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ADAPTIVE LONG MEMORY TESTING
UNDER HETEROSKEDASTICITY

DAVID HARRIS AND HSEIN KEW
Monash University

This paper considers adaptive hypothesis testing for the fractional differencing pa-
rameter in a parametric ARFIMA model with unconditional heteroskedasticity of
unknown form. A weighted score test based on a nonparametric variance estima-
tor is proposed and shown to be asymptotically equivalent, under the null and local
alternatives, to the Neyman-Rao effective score test constructed under Gaussianity
and known variance process. The proposed test is therefore asymptotically efficient
under Gaussianity. The finite sample properties of the test are investigated in a
Monte Carlo experiment and shown to provide potentially large power gains over
the usual unweighted long memory test.

1. INTRODUCTION

There is a large literature on statistical inference for the fractional differencing
parameter in a stationary ARFIMA model. Of particular note is Robinson (1994),
who derived asymptotically efficient score-based tests; see also Tanaka (1999)
and Nielsen (2004). Regression based LM tests of fractional integration have
been developed by Robinson (1991), Agiakloglou and Newbold (1994), Breitung
and Hassler (2002), Nielsen (2005), Demetrescu, Kuzin, and Hassler (2008), and
Hassler, Rodrigues, and Rubia (2009). For a Wald-type statistic, Dolado, Gonzalo,
and Mayoral (2002) and Lobato and Velasco (2006, 2007) proposed a regression
based testing framework; and Ling and Li (2001), Johansen and Nielsen (2010),
Hualde and Robinson (2011), Nielsen (2015) and Johansen and Nielsen (in press)
deal with parametric estimation of the memory parameter. All of this literature
maintains an assumption of unconditional homoskedasticity. That is, while the
disturbances of the model may be permitted to follow a martingale difference
structure that allows for some degree of conditional heteroskedasticity, this liter-
ature does not allow for changes in the unconditional variance.

There is, however, abundant empirical evidence that macroeconomic and
financial time series exhibit unconditional heteroskedasticity; see for example
Pagan and Schwert (1990), Loretan and Phillips (1994), Watson (1999),
McConnell and Perez-Quiros (2000), van Dijk, Osborn, and Sensier (2002),
Sensier and Van Dijk (2004), Stărică and Granger (2005) and Dalla, Giraitis,
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and Phillips (2015). Kew and Harris (2009) and Cavaliere, Nielsen, and Taylor
(2015a, hereafter CNT, 2015b) derived some implications for the size of long
memory tests in the presence of such heteroskedasticity and constructed a
heteroskedasticity-robust test, but they did not pursue the possibility of adapting
the test to recover the power losses that unmodelled heteroskedasticity can incur.
This paper takes up this point and derives a test that nonparametrically adapts to
unconditional heteroskedasticity of unknown form. In particular, we first derive
the infeasible asymptotically efficient score test for a known variance process and
then prove the asymptotic equivalence of a feasible version of this test that esti-
mates the variance process using a kernel-based nonparametric regression on the
squares of the residuals of the model. This approach closely follows that taken by
Xu and Phillips (2008) for an AR model and extends it to long memory testing in
ARFIMA models.

Our paper sits within a growing literature that addresses issues of heteroskedas-
ticity in time series models. Hamori and Tokihisa (1997), Kim, Leybourne, and
Newbold (2002), Cavaliere (2004a), Cavaliere and Taylor (2007, 2008a, 2008b,
2008c, 2009), Beare (2008), Cavaliere, Harvey, Leybourne, and Taylor (2011,
2015), Smeekes and Taylor (2012) and Cavaliere, Phillips, Smeekes, and Taylor
(2015) examine the effect of unconditional heteroskedasticity on unit root tests;
Busetti and Taylor (2003), Cavaliere (2004b) and Cavaliere and Taylor (2005)
examine the stationarity tests; Phillips and Xu (2006) and Xu and Phillips (2008)
examine the stationary autoregressive models; Cavaliere and Taylor (2006),
Chung and Park (2007), Cavaliere, Rahbek, and Taylor (2010a, 2010b, 2014),
Kim and Park (2010), Cheng and Phillips (2012) and Cavaliere, De Angelis,
Rahbek, and Taylor (2015) examine the cointegration tests; Demetrescu and
Hanck (2012a, 2012b) and Westerlund (2014) examine the panel unit root tests;
Xu (2013, 2015) examines the CUSUM-type statistics for structural change; and
Dalla, Giraitis, and Phillips (2015) examine the variance stability statistic.

The use of kernel based methods to estimate the unconditional variance, as
first suggested by Xu and Phillips (2008), has been considered, more recently, in
the context of portmanteau tests and VAR models; for example Patilea and Raı̈ssi
(2014) deal with the Engle (1982) and McLeod and Li (1983) ARCH effects tests,
Harris and Kew (2014) deal with the Box–Pierce (1970) autocorrelation test; and
Patilea and Raı̈ssi (2012, 2013) deal with adaptive estimation of VAR models.
More generally though, constructing adaptive estimators and efficient tests that
take explicit account of nonparametric heteroskedastic models has received a lot
of attention in the literature; see for example, Carroll (1982), Robinson (1987),
Kitamura, Tripathi, and Ahn (2004), Kuersteiner (2002), Harvey and Robinson
(1988), Hansen (1995), Xu (2008a, 2008b, 2012), Xu and Phillips (2011) and Xu
and Yang (2015).

In a closely related and important literature that deals with conditional het-
eroskedasticity, Baillie, Chung, and Tieslau (1996), Ling and Li (1997), Li, Ling,
and McAleer (2002) and Ling (2003) consider efficient Maximum Likelihood
estimation of an ARFIMA model in the presence of parametric GARCH models
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under Gaussianity. They however maintain the unconditional homoskedasticity
assumption. More recently, Cavaliere, Nielsen, and Taylor (2015b) extend the
consistency and asymptotic normality properties of the conditional sum-of-square
estimators proposed by Hualde and Robinson (2011) to include both conditional
and unconditional heteroskedasticity of a very general and unknown form.

The paper is structured as follows. In Section 2 we introduce the ARFIMA
model and the general model of heteroskedasticity for the disturbances, and derive
score tests for the fractional differencing parameter. The score test based on a
Gaussian likelihood with known variance process is shown to be asymptotically
efficient. A robust score test based on a quasi likelihood that imposes a con-
stant variance is derived and shown to be asymptotically inefficient. In Section 3
we provide the main result of the paper, which is that a feasible test, based on
re-weighting using a nonparametric variance estimator, is asymptotically equiva-
lent to the efficient score test. This new test is shown to have superior asymptotic
local power properties to the robust test, and hence to the robust tests of Kew
and Harris (2009) and CNT. These properties are evaluated in finite samples in
Section 4, where it is shown that the new re-weighted test can achieve substantial
power gains over robust tests for certain patterns of heteroskedasticity. Section 5
concludes with some possible directions for future research. Proofs are collected
in Appendix A and additional results required for these proofs are available in the

online supplement (Harris and Kew (2016)). In the following,
p→ denotes (weak)

convergence in probability and� denotes convergence in distribution.

