
and

σ(B) = σ(DBC
ℓ) ∪ {1, ξℓ+b1p, ξ2ℓ+b2p, . . . , ξ(p−1)ℓ+bp−1p}.

The tail of AB is the product of the tails of A and B. Since these are diagonal matrices, we
have that σ(ATBT ) ⊆ σ(AT )σ(BT ). We are left to prove the same for the heads of A and B.
Since DA and DB are unitary diagonal matrices of determinant 1, DADB is also a unitary
diagonal matrix of determinant 1. By Lemma 3 we have that

σ(DADBC
ℓ) = {1, θ, . . . , θp−1} = σ(DBC

ℓ),

and therefore σ(DADBC
ℓ) ⊆ σ(B). Since 1 ∈ σ(A), we have that σ(DADBC

ℓ) ⊆ σ(A)σ(B).
Hence, σ(AB) ⊆ σ(A)σ(B).

Case 3. Suppose none of A, B, AB are diagonal. We will again show that σ(AB) ⊆
σ(A)σ(B). The tails must still be diagonal, so by arguments in Case 2 we have that
σ(ATBT ) ⊆ σ(AT )σ(BT ). It is therefore sufficient to show σ(DAC

kDBC
ℓ) ⊆ σ(DAC

k)σ(DBC
ℓ).

We find, just like in Case 2, that each of the sets σ(DAC
k), σ(DBC

ℓ), σ(DABC
r) is equal to

{1, θ, . . . , θp−1} from when the result immediately follows.
Case 4. Suppose that neither A nor B is diagonal, but AB is. So k ̸= 0, ℓ = p − k and

r = 0. We will first show that σ(A)σ(B) = {1, ξ, ξ2, . . . , ξp2−1}. Since neither A nor B is
diagonal, the spectra of their heads consist of all p-th roots of unity. The spectra of tails are
contained in the set of all p2-th roots of unity and hence σ(A)σ(B) must be a subset of the

set of all powers of ξ. We are left to show that σ(A)σ(B) contains {1, ξ, ξ2, . . . , ξp2−1}. We
know from the above observations that:

σ(A) ⊇ σ(AT ) = {1, ξk+a1p, ξ2k+a2p, . . . , ξ(p−1)k+ap−1p},
σ(B) ⊇ σ(BH) = {1, θ, . . . , θp−1} = {ξtp : t = 0, 1, . . . , p− 1}

⊇ {1, ξ(−aj+t)p : j = 1, 2, . . . , p− 1, t = 0, 1, . . . , p− 1}.
Then multiplying two corresponding elements of these sets will give elements in σ(A)σ(B) of

the form ξkj+ajp+(−aj+t)p = ξkj+tp. Since t ranges over all integers in the set [0, p − 1] and
the residue of kj modulo p can be any integer in [0, p − 1], we can obtain all powers of ξ;

so σ(A)σ(B) = {1, ξ, ξ2, . . . , ξp2−1}. Since the scaled-argument-distance between consecutive
powers of ξ is always 1

p2
, we must have that for any γ ∈ σ(AB) there is some α ∈ σ(A) and

β ∈ σ(B) such that
1

2π

∣∣∣∣arg(αβ

γ

)∣∣∣∣ ≤ 1

2p2
.

(Take α, β to be such that the product αβ is the p2-th root of 1 that is closest to γ.) □

The above theorem shows that for n = 2p where p is an odd prime, there exists a group
G of unitary n × n matrices that is 2

n2 -ASM, but not finite modulo its centre. In the next

result, we show that reducing the size of ε′ = 2
n2 by a factor of 4 does in fact force the group

in question to be finite modulo its centre.
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Theorem 6. Let G ⊆ Mn(C) be a group of unitary matrices. If G is 1
2n2 -argument-

submultiplicative, then G must be finite modulo its centre.

Proof. First assume with no loss of generality that G = G, i.e., that G is compact. Indeed, if
G is ε′-ASM, then, since the spectrum is continuous, so is G. Also, if G/Z(G) is finite, then
so is G/Z(G). This is because Z(G) ⊆ Z(G) ∩ G and hence G/Z(G) can be identified as a
quotient of G/(Z(G) ∩ G) ≃ (GZ(G))/Z(G), which in turn is a subgroup of G/Z(G).

Suppose now, toward a contradiction, that G is not finite modulo its centre. Then for
all primes q we know that G contains some finite minimal nonabelian group, say H, whose
commutator subgroup [H,H] is a q-group (see [1, Lemma 2.5]; invoking this result is the
reason we needed to assume that G is compact). Let q > n be a prime such that 1

q <
1

2(n2−1)
− 1

2n2 (the reason for the latter requirement will become apparent later in the proof).

The structure of all finite minimal nonabelian groups has been described in detail by Miller
and Morreno [9]. They are either p-groups or their order is divisible by exactly two distinct
primes p and q, where q is the order of its commutator subgroup (see [10, Thm. 2.3.1.]).
In both cases, all their non-scalar irreducible representations are of size p [10, Thm. 2.3.1.].
Since q > n and clearly p ≤ n, we must therefore have that H is one of the latter (i.e., its
order is divisible by two distinct primes p and q). From [10, Thm. 2.2.3] we deduce that
H = ⟨X,Y ⟩, for matrices X, Y of the form

X =



X1

. . .

Xm

1
. . .

1


and Y =



Y1
. . .

Ym
βm+1

. . .

βℓ


.

with m ≥ 1 and

Xi =


θi,1

θi,2
. . .

θi,p−1

θi,p

 , Yi = βi


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
1 0 . . . 0 0

 ∈ Mp(C),

for i = 1, . . . ,m, where each θi,j is of order q, the order of each βi is a power of p, and
additionally, each Xi is non-scalar and of determinant 1.

