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A characterization of the
Hall planes of odd order

P.B. Klrkpatrlck

The Hall projective planes of odd order are characterized in
terms of their translations, collineations which fix all the

points of a Baer subplane, and involutory homologies.

1. Introduction
Let I be a projective plane, I a line of Il and Ho a Baer
subplane of II such that 7 is a line of Ho . Wecall II a

generalized Hall plane with respect to 7., IIj if

(1) @ is a translation plane with respect to 7, » and

(2) N has a group of collineations which-is transitive on the points
of 7, not in HO , and fixes every point in Ho .
The object of this paper is to prove:

THEOREM. A projective plane I is a Hall plane of odd order if and
only if
(a) N s a finite generalized Hall plane with respect to some line

(=

1, and Baer subplane HO containing l_ , and

(b) each point of M= 1M | M€l  and M€ I} is the centre of an

involutory homology with axis in Ho .

The necessity of conditions (a) and (b) was proved by Hughes [6]
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in 1959.
All finite planes with involutory homologies have odd order.

We use the terminology of Dembowski [2], except that we denote points
by capital letters and the coordinate quadrangle (0, 0), (1, 1), (0), (=)
by 0, I, X, Y instead of o, e, u, v .

2. Preliminary results and lemmas

If 0, I, X, Y 1is any coordinate quadrangle of a generalized Hall
plane I , with 0, I, X, Y € Ho and X, Y € I, then the corresponding

ternary ring determines a quasifield F which has a sub-quasifield Fo
such that whenever 2z € F\Fo and w € F then w = za + B for exactly one
pair (a, B) € Fo X Fo . F has a group of automorphisms which is
transitive on F\F0 and fixes every element of FO . Consequently, there

exist four maps f, g, h, k : Fo -+ Fo with

(za)z = zf(a) + g(a) and Bz = zh(B) + k(B)
for all 3z € F\F0 , O € F0 , B € Fo .
In addition to these facts, we shall need the classification of the

subgroups of PSL(2, q) by Dickson ([3], Second Part, Chapter XII), and

the following two results:

RESULT 1 (Kirkpatrick [7]). If N is a generalized Hall plane of

odd order then Fo is a field and F is a right vector space (of
dimension two) over Fo with respect to the operations induced by the
quasifield structure of F .

RESULT 2 (André [1]). 1If H; and H, are non-trivial homologies in
a finite projective plane, and if H; and H; have the same axis but

distinct centres, then the group <gl, Hy) contains a non-trivial elation.

Let us assume throughout the remainder of the paper that I is a

generalized Hall plane of odd order, with special line 1 and special

subplane Ho ; and that all coordinate systems mentioned shall have
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0,I €N and X,Y€M={M|Me€l and ¥ €N} . Then

M= {(a) | ac¢ Fo} u {{«*)} and, by Result 1,

(za+B)z = z[f(a)+n(B)] + gla) + k(B), Y& ¢ F\F, @ € F, B € F_,

and the four maps are additive homomorphisms.
LEMMA 1. Bvery elation of 1 with centre in M <is a translation.

Proof. Suppose there is an elation with centre M € M which is not a
translation. There is an allowable coordinate system with Y =M . The
non-trivial (Y, OY)-elations are in one-to-one correspondence with the

non-zero d € F such that
x(d+y) = xd + xy, VYx, y € F .
If there exists such an element d , then, for some f € Fo , B#0,

and z € F\F z(B+z) = 2B + zz and B(B+z) = BB + Bz . Now

o 2
B(B+z) = BB + Bz = (B+z)n(B) + k(B)
= n(B) =8,

BB + zh(B) + k(B)

and

2(B+z) = 28 + 22 = (B+z-B)(B+z) = 2B + zf(1) + g(1)
= (B+a)f(1l) + g(1) + (B+z)h(-B) + k(-B) = z[B+f(1)] + g(1)
= f(1) + n(-B) = B + £(1)
= h(B) = -B .

This contradiction establishes the lemma.

LEMMA 2. 1T has an involutory (X, 0Y)-homology if and only if
f=k=0 (the zero map).

Proof. The (X, OY)-homologies are given by (x, y) = (xb, y) where

bew

N, = {6 | a(be) = (ab)e; Ya, ¢ € F} .