2. INFEASIBLE TESTS

Suppose the observed time series zt satisfies

�d zt = yt ,

where d is a known differencing parameter of any value, �d is the Type II frac-
tional differencing operator1

�d =
t−1∑
j=0

�( j −d)/(� ( j +1)� (−d)) L j ,

and yt follows an ARFIMA process of the form

a (L; ψ0)�
θ0 yt = et , (1)

where

a (L; ψ) =
∞∑

j=0

aj (ψ) L j = φ (L)

η (L)
(2)

is a rational lag polynomial defined in terms of an autoregressive component
φ (L) = 1−∑p

j=1 φj L j and a moving average component η(L) = 1−∑q
j=1 ηj L j
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of known fixed orders p and q respectively. In (2) the parameter vector ψ is
ψ = (

φ1, . . . ,φp,η1, . . . ,ηq
)′, and θ0 and ψ0 in (1) denote the true values of the

parameters. Define the full parameter vector γ = (
θ,ψ ′)′ on a parameter space

satisfying the following assumption, which is the same one made in CNT.

Assumption R. The true values (θ0,ψ0) lie in the interior of a convex, compact
parameter space � = 	×
, such that for all ψ ∈ 
, the polynomial functions
φ (L) and η(L) have no common roots and all their roots lie strictly outside the
unit circle.

As in Robinson (1991, 1994), Tanaka (1999) and Nielsen (2004), we wish to
test

H0 : θ0 = 0,

against

H L
1 : θ0 < 0 or HU

1 : θ0 > 0,

which is equivalent to testing the null hypothesis that zt is I (d) for the known
value of d. Henceforth we discuss the testing problem in terms of the observable
time series yt . It can equivalently be considered as a specification test of the choice
of d for the original time series zt .

The disturbance term et in (1) is assumed to have the heteroskedastic specifi-
cation

et = σtεt , t = 1,2, . . . (3)

where σ 2
t is the unconditional variance, with et = 0 for t ≤ 0. We do not assume

a specific parametric functional form for σ 2
t . In this section σt will be treated as

known, with a feasible nonparametric estimator of σt given in the next section.
For the purposes of the likelihood-based efficiency theory in this section it will be
assumed that

εt ∼ i.i.d.N (0,1) , (4)

although this can be weakened for some subsequent asymptotic results, see
Assumption E below.

For simplicity, the model in (1) ignores any nonstochastic variables (xt ) such as
an unknown mean and trend terms. CNT Remark 2.3 provides a detailed discus-
sion about how xt can be taken into account; see also Robinson (1994), Tanaka
(1999) and Nielsen (2004).

2.1. Scores

The log-likelihood under (4) is

L (γ ) = constant+
T∑

t=1

lt (γ ) , (5)
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where

lt (γ ) = −1

2

(
et (γ )

σt

)2

, et (γ ) = a (L; ψ)�θ yt .

Denote the score vector as st (γ ) = (
sθ,t (γ ) ,sψ,t (γ )′

)′ where

sθ,t (γ ) = ∂lt (γ )

∂θ
= −a (L; ψ)�θ (ln�) yt

σt
· et (γ )

σt
, (6)

sψ,t (γ ) = ∂lt (γ )

∂ψ
= −aψ (L; ψ)�θ yt

σt
· et (γ )

σt
, (7)

in which ln� = −∑t−1
j=1 j−1L j and aψ (L; ψ) = ∑∞

j=1 aψ, j (ψ) L j with
aψ, j (ψ) = ∂aj (ψ)/∂ψ . It is shown in Section 2.2 that an asymptotically effi-
cient test of H0 against HU

1 or H L
1 is based on these scores.

For comparison purposes, define the quasi log-likelihood function

K (γ ) =
T∑

t=1

kt (γ ) , kt (γ ) = −1

2
et (γ )2 ,

which includes no weights to allow for heteroskedasticity. The “quasi-score” vec-
tor is similarly denoted rt (γ ) = (

rθ,t (γ ) ,rψ,t (γ )′
)′ where rθ,t (γ ) = ∂kt (γ )/∂θ

and rψ,t (γ ) = ∂kt (γ )/∂ψ . These unweighted scores provide the basis for the
test statistics of Robinson (1994) and Tanaka (1999) derived under homoskedas-
tic errors. CNT Theorem 1 shows that these homoskedastic score tests suffer from
asymptotic size distortions in the presence of both conditional and unconditional
heteroskedasticity. To resolve this problem, CNT propose a wild bootstrap method
for these score tests and show that their testing procedure is robust to both condi-
tional and unconditional heteroskedasticity of a very general and unknown form.

Our asymptotic distribution theory follows from a Central Limit Theorem for
the scores, which will be shown to hold under the following assumptions on the
components of et .

Assumption E. {εt } is a martingale difference sequence that satisfies: (i)
E

(
ε2

t

) = 1; (ii) τr,s = E
(
ε2

t εt−rεt−s
)

is uniformly bounded for all t ≥ 1,r ≥
0,s ≥ 0, where also τr,r > 0 for all r ≥ 0; (iii) for all integers q such that
3 ≤ q ≤ 8 and for all integers r1, . . . ,rq−2 ≥ 1, the q’th order cumulants
κq

(
t, t, t − r1, . . . , t − rq−2

)
of

(
zt , zt , zt−r1 , . . . , zt−rq−2

)
satisfy the requirement

that

sup
t

∞∑
r1,...,rq−2=1

∣∣κq
(
t, t, t − r1, . . . , t − rq−2

)∣∣ < ∞;

(iv) E
(
ε2

t |F t−1
) = 1; and (v) E

(
ε4

t |Ft−1
) = τ0,0 whereFt is the σ -field of events

generated by εs,s ≤ t .
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Assumption S. σt satisfies σt = σ (t/T ), where σ (.) is a nonstochastic func-
tion with at most a finite number of points of discontinuity; moreover σ (.)
is a measurable function on the interval (0,1] such that 0 < infr∈(0,1] σ (r) ≤
supr∈(0,1] σ (r) < ∞, and σ (r) satisfies a (uniform) first-order Lipschitz condi-
tion except at the points of discontinuity.

Assumption E (i) to (iii) are the same as CNT Assumption V (b), while the
remaining assumptions are made in Phillips and Xu (2006) and Xu and Phillips
(2008) in the context of autoregressive models, and Hualde and Robinson (2011)
and Nielsen (2015) in the context of fractionally integrated models. Assumption
S, which was first introduced by Cavaliere (2004a), allows for a single structural
break or multiple breaks in the volatility of the observed series zt . It also allows
for smooth transition instead of abrupt variance breaks as well as linear or non-
linear trending variances.