We now consider the spectra of A = XkY,B = Y −1, and C = AB = Xk. Since X and Y
are block diagonal and X is of determinant 1, we have by Lemma 3 that,

σ(XkY ) =
m⋃
i=1

βi{1, θ, . . . , θp−1} = σ(Y )

(where θ a fixed primitive p-th root of unity). Observe also that

σ(Y −1) =

m⋃
i=1

β−1
i {1, θ, . . . , θp−1}.

From this, since both σ(XkY ) and σ(Y −1) have cardinality at most n we can see that the
number of distinct elements in their product σ(XkY )σ(Y −1) is at most n2−n−mp2+p+mp ≤
n2−1 (due to repetitions). So the average scaled-argument-distance between two consecutive
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points in σ(XkY )σ(Y −1) is at least 1
n2−1

. Hence there must be two consecutive points, say

ω and η, whose scaled-argument-distance is at least 1
n2−1

. Thus their midpoint γ on the unit

circle has scaled-argument-distance at least 1
2(n2−1)

from each ω and η (and hence at least

that much form any element of σ(A)σ(B)). As we vary k, note that σ(XkY Y −1) = σ(Xk)
will contain the q-th root of unity closest to γ. But then, since 1

q < 1
2(n2−1)

− 1
2n2 , the

scaled-argument-distance between an element in σ(Xk) and any element in σ(XkY )σ(Y −1)
will be at least 1

2(n2−1)
− 1

q > 1
2n2 . But this then contradicts the fact that the spectrum of G

is 1
2n2 -argument-submultiplicative. Thus G must be finite modulo its center. □

4. Further Explorations

4.1. Optimality of our results. The group of tadpole matrices in Example 4 is an example
of a 2

n2 -ASM groups of unitary n×n matrices that is not finite modulo its centre (here n = 2p,
where p is an odd prime). But this group is clearly not irreducible. The group of its heads
(i.e., the group of p× p matrices generated by all unitary diagonal matrices D and the cycle
matrix C) is easily seen to be an example of an irreducible group of unitary p × p-matrices
that is 1

2p -ASM, but not essentially finite. Can we do better? In particular: is there some

constant c such that for infinitely many n, there exist irreducible c
n2 -ASM groups of unitary

n× n matrices that are not essentially finite?

4.2. Remarks on a representation-theoretic version of approximate submultiplica-
tivity and linear bounds. The class (ŝ) of groups G with the property that all irreducible
representations of all subgroups are submultiplicative was introduced in [6] and then studied
further in [3]. We extend this class of groups in the definition below. Note that in the case
of ε-submultiplicativity we are considering all representations, whereas in the case of ε-ASM
we restrict ourselves to the class of unitary representations. We remark that for finite groups
there is no loss of generality in this restriction, as every representation is equivalent to a
unitary representation.

Definition 7. Let ε = (εn)
∞
n=1 be a sequence of nonnegative real numbers and let G be an

abstract group. We say that G is in class (ε− ŝ) if for every n, every subgroup H of G, and
every irreducible representation ρ : H → Mn(C), the image ρ(H) is εn-submultiplicative. We
say that G is in class (ε− âs) if for every n and every subgroup H of G, the image of every
irreducible unitary representation ρ : H → Mn(C) is εn-ASM.

We also define the corresponding notions for any fixed representation: a representation
ρ : G → Mn(C) is ε − ŝ, or ε − âs respectively (for the latter we additionally assume that ρ
is unitary), if for every subgroup H and every irreducible subrepresentation of H, ρW : H →
End(W ) ≃ Mm(C), the image ρW (H) is εm-submultiplicative, or εm-ASM, respectively (here
W is a minimal invariant subspace for ρ(H) of dimension m).

Assume now that ε = (εn)
∞
n=1 is a sequence of positive numbers such that for every prime

p, εp <
1
2p . For a prime p also define δp =

1
2p − εp and let Q(p) = Qε(p) denote the set of all

primes q for which

p−1⋃
j=0

(
2j + 1

2p
− δp,

2j + 1

2p
+ δp

)
∩
{
k

q
: k = 1, . . . , q − 1

}
= ∅.
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In other words, q ∈ Q(p) precisely when the distance from any fraction k
q , k = 1 . . . , q − 1 to

the closest fraction of the form j
p , j = 0, . . . , p is smaller than εp. Note that if q > 1

2δp
, then

q ̸∈ Q(p). Therefore, the set Q(p) is always finite.
Assume now that G is a finite minimal nonabelian group whose order is divisible by two

primes p, q (not necessarily distinct) and that [G,G] is a q-group (in the language of [10]
we would say that G is the (p, q, f)-group for some irreducible divisor f of xp − 1 ∈ Zq[x]).
It is then easy to see (using the same ideas as in the proof of Theorem 6) that G is in the
class (ε − âs) if and only if q ∈ Q(p). Since Q(p) is finite, we can therefore conclude that
any compact matrix group (viewed as a representation of itself in the obvious way) satisfying
ε− âs must be finite modulo its centre.

We also remark that there are easy examples of sequences ε satisfying the above properties
such that every Q(p) also contains primes q different from p. In these cases, the corresponding
(p, q, f)-groups will not be nilpotent. Hence, for such ε, the class (ε− âs) strictly extends the
class (̂s). Hence, it is natural to ask the following question.

Question 8. Are there sequences ε for which the class (ε − âs) is contained in (or perhaps
even coincides with) a well-known class of finite groups (e.g, M -groups, supersolvable groups,
etc.)?
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