Suppose (x, y) v (zz, y) , where =z € F\Fo , is an involutory homology.
Then (xz)z =x if x € F , so that 2z =1 ; and z(za) = (zz)a=a if

aeFo,sothat‘ f=0 and g(cr.)=ct—l if a#0 . But g is an
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additive homomorphism and Fo is a field of odd order, so we have a
contradiction.
Now the multiplicative group of Fo is cyelic, with unique

involution -1 , and it is easily verified that if f =k = 0 then

-1 ¢ IVm . Suppose, on the other hand, that -1 € Nm , O € Fo and

z € F\F0 . Then

a(-z) = (-a)z = -(az) ,

and so (-z)h(a) + k(a) = -[zh(a)+k(a)] . Thus k =0 , and, if B ¢ Fy,

[(za+B)(-1)]z

-[(z0+B)z]
-z[f(a)+h(B)] ~ g(a) ,

whereas

[{-z)(-a)+B)(~z)
(-z)f(-a) + g(-a) + (-z)n(B) ,

(zo+B)(-2)

L

that is, f =0 also.

LEMMA 3. Suppose 1 has an imvolutory (X, 0Y)-homology H o and
an imvolutory ((a), 0(B))-homology H, g, vhere o and B are
(distinct) non-zero elements of F_ . Then éﬂ,ﬁ maps (z) to (-z) ,

for all z 1in l"'\Fo , and

g(1) = oByn L (y"1t) for all T € F,

where Y = 2(0.-5)_1 ;

Proof. gﬁ,B maps Y to (o) , where o = 3(o+B) , and therefore
H meps any affine point (z, y) of I to (z,, y,) , where
=a, B8 1
y, - xB = (xl—x)o and y, -y = [xl-x)a .
The line Y = xz is mapped to a line y = xw . Substituting y = xz and

¥y, = 2 in the sbove equations, we derive:

- = - - Q= - xa .
X0 :x:lo zB - x0 and zW - Ty xz
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These imply:

x =X+ (x8-z2)(0~0)"1 ana Tw = 2.0 + z(B-0) .
Thus
(1) [x+(xB-xz)YJw = (xB-x3)Y0O + 2B for all x € F ,

where Y = (a-0)"1 = 2(a~8)'1 .

There exists an automorphism of F which maps 2 to w , while

fixing each element of Fo . Suppose this maps w to v . Then we deduce
from (1):

[z+(xB=xw)y]v = (xB-xw)Y0 + xB for all x € F .

But H maps (w) to (z) , so (1) also yields:
=<1,B
[x+(xB~aw)y]z = (xB-aw)Yo + xB for all &z € F .
It follows that v = 2z , whence w =-2 + A for some A in Fo .
Now let (G be the cyclic group (go, H ,B> . There is a homomorphism

¢ G~ (Fo, +) vwhich maps any K in G to the R in Fo such that

(z+u) = (z)-‘—K‘ . We shall prove that ¢ is trivial. Write p equals the

characteristic of Fo s g = |Fo| » and suppose that & contains an

element X of order p . Since K fixes 0O , and (qz-l, p) =1, K

fixes another affine point A4 of IIO . It follows that K is a central
collineation with axis 04 , when restricted to the subplane Ho . We

readily conclude from this that either the two homologies have the same

centre or they have the same axis. This contradiction shows that
(lel, 17 1y = 1.

Since ¢ 1is trivial and _ﬂ_o,m maps (z) to (-z) , 20,8 also maps
(z) to (-3) .
Substituting w = -z , and restricting x to Fo ,» We may simplify

equation (1) to:

—zh(x+aBy) + g{(n(z)Y) = zB(yo+1l) - zh(x)yo .
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It follows that g(h(x)Y} = zB(Yo+1) for all z in F, . Since

YO + 1 = oy , the lemma is proved.