Define γ0 = (
0,ψ ′

0

)′ to be the parameter vector under H0, and define the
lag polynomial b (L; ψ) = aψ (L; ψ)/a (L; ψ0) = ∑∞

j=1 bj (ψ) L j . The follow-
ing Lemma gives a joint Central Limit Theorem for st (γ0) and rt (γ0).

LEMMA 1. Under H0 and Assumptions E and S

T −1/2
T∑

t=1

(
st (γ0)
rt (γ0)

)
� N

((
0
0

)
,

(
V V ·∫ 1

0 σ 2 (s)ds

V ·∫ 1
0 σ 2 (s)ds V ·∫ 1

0 σ 4 (s)ds

))
,

where

V =
(

Vθθ Vθψ

Vψθ Vψψ

)
=

(
π2/6

∑∞
j=1 j−1bj (ψ0)

′∑∞
j=1 j−1bj (ψ0)

∑∞
j=1 bj (ψ0)bj (ψ0)

′
)

. (8)

This lemma is fundamental to our subsequent asymptotic theory and the form of
V is also required for the definitions of the effective score tests that now follow.

2.2. Effective score tests

Choi, Hall, and Schick (1996, hereafter CHS) provide a general optimality theory
of hypothesis testing in likelihood-based models with unknown nuisance param-
eters. We follow their approach in deriving an infeasible test as a function of the
nuisance parameter, but defining asymptotic efficiency in a manner that antic-
ipates the estimation of the nuisance parameter in Section 3. CHS show that an
asymptotically efficient test against a one-sided alternative uses the effective score
test statistic, which in our case is

ξT = T −1/2 ∑T
t=1 sθ |ψ,t (γ0)

V 1/2
θθ |ψ

, (9)

where

sθ |ψ,t (γ ) = sθ,t (γ )− sψ,t (γ )′ V −1
ψψ Vψθ
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is the effective score (as defined by CHS and previously by Hall and Mathiason
(1990)) and

Vθθ |ψ = Vθθ − Vθψ V −1
ψψ Vψθ

is its asymptotic variance. CHS prove that if the log-likelihood has the LAN
(Locally Asymptotically Normal) property then an asymptotically efficient test
is based on ξT . The effective quasi-score test statistic can be defined as

ζT = T −1/2 ∑T
t=1 rθ |ψ,t (γ0)√

Vθθ |ψ
∫ 1

0 σ (s)4 ds
, (10)

where

rθ |ψ,t (γ0) = rθ,t (γ0)− rψ,t (γ0)
′ V −1

ψψ Vψθ .

The lack of weighting for heteroskedasticity in this statistic results in an inefficient
test relative to ξT . This is all formalised in the following theorem.

THEOREM 2. Define the local sequence γT = γ0 + T −1/2g for a fixed finite

vector g =
(

gθ ,g′
ψ

)′
.

(a) Under γ0 and Assumptions R, E, S, the log-likelihood L (γ ) admits the LAN
representation

L (γT )− L (γ0) = g′T −1/2
T∑

t=1

st (γ0)+ 1

2
g′V g +op (1) , (11)

and the effective score and quasi-score statistics satisfy

ξT ,ζT � N (0,1) .

The score tests reject H0 against HU
1 for ξT ,ζT > zα , where zα is the

100(1−α)% percentile of the standard normal distribution, and similarly for
the lower tailed tests.
(b) Under γT and Assumptions R, S and εt ∼ i.i.d.N (0,1), the statistics satisfy

ξT � N
(

gθ V 1/2
θθ |ψ,1

)
, (12)

ζT � N
(

gθ V 1/2
θθ |ψν,1

)
, (13)

where ν = ∫ 1
0 σ (s)2 ds

/√∫ 1
0 σ (s)4 ds, and the ξT test is asymptotically efficient.

Theorem 2(a) extends the LAN property for ARFIMA models in Proposition 1
of Hallin, Taniguchi, Serroukh, and Choy (1998) to allow for heteroskedastic-
ity of a known form. Similarly, the rest of the Theorem extends the asymptotic
efficiency results of Robinson (1994) and Tanaka (1999) for the score test to
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include heteroskedasticity of a known form. The asymptotic distributions under
local alternatives in (12) and (13) are given under εt ∼ i.i.d.N (0,1) but those
results could be generalised, as in CNT, to allow εt to satisfy Assumption E.
The asymptotic efficiency property requires Gaussianity in our Theorem because
the distributions under local alternatives are deduced via Le Cam’s third lemma,
a very convenient and elegant device that exploits the LAN property in part (a).
The study of efficient tests under non-Gaussianity is left to future research.

It follows from (13) that the effective quasi-score test ζT is asymptotically in-
efficient, with loss of power relative to ξT determined by the constant v ≤ 1, with
v = 1 under homoskedasticity. The smaller the value of v , for a given value of gθ ,
the ζT test suffers the larger power loss and this is illustrated in Kew and Harris
(2009) Corollary 2 and Figure 2, CNT Figures 2 and 3, and CNT Remark 3.1. Xu
and Phillips (2008) derive explicit expressions for v under a single shift variance
model (see their Example 1) and a trending variance model (Example 2). Under
a single downward shift variance model, it is clear that the quasi-score ζT test
suffers from substantial asymptotic power loss relative to the efficient score ξT

test when this downward shift occurs early in the sample. Finite-sample power
loss due to this variance model is also reflected in our Monte Carlo simulation
results presented in Section 4.

3. FEASIBLE TESTS

In this section we propose feasible versions of the ξT and ζT tests. For the quasi-
score ζT test in (10), ψ0 is unknown and so we define the quasi-MLE ψ̂ under the
null as

ψ̂ = arg max
ψ∈
, θ=0

K (γ ) ,

and γ̂ = (
0, ψ̂ ′)′. That is, ψ̂ is the standard ARMA coefficient estimator as-

suming a constant variance, shown in CNT Lemma A.1 to be consistent un-
der the null. The first-order condition for ψ̂ is

∑T
t=1 rψ,t

(
γ̂
) = 0 and hence

T −1/2 ∑T
t=1 rθ |ψ,t

(
γ̂
) = T −1/2 ∑T

t=1 rθ,t
(
γ̂
)

when substituting γ̂ for γ0 in the
numerator of ζT . A feasible denominator for ζT is found by defining the estimated
variance matrix

Ŵ =
(

Ŵθθ Ŵθψ

Ŵψθ Ŵψψ

)
= T −1

T∑
t=1

rt
(
γ̂
)
rt

(
γ̂
)′

,

and Ŵθθ |ψ = Ŵθθ − Ŵθψ Ŵ −1
ψψ Ŵψθ . The feasible quasi-score statistic is then

ζ̂T = T −1/2 ∑T
t=1 rθ,t

(
γ̂
)

Ŵ 1/2
θθ |ψ

.

Theorem 3 below establishes that ζ̂T is asymptotically equivalent to its infeasible
counterpart.
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Turning to the efficient score ξT test in (9), both σ 2
t and ψ0 are unknown.

Following the approach of Xu and Phillips (2008) we estimate σ 2
t nonparamet-

rically and then adaptively estimate ψ0. Xu and Phillips (2008) deal with an un-
conditionally heteroskedastic AR model and propose an Adaptive Least Squares
estimator that has the same asymptotic distribution as the infeasible Generalised
Least Squares estimator. We show that their method can be extended to our
ARFIMA testing framework. Specifically we construct, under H0, êt = a

(
L; ψ̂)

yt

and define the nonparametric variance estimator as

σ̂ 2
t =

T∑
i=1

wti ê
2
i , (14)

where wti = (∑T
i=1 Kti

)−1
Kti and Kti = K

( t−i
T b

)
, with K (.) is a bounded

nonnegative continuous kernel function defined on the real line such that∫ ∞
−∞ K (z)dz = 1, and b is a bandwidth parameter. Following Xu and Phillips

(2008), we define Kti = 0 if t = i , leaving out the t th observation of ê2
t when

estimating σ̂ 2
t . We use the cross validation method to select b; i.e., we calculate

CV (b) = T −1 ∑T
t=1

(
ê2

t − σ̂ 2
t

)2
for a range of values of b and select b∗ such that

CV (b) is minimised.
The feasible log-likelihood is then defined by replacing σt in (5) with σ̂t to give

L̂ (γ ) = constant+
T∑

t=1

l̂t (γ ) , l̂t (γ ) = −1

2

(
et (γ )

σ̂t

)2

.

Similarly the score vector ŝt (γ ) = (
ŝθ,t (γ ) , ŝψ,t (γ )′

)′ is defined by replacing σt

in (6) and (7) with σ̂t . Define the feasible MLE ψ̃ under the null as

ψ̃ = arg max
ψ∈
, θ=0

L̂ (γ ) ,

giving γ̃ = (
0, ψ̃ ′)′. A feasible version of ξT is constructed similarly to ζ̂T , ex-

ploiting
∑T

t=1 ŝψ,t (γ̃ ) = 0 in the numerator of the statistic. A variance matrix
estimator may be defined as

Ṽ =
(

Ṽθθ Ṽθψ

Ṽψθ Ṽψψ

)
= T −1

T∑
t=1

1

σ̂ 2
t

∂et (γ )

∂γ

∣∣∣∣
γ=γ̃

∂et (γ )

∂γ ′

∣∣∣∣
γ=γ̃

,

based on the information equality holding once the likelihood has been weighted
appropriately (asymptotically). An “outer product of gradients” estimator Ṽ =
T −1 ∑T

t=1 ŝt (γ̃ ) ŝt (γ̃ )′ can also be shown to be consistent. In either case we define
Ṽθθ |ψ = Ṽθθ − Ṽθψ Ṽ −1

ψψ Ṽψθ , and the feasible score statistic is

ξ̃T = T −1/2 ∑T
t=1 ŝθ,t (γ̃ )

Ṽ 1/2
θθ |ψ

.
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To establish the asymptotic equivalence of ξ̃T with its infeasible counterpart, we
require the following Assumption B, which is from Xu and Phillips (2008).

Assumption B. As T → ∞,b +1/T b2 → 0.

The following theorem gives the main result of our paper.

THEOREM 3. (a) Under H0 and Assumptions S, R, E, and B,

ζ̂T − ζT = op (1) and ξ̃T − ξT = op (1) .

(b) These asymptotic equivalences also hold under γT and Assumptions S, R, B
and εt ∼ i.i.d.N (0,1).

The implication of this theorem is that the feasible tests ζ̂T and ξ̃T inherit the
asymptotic properties of ζT and ξT respectively. In particular, the nonparametri-
cally variance-weighted test ξ̃T is asymptotically efficient in the Gaussian model,
and retains the same asymptotic properties as the correctly weighted test when εt

is not Gaussian.
The asymptotic efficiency of ξ̂T that has been shown for unconditional het-

eroskedasticity is not expected to hold under conditional heteroskedasticity (that
is if Assumption E(iv) were relaxed), and adaptation to the latter remains an open
question in this context. Also CNT have shown that the wild bootstrap provides
robust inference on long memory in the presence of conditional heteroskedastic-
ity and the combination of their bootstrap with the kernel re-weighting developed
here could be a productive topic for future research.

4. SIMULATION EVIDENCE

This section compares the finite sample size and power properties of the vari-
ous tests described in Theorem 3 when σ 2

t follows a one-time structural break
model with σ 2

t = β2
1 for t ≤ �τT � and σ 2

t = β2
2 for t > �τT � for some τ ∈ (0,1) .

We set, without loss of generality, β1 = 1. Let δ = β2/β1 measure the size of
the shift and, following Cavaliere (2004) and Cavaliere and Taylor (2007), we
set δ = 1/3 (downward variance shift) and τ = 0.2 (early shift) and τ = 0.8
(late shift). Simulation results for δ = 3 (upward variance shift) are omitted since
they are quite similar. For comparison purposes, we also give results for the ho-
moskedastic case where δ = 1. The innovation εt is generated using the rndn rou-
tine in Gauss. The sample sizes T = 100,400 and the number of replications is
50000.

Following Tanaka (1999), the data generating process for yt is (1 −
φ0L)�θ0 yt = et . We test H0 : θ0 = 0 vs H L

1 : θ0 < 0 or HU
1 : θ0 > 0 and we report

the null rejection percentages based on a 5% nominal level. We follow Tanaka
(1999) and set the values for the AR coefficient φ0 = 0,0.6 and −0.8. If φ0 = 0
we let θ0 range between −0.2 and 0.2 in steps of 0.05 and if φ0 
= 0 we let θ0
range between −0.4 and 0.4 in steps of 0.1.
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In the simulations, the feasible quasi ζ̂T test and efficient ξ̃T test are computed
assuming that the true orders p and q are known. In practice CNT Remark 2.5
suggests that the orders p and q can be selected by employing the usual Schwarz
information criterion. As for the ξ̃T test, the estimator σ̂ 2

t in (14) is computed
using the Gaussian kernel and the estimator Ṽ is computed via the “outer product
of gradients” method2.

Table 1 reports the case when no autocorrelation is present (i.e., φ0 = 0).
It shows that when the errors are homoskedastic (δ = 1) the ζ̂T and ξ̃T tests dis-
play acceptable size properties. The efficient ξ̃T test does not yield any power
gains over the quasi ζ̂T test and this is expected since ν in Theorem 2 is equal to
1. Also as expected, the empirical power of each test increases as T increases for
a given θ0, and the power increases as |θ0| becomes large for a given T .