3. Proof of the theorem

We now assume that each point of M 1is the centre of an involutory

homology with axis in Ho . The theorem is to be proved by considering

separately the cases ¢ = |F | 23 (mod 4) and ¢ =1 (mod 4) . We shall

ol
refer to the unordered pairs {(a), (B)} and {X, ¥} corresponding to the
involutory {(a), 0(B))}-, (X, OY)- and (¥, OX)-homologies as "special

pairs". These special pairs partition M and are permuted by each of the

homologies (by Result 2 and Lemma 1).
Case 1l: q = 3 (med 4). The permutation induced by H  on the set
k]

of -;:;(q+l) special pairs fixes {x, ¥} and therefore fixes at least one

other special pair {(a), (B)} . The corresponding homologies H, 8 and
;]

éﬁ a both interchange X and Y . We can change coordinates so that
k4
=}*Iot,B becomes 'Iil,—l . By Lemma 3,
-1
g(t) = -h “(t) for all T € Fo .
. . +1 . .
Now consider any E’a,B with a # %1 Since
-1

! —1&1 B&l -1 - ): 4 -1 -1 *¥e have, from Lemma 3 again
k] ;] k]
a

bl

g(t) = ey Ly 1) = o8 =asy )t (a7 )

and so o8A (Y 11) = A (™8 1) . Putting T = Yp , we deduce that
w @ e7t0) = Bk M (p) for all p € F .

It follows that either of is in the prime subfield GF(p) of F

or h—l
of . Since ¢q ¥ 3 (mod L4) , the first alternative is the only possibility.

-1

induces an involutory automorphism of the extension of GF(p) by

Thus of = *1 , and g(y) = Yk (1) = ¥ (since 1.z = z.1 ), whence

h-l(Y) = ¥ . But Y ranges over exactly half of the non-zero elements of
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F, , since Y = 2(a—8)'1 and if Y' =Y then o'B' = of (Lemma 3). So

we may choose a basis for F, (as a vector space over GF(p) )} from among

the values taken by Y , and relative to this basis A has a diagonal

matrix whose diagonal entries are *1 .

If one or more of these entries is -1 , then a contradiction results.
For h(l) = 1 implies that at least one entry is +1 , and so % has only
+j

pt + p‘7 - 1 eigenvectors, for same %, § with pt = pn =q, 1>0,

J >0 . But h has at least %(Pn-l) eigenvectors, so

pt + pJ -1z % n-l) . Simple calculations now show that (since p is an

odd prime) q = 9 , contradicting ¢q = 3 (mod &) .

Thus A(t) =T and g(T) =-T for all T in F that is F is a

o *
Hall system.

Case 2: q =1 (mod 4) . We show first that EO,“ does not
interchange the two points of any special pair. Suppose the contrary.
Then choose coordinates so that {(1), (-1)} is a special pair. Let €

be a square root of -1 in Fo , and {(g), (B)} the corresponding
special pair. Each of go,w and lhq-l maps this special pair to a
special pair. So {(-€), (-B)} and {(-e), (B_l)} are special pairs,

that is 82 = -1, and {(g), (-€)} 1is a special pair. By Lemma 3,

—h'l('r) =g(1) = -eh'l(er) for all T €F_ .

Thus h~l(e) = -¢ , and so € does not lie in GF(p) , and nt induces
an involutory automorphism of the extension of GF(p) by € . This field
contains an element p such that A(p)p = -1 . But

(240)3 = g(1) + zh(p) = -1 - 2p = (a+p) (-p™%)

if 2z € F\Fo . This contradiction proves our original assertion.

It follows that the collineation group X generated by our involutory

homologies is transitive on the set of %(q+1) special pairs.
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Let X* be the group induced on the points of M by X , and let KH*
be the subgroup of K* generated by all the products of two non-trivial
elements of K* . Then K* is a subgroup of PSL(2, q) , since
q =1 (mod b) . Also [K* : H*] =2 and 3(q+1) | [K* . But $(q+l) is

odd, so q +1 | |k*| and H* is transitive on the set of special pairs.

Now (IK*l, q) =1 , by an argument used in the proof of Lemma 3;

also K* <PSL(2, q) , and q +1 | |k*| . So either Kk* is dihedral of

1A

order ¢ +1 or X* is isomorphic to 44, Sy or As (Dickson [3]).
1 (mod 4) , K* is dihedral of order ¢ + 1 , and H* is

Since g¢q

cyclic.

The situation, then, is that our involutory homologies, restricted to

the affine portion of Il , are the reflections in an orthogonal group
o]
0(2, q) , and therefore af has the same value for all ga 8 - Since
3
g(y) = 0By for all Y corresponding to homologies Ea g ° an argument
b

used in Case 1 shows that g¢g(T) = 0Bt for all T in F . But

gl(t) = GBYh-l(Y_lT) , end so A(T) =T for all T in F . Thus F is

once again a Hall system, and the theorem is proved.
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