When σt is not constant because of an early downward variance shift with
τ = 0.2, both our proposed ζ̂T and ξ̃T tests display relatively good size prop-
erties. In all cases, the powers of the efficient score ξ̃T test clearly exceed those of
the quasi-score ζ̂T test and these observed power gains are expected since, by Xu
and Phillips (2008) Example 1, ν = 0.63, which is far less than 1. By comparison,
we consider a late variance shift with τ = 0.8. The efficient score ξ̃T test no longer
yields significant power gains over the quasi-score ζ̂T test and this too is expected
since now ν = 0.92, which is close to 1.

Table 2 reports the case when first order autocorrelation is present. Again ξ̃T

continues to yield substantial power gains over ζ̂T under an early downward vari-
ance shift with τ = 0.2. Under homoskedasticity (δ = 1) there are very small
differences in terms of size and power between ξ̃T and ζ̂T . Results for τ = 0.8 are

TABLE 1. Empirical size and power of tests when φ0 = 0

H1 : θ0 < 0 H1 : θ0 > 0
T

/
θ0 0 −0.05 −0.10 −0.15 −0.20 0 0.05 0.10 0.15 0.20

δ = 1 ζ̂T 100 5.60 14.95 31.48 52.90 74.26 3.88 14.40 33.92 56.41 75.96
400 5.47 34.30 79.86 98.27 99.96 4.43 35.02 80.09 97.49 99.90

ξ̃T 100 5.55 14.73 31.16 52.42 73.75 3.97 14.26 33.21 55.39 74.78
400 5.48 34.21 79.56 98.21 99.95 4.42 34.81 79.75 97.44 99.89

τ = 0.2 ζ̂T 100 5.62 11.56 19.63 30.47 43.38 3.57 10.23 22.01 38.97 56.88
400 5.56 20.75 46.84 74.95 92.20 4.00 19.43 50.79 81.12 95.83

ξ̃T 100 5.57 14.47 30.07 50.05 70.57 3.96 14.60 33.94 56.68 75.55
400 5.44 33.31 77.69 97.58 99.92 4.47 34.58 79.06 97.15 99.86

τ = 0.8 ζ̂T 100 5.58 14.03 28.56 47.81 68.14 3.84 13.71 31.46 53.15 72.60
400 5.53 30.99 73.74 96.37 99.84 4.27 31.61 74.90 95.86 99.68

ξ̃T 100 5.50 14.34 29.62 49.63 70.30 4.02 14.31 33.04 55.08 74.15
400 5.48 32.81 76.98 97.52 99.91 4.32 34.22 78.40 96.96 99.84
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TABLE 2. Empirical size and power of tests when φ0 
= 0

H1 : θ0 < 0 H1 : θ0 > 0
T

/
θ0 0 −0.1 −0.2 −0.3 −0.4 0 0.1 0.2 0.3 0.4

φ0 = 0.6
δ = 1 ζ̂T 100 7.16 11.14 17.01 25.34 36.96 3.55 7.27 10.88 16.04 25.07

400 6.25 18.40 41.62 70.72 90.14 3.58 14.55 28.62 39.69 54.72

ξ̃T 100 7.23 11.21 16.93 25.22 36.54 3.59 7.26 10.72 15.55 24.16
400 6.19 18.37 41.50 70.57 90.16 3.60 14.56 28.55 39.34 54.09

τ = 0.2 ζ̂T 100 5.04 8.70 13.92 20.31 26.92 4.17 10.29 14.09 16.60 20.98
400 5.53 14.89 25.85 40.28 57.28 3.78 13.28 22.21 27.75 35.13

ξ̃T 100 8.16 12.44 17.82 24.58 33.16 3.91 7.95 10.74 13.25 18.37
400 6.37 18.54 40.15 66.81 87.66 3.67 16.35 30.61 36.14 43.52

φ0 = −0.8
δ = 1 ζ̂T 100 6.41 31.44 71.61 94.67 99.41 3.48 28.73 68.93 91.44 98.27

400 5.84 76.51 99.89 100.00 100.00 4.16 74.13 99.63 100.00 100.00

ξ̃T 100 6.51 31.11 71.11 94.38 99.37 3.54 28.40 68.07 90.74 98.01
400 5.82 76.36 99.89 100.00 100.00 4.16 73.84 99.60 100.00 100.00

τ = 0.2 ζ̂T 100 7.33 23.43 46.33 68.55 84.16 3.68 20.50 51.60 78.94 92.78
400 6.44 46.80 90.16 99.55 99.99 3.70 45.42 92.75 99.85 100.00

ξ̃T 100 6.62 30.00 67.85 92.19 98.85 3.74 30.00 69.97 91.65 98.19
400 5.76 74.42 99.82 100.00 100.00 4.23 73.49 99.54 100.00 100.00

not reported since, like the previous φ0 = 0 case in Table 1 and as expected, there
are very small differences in size and power between the two tests.

5. CONCLUSION

This paper proposes adaptive testing for the memory parameter under a parametric
specification for the short memory component. A flexible alternative framework
is the semi-parametric model, whereby the short memory component is estimated
nonparametrically. Thus, in the presence of unconditional heteroskedasticity, the
developments of robust and adaptive inference procedures for semi-parametric
models of the Log-Periodogram (LP) regression (Robinson (1995a)), pooled
LP (Shimotsu and Phillips (2002)), nonlinear LP (Sun and Phillips (2003)),
Local Whittle (LW) estimator (Robinson (1995b), Velasco (1999), Phillips and
Shimotsu (2004)), a modified LW estimator (Phillips (1999), Shimotsu and
Phillips (2000)), exact LW estimator (Shimotsu and Phillips (2005, 2006),
Shimotsu (2010)), local polynomial Whittle with noise estimator (Frederiksen,
Nielsen, and Nielsen (2012)) and multivariate LW estimator (Shimotsu (2007)
and Nielsen and Shimotsu (2007)) are important topics for the future.
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NOTES

1. See equation (4) of Tanaka (1999) for the computation of this operator. Jensen and Nielsen
(2014) propose a fast algorithm, based on a discrete Fourier transform, for computing this operator.

2. We do not report results for the homoskedastic S
′
T 1 test in Tanaka (1999) because CNT demon-

strate that, under a single downward varaince shift model, this S
′
T 1 test, as expected, is severely over-

sized even when the sample size increases.
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APPENDIX A. Proofs of main results

Some additional results required for the following proofs are available in the online
supplement (Harris and Kew (2016)). We first define some lag polynomials. Recalling
ψ = (

φ1, . . . ,φp,η1, . . . ,ηq
)′, and the short run lag polynomial a (L; ψ) = φ (L)/η (L),

the first derivative vector is the p +q dimensional vector

aψ (L; ψ) = ∂a (L; ψ)

∂ψ
=

(
∂a (L; ψ)

∂φ′
∂a (L; ψ)

∂η′
)′

where φ = (
φ1, . . . ,φp

)′ and η = (
η1, . . . ,ηq

)′ and

∂a (L; ψ)

∂φk
= −1

1−∑q
j=1 ηj L j

· Lk ,
∂a (L; ψ)

∂ηk
=

1−∑p
j=1 φj L j

(
1−∑q

j=1 ηj L j
)2

· Lk .

The second derivative is the (p +q)× (p +q) matrix

aψψ (L; ψ) = ∂2a (L; ψ)

∂ψ∂ψ ′ =

⎛
⎜⎜⎝

∂2a (L; ψ)

∂φ∂φ′
∂2a (L; ψ)

∂φ∂η′
∂2a (L; ψ)

∂η∂φ′
∂2a (L; ψ)

∂η∂η′

⎞
⎟⎟⎠

in which

∂2a (L; ψ)

∂φk∂φh
= 0,

∂2a (L; ψ)

∂φk∂ηh
= −1(

1−∑q
j=1 ηj L j

)2
· Lk+h,

∂2a (L; ψ)

∂ηk∂ηh
=

2
(

1−∑p
j=1 φj L j

)
(

1−∑q
j=1 ηj L j

)3
· Lk+h .

Then we can define

c0 (L; γ ) = a (L; ψ)

a (L; ψ0)
�θ

c1 (L; γ ) = ∂c0 (L; γ )

∂γ
=

⎛
⎜⎜⎝

a (L; ψ)

a (L; ψ0)
�θ ln�

aψ (L; ψ)

a (L; ψ0)
�θ

⎞
⎟⎟⎠

c2 (L; γ ) = ∂2c0 (L; γ )

∂γ ∂γ ′ =

⎛
⎜⎜⎝

a (L; ψ)

a (L; ψ0)
�θ (ln�)2 aψ (L; ψ)′

a (L; ψ0)
�θ ln�

aψ (L; ψ)

a (L; ψ0)
�θ ln�

aψψ (L; ψ)

a (L; ψ0)
�θ

⎞
⎟⎟⎠ .
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Proof of Lemma 1. Under H0 we have yt = a (L; ψ0)−1 et and hence et (γ ) =
c0 (L; γ )et . Similarly ∂et (γ )/∂γ = c1 (L; γ )et , giving

st (γ ) = − 1

σ 2
t

∂et (γ )

∂γ
et (γ ) = − c1 (L; γ )et

σt
· c0 (L; γ )et

σt

rt (γ ) = −∂et (γ )

∂γ
et (γ ) = −c1 (L; γ )et · c0 (L; γ )et .

Evaluating at γ = γ0 gives c0 (L; γ0) = 1 and

c1 (L; γ0) =
(

ln�
aψ (L; ψ0)′
a (L; ψ0)

)′
= (

ln� b (L; ψ0)′
)′

.

The Central Limit Theorem (CLT) in (A.11) of Lemma A.2 of CNT applies directly to
rt (γ0) = c1 (L; γ0)et · et but not to the weighted version st (γ0) = σ−1

t c1 (L; γ0)et · εt .
However we can define

s#
t (γ0) = c1 (L; γ0)εt · εt ,

so that the reasoning leading to CNT’s result (A.11) can be immediately applied jointly to(
s#
t (γ0) ,rt (γ0)

)
. It then remains (i) to check the form of the asymptotic variance in the

CLT and (ii) to prove that

T −1/2
T∑

t=1

(
s#
t (γ0)− st (γ0)

) p→ 0. (A.1)

(i) To derive the form of V , use

E

[(
s#

t (γ0)

rt (γ0)

)(
s#

t (γ0)

rt (γ0)

)′]
=

( ∑t−1
j=1 c1, j (γ0)c1, j (γ0)

′ ∑t−1
j=1 c1, j (γ0)c1, j (γ0)

′ σt− j σt∑t−1
j=1 c1, j (γ0)c1, j (γ0)

′ σt− j σt
∑t−1

j=1 c1, j (γ0)c1, j (γ0)
′ σ 2

t− j σ
2
t

)
.

Assumption S and similar arguments to Phillips and Xu (2006) Lemma A gives

T −1
T∑

t=1

t−1∑
j=1

c1, j (γ0)c1, j (γ0)′ →
∞∑

j=1

c1, j (γ0)c1, j (γ0)′

T −1
T∑

t=1

t−1∑
j=1

c1, j (γ0)c1, j (γ0)′ σt− j σt →
∞∑

j=1

c1, j (γ0)c1, j (γ0)′ ·
∫ 1

0
σ (s)2 ds

T −1
T∑

t=1

t−1∑
j=1

c1, j (γ0)c1, j (γ0)′ σ 2
t− j σ

2
t →

∞∑
j=1

c1, j (γ0)c1, j (γ0)′ ·
∫ 1

0
σ (s)4 ds

in which, as required,

V =
∞∑

j=1

c1, j (γ0)c1, j (γ0)′ =
∞∑

j=1

(
j−1

bj (ψ0)

)(
j−1

bj (ψ0)

)′
.
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(ii) To show (A.1), we write

T −1/2
T∑

t=1

(
s#
t (γ0)− st (γ0)

)
= T −1/2

T∑
t=2

⎛
⎝εt

t−1∑
j=1

c1, j (γ0)

(
σt− j

σt
−1

)
εt− j

⎞
⎠ ,

which is shown to satisfy (A.1) if we prove the generic result

rs,T = T −1/2
T∑

t=2

⎛
⎝εt

t−1∑
j=1

cj

(
σt− j

σt
−1

)
εt− j

⎞
⎠ p→ 0

for any coefficients cj satisfying
∑∞

j=1 c2
j < ∞. Using that εt ∼ i.i.d. (0,1), it follows that

E
(

r2
s,T

)
= T −1

T∑
t=2

t−1∑
j=1

c2
j

(
σt− j

σt
−1

)2

≤ 1

infr σ (r)2

T −1∑
j=1

c2
j T −1

T∑
t= j+1

(
σ

(
t

T

)
−σ

(
t − j

T

))2

= 1

infr σ (r)2

T −1∑
j=1

c2
j T −1

T∑
t= j+1

⎛
⎝ t−1∑

i=t− j

σ

(
i +1

T

)
−σ

(
i

T

)⎞
⎠

2

. (A.2)

The proof that this disappears under Assumption S is given allowing for a single discon-
tinuity in σ (.) to illustrate, with extension to a finite number of discontinuities following
identically. Suppose there is a single discontinuity at τ ∈ (0,1) such that limr↓τ σ (r) −
σ (τ) = δ, 0 < δ < ∞. It follows that limsupT

∣∣σ ( �τT �+1
T

)−σ
( �τT �

T

)∣∣ = δ, while for i 
=
�τT � the Lipschitz condition imposed in Assumption S implies that

∣∣σ ( i+1
T

)−σ
( i

T

)∣∣ ≤ �
T

for some � < ∞. Thus

T∑
t= j+1

⎛
⎝ t−1∑

i=t− j

σ

(
i +1

T

)
−σ

(
i

T

)⎞
⎠

2

=
T∑

t= j+1

⎛
⎜⎜⎝

t−1∑
i=t− j
i 
=�τT �

(
σ

(
i +1

T

)
−σ

(
i

T

))
+1(t − j ≤ �τT � ≤ t)

(
σ

( �τT �+1

T

)
−σ

( �τT �
T

))⎞
⎟⎟⎠

2

≤ 2
T∑

t= j+1

⎛
⎜⎜⎝

t−1∑
i=t− j
i 
=�τT �

(
σ

(
i +1

T

)
−σ

(
i

T

))⎞
⎟⎟⎠

2

+2

(
σ

(�τT �+1

T

)
−σ

(�τT �
T

))2 T∑
t= j+1

1t− j≤�τT �≤t

≤ 2
T∑

t= j+1

(
j�

T

)2

+2 j

(
σ

( �τT �+1

T

)
−σ

( �τT �
T

))2
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Using this bound in (A.2) gives

E
(

r2
s,T

)
≤ 2

infr σ (r)2

T −1∑
j=1

c2
j T −1

⎛
⎝ T∑

t= j+1

(
j�

T

)2
+ j

(
σ

(�τT �+1

T

)
−σ

(�τT �
T

))2
⎞
⎠

≤ 2

⎛
⎝T −1

T −1∑
j=1

jc2
j

⎞
⎠(

�2 +
(

σ

( �τT �+1

T

)
−σ

( �τT �
T

))2
)

→ 0,

since
∑∞

j=1 c2
j < ∞ implies the Cesaro sum T −1 ∑T −1

j=1 jc2
j → 0. n

Proof of Theorem 2. (a) The LAN representation is based on the standard mean value
expansion

λT (g) = L (γT )− L (γ0) = g′T −1/2
T∑

t=1

st (γ0)+ 1

2
g′T −1

T∑
t=1

ht
(
γ ∗

T
)

g,

where γ ∗
T is a convex combination of γT and γ0 and

ht (γ ) = ∂2lt (γ )

∂γ ∂γ ′ = − 1

σ 2
t

(
et (γ )

∂2et (γ )

∂γ ∂γ ′ + ∂et (γ )

∂γ

∂et (γ )

∂γ ′

)
.

Given Lemma 1, it remains to show that

T −1
T∑

t=1

ht
(
γ ∗

T
) p→ −V .

Under H0 we write ∂2et (γ )/∂γ ∂γ ′ = c2 (L; γ )et , and hence

ht (γ ) = − 1

σ 2
t

(
c0 (L; γ )et · c2 (L; γ )et + (c1 (L; γ )et )(c1 (L; γ )et )

′) .

We define

h#
t (γ ) = −(

c0 (L; γ )εt · c2 (L; γ )εt + (c1 (L; γ )εt )(c1 (L; γ )εt )
′)

and show

T −1
T∑

t=1

(
h#

t (γT )−ht (γT )
) p→ 0, (A.3)

so that (A.12) of CNT applies to conclude the required convergence

T −1
T∑

t=1

h#
t (γT )

p→ −V .
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To show (A.3), we show that

T −1
T∑

t=1

(
h#

t (γ )−ht (γ )
)

= −T −1
T∑

t=1

⎛
⎝ t−1∑

j=0

c0, j (γ )εt− j ·
t−1∑
j=0

c2, j (γ )εt− j

−
t−1∑
j=0

c0, j (γ )
σt− j

σt
εt− j ·

t−1∑
j=0

c2, j (γ )
σt− j

σt
εt− j

⎞
⎠ (A.4)

−T −1
T∑

t=1

⎛
⎝ t−1∑

j=0

c1, j (γ )εt− j ·
⎛
⎝ t−1∑

j=0

c1, j (γ )εt− j

⎞
⎠

′

−
t−1∑
j=0

c1, j (γ )
σt− j

σt
εt− j ·

⎛
⎝ t−1∑

j=0

c1, j (γ )
σt− j

σt
εt− j

⎞
⎠

′⎞
⎠ p→ 0 (A.5)

uniformly on �h = 	h × 
 , where 	h =
[
−1, 1

2 − ε
]

for any ε > 0, and 
 satisfies

Assumption R. This parameter space is large enough to accommodate γT as required in
(A.3), at least for large enough T . We note that each element of the coefficients of c0 (L; γ ),
c1 (L; γ ) and c2 (L; γ ) are square summable uniformly on �h . Therefore each element of
each term in (A.4) and (A.5) will be shown to satisfy the general convergence

T −1
T∑

t=1

⎡
⎣

⎛
⎝t−1∑

j=0

c1, j

(
σt− j

σt

)
εt− j

⎞
⎠

⎛
⎝t−1∑

j=0

c2, j

(
σt− j

σt

)
εt− j

⎞
⎠

−
⎛
⎝t−1∑

j=0

c1, j εt− j

⎞
⎠

⎛
⎝t−1∑

j=0

c2, j εt− j

⎞
⎠

⎤
⎦ p→ 0, (A.6)

where c0, j (γ ) and the individual elements of c1, j (γ ) and c2, j (γ ) are represented as

generic scalar coefficients c1, j and c2, j that satisfy
∑∞

j=0 c2
1, j < ∞ and

∑∞
j=0 c2

2, j < ∞
(the γ can be dropped from the generic notation because of the uniform square summability
of the coefficients on �h). This is sufficient for (A.5) and hence (A.3).

In (A.6) the convergence in probability of
T −1 ∑T

t=1
(∑t−1

j=0 c1, j εt− j
)(∑t−1

j=0 c2, j εt− j
)

to some limit is standard, while that

of T −1 ∑T
t=1

(∑t−1
j=0 c1, j

(σt− j
σt

)
εt− j

)(∑t−1
j=0 c2, j

(σt− j
σt

)
εt− j

)
follows by similar argu-

ments while exploiting 0 < infr σ(r) and supr σ(r) < ∞. The proof of (A.6) therefore
consists of verifying that both terms have the same probability limit. This follows by using

E

⎛
⎝t−1∑

j=0

c1, j

(
σt− j

σt

)
εt− j

⎞
⎠

⎛
⎝t−1∑

j=0

c2, j

(
σt− j

σt

)
εt− j

⎞
⎠ =

t−1∑
j=0

c1, j c2, j

(
σt− j

σt

)2
,

E

⎛
⎝t−1∑

j=0

c1, j εt− j

⎞
⎠

⎛
⎝t−1∑

j=0

c2, j εt− j

⎞
⎠ =

t−1∑
j=0

c1, j c2, j ,
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and arguing that the average difference between these converges to zero:

T −1
T∑

t=1

1

σ 2
t

t−1∑
j=0

c1, j c2, j

(
σ 2

t− j −σ 2
t

)

≤ 1

infr σ (r)2
T −1

T −1∑
j=0

∣∣c1, j
∣∣ ∣∣c2, j

∣∣ T∑
t= j+1

∣∣∣∣∣
(

σ

(
t

T

)2

−σ

(
t − j

T

)2
)∣∣∣∣∣

≤ 2supr σ (r)

infr σ (r)2
T −1

T −1∑
j=0

∣∣c1, j
∣∣ ∣∣c2, j

∣∣ T∑
t= j+1

t−1∑
i=t− j

∣∣∣∣
(

σ

(
i +1

T

)
−σ

(
i

T

))∣∣∣∣
≤ 2supr σ (r)

infr σ (r)2
T −1

T −1∑
j=0

∣∣c1, j
∣∣ ∣∣c2, j

∣∣ T∑
t= j+1

((
j�

T

)
+ j

∣∣∣∣σ
( �τT �+1

T

)
−σ

( �τT �
T

)∣∣∣∣
)

≤ 2supr σ (r)

infr σ (r)2

⎛
⎝T −1

T −1∑
j=0

jc2
1, j

⎞
⎠

1/2 ⎛
⎝T −1

T −1∑
j=0

jc2
2, j

⎞
⎠

1/2 (
�+

∣∣∣∣σ
( �τT �+1

T

)
−σ

( �τT �
T

)∣∣∣∣
)

→ 0.

(b) Define the shorthand notation ω2
ξ = Vθθ |ψ , v2 = ∫ 1

0 σ (s)2 ds and v4 = ∫ 1
0 σ (s)4 ds.

The definitions of ξT and ζT and the LAN representation in (a) give

⎛
⎝ ξT

ζT

λT (g)− 1
2 g′V g

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

ωξ
− Vθψ V −1

ψψ

ωξ
0 0

0 0
1

ωξ v
1/2
4

− Vθψ V −1
ψψ

ωξ v
1/2
4

gθ g′
ψ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

T −1/2
T∑

t=1

⎛
⎜⎜⎝

sθ,t (γ0)

sψ,t (γ0)

rθ,t (γ0)

rψ,t (γ0)

⎞
⎟⎟⎠+op (1)

� N

⎛
⎜⎜⎝

⎛
⎝ 0

0
1
2 g′V g

⎞
⎠ ,

⎛
⎜⎜⎝

1 v2/v
1/2
4 gθωξ

v2/v
1/2
4 1 gθωξ

(
v2/v

1/2
4

)
gθωξ gθωξ

(
v2/v

1/2
4

)
g′V g

⎞
⎟⎟⎠

⎞
⎟⎟⎠

by Lemma 1. The null distributions of ξT and ζT follow immediately. The distributions of
ξT and ζT under γT then follow from Le Cam’s third lemma. The asymptotic efficiency of
the test based on ξT follows from Theorem 1 of CHS. n

Proof of Theorem 3. (a) The proof for ζ̂T is essentially a special case (with σ̂ 2
t = 1)

of that for ξ̂T , so we focus on the efficient test. It is shown in Lemma B of the online

supplement that ψ̃
p→ ψ0. For clarity we write (θ,ψ) for γ in the rest of the proof of this

Theorem. Define the Hessian

ĥt (θ,ψ) =
(

ĥθθ,t (θ,ψ) ĥθψ,t (θ,ψ)

ĥψθ,t (θ,ψ) ĥψψ,t (θ,ψ)

)

as the partitioned matrix of second derivatives of l̂t (θ,ψ). The mean value equality

ŝψ,t

(
0, ψ̃

)
= ŝψ,t (0,ψ0)+ ĥψψ,t

(
0,ψ∗)(

ψ̃ −ψ0

)
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in the first order conditions
∑T

t=1 ŝψ,t

(
0, ψ̃

)
= 0 gives

√
T

(
ψ̃ −ψ0

)
= −

⎛
⎝T −1

T∑
t=1

ĥψψ,t
(
0,ψ∗)⎞⎠

−1

T −1/2
T∑

t=1

ŝψ,t (0,ψ0) .

Another mean value expansion in ŝθ,t

(
0, ψ̃

)
gives

T −1/2
T∑

t=1

ŝθ,t

(
0, ψ̃

)

= T −1/2
T∑

t=1

ŝθ,t (0,ψ0)+ T −1
T∑

t=1

ĥθψ,t
(
0,ψ∗∗) ·√T

(
ψ̃ −ψ0

)

= T −1/2
T∑

t=1

ŝθ,t (0,ψ0)− T −1
T∑

t=1

ĥθψ,t
(
0,ψ∗∗)⎛

⎝T −1
T∑

t=1

ĥψψ,t
(
0,ψ∗)⎞⎠

−1

× T −1/2
T∑

t=1

ŝψ,t (0,ψ0) .

In Lemma B of the online supplement, we show that

T −1/2
T∑

t=1

(
ŝt (0,ψ0)− st (0,ψ0)

) p→ 0,

sup
ψ∈


T −1
T∑

t=1

(
ĥt (0,ψ)−ht (0,ψ)

) p→ 0. (A.7)

Also the Hessian is stochastically equicontinuous. To see this, for any ψ̆
p→ ψ0 we have

T −1
T∑

t=1

(
ht

(
0, ψ̆

)
−ht (0,ψ0)

)

= T −1
T∑

t=1

(
ht

(
0, ψ̆

)
−h#

t

(
0, ψ̆

))

+ T −1
T∑

t=1

(
h#

t

(
0, ψ̆

)
−h#

t (0,ψ0)
)

− T −1
T∑

t=1

(
ht (0,ψ0)−h#

t (0,ψ0)
)
.

The first and third terms
p→ 0 follow from equation (A.5) and the second term

p→ 0 follows

from CNT equation A.12. These, together with ψ∗,ψ∗∗ p→ ψ0, are sufficient to conclude
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that

T −1/2
T∑

t=1

ŝθ,t

(
0, ψ̃

)
= T −1/2

T∑
t=1

sθ,t (0,ψ0)

− T −1
T∑

t=1

hθψ,t (0,ψ0)

⎛
⎝T −1

T∑
t=1

hψψ,t (0,ψ0)

⎞
⎠

−1

× T −1/2
T∑

t=1

sψ,t (0,ψ0)+op (1)

= T −1/2
T∑

t=1

sθ |ψ,t (0,ψ0)+op (1) .

The consistency of Ṽ is implied by the arguments that lead to (A.7). The “outer product
of gradients” estimator is consistent by similar lengthy algebra. This proves asymptotic
equivalence of the feasible and infeasible statistics under H0.

(b) Le Cam’s third lemma implies equivalence under γT for both ζ̂T and ξ̂T . That is,

ζ̂T − ζT
p→ 0 and ξ̂T − ξT

p→ 0 imply that the joint distributions of
(
ξ̂T , ζ̂T ,λT (g)

)
and(

ξT ,ζT ,λT (g)
)

are asymptotically equivalent, so the conclusions of Theorem 2 apply to(
ξ̂T , ζ̂T ,λT (g)

)
. n
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