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A characterization of the

Hall planes of odd order

P.B. Klrkpatrlck

The Hall projective planes of odd order are characterized in

terms of their translations, collineations which fix all the

points of a Baer subplane, and involutory homologies.

1. Introduction

Let II be a projective plane, lm a line of II and n a Baer

subplane of II such that I is a line of II . We call II a
oo o

generalized Hall plane with respect to l^, RQ if

(1) II is a translation plane with respect to lm , and

(2) II has a group of collineations which is transitive on the points

of lm not in II , and fixes every point in II .

The object of this paper is to prove:

THEOREM. A projective plane R is a Hall plane of odd order if and

only if

(a) II is a finite generalized Hall plane with respect to some line

lm and Baer subplane II containing lm , and

(b) each point of M = {M \ M 6 l^ and M € nQ} is the centre of an

involutory homology with axis in II .

The necessity of conditions (a) and (b) was proved by Hughes [63
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in 1959-

All finite planes with involutory homologies have odd order.

We use the terminology of Dembowski [2], except that we denote points

toy capital letters and the coordinate quadrangle (0, 0 ) , (1, 1 ) , (0), (»)

toy 0, I, X, X instead of o, e, u, v .

2. Preliminary results and lemmas

If 0, I, X, Y is any coordinate quadrangle of a generalized Hall

plane II , with 0, I, X, Y i H and X, Y i lm , then the corresponding

ternary ring determines a quasifield F which has a sub-quasifield F

such that whenever z f F\F and w (. F then w = zct + 8 for exactly one

pair (a, 6) 6 FQ * F . F has a group of automorphisms which is

transitive on ^"VF0 and fixes every element of F . Consequently, there

exist four maps ftg,h,k: P •+ F with

{za)z = zf(a) + g(a) and &2 = zh($) + fe(g)

for all z i F\FQ , a € FQ , M f0 .

In addition to these facts, we shall need the classification of the

subgroups of PSL(2, q) by Dickson ([3], Second Part, Chapter XII), and

the following two results:

RESULT 1 (Kirkpatrick [7]). If II is a generalized Hall plane of

odd order then FQ is a field and F is a right vector space (of

dimension two) over F with respect to the operations induced by the

quasifield structure of F .

RESULT 2 (Andre [1]). If H] and H2 are non-trivial homologies in

a finite projective plane, and if JHi and Jk have the same axis but

distinct centres, then the group <J3i, jj2> contains a non-trivial elation.

Let us assume throughout the remainder of the paper that II is a

generalized Hall plane of odd order, with special line l^ and special

subplane II ; and that all coordinate systems mentioned shall have
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0 , J € II and X, XeM={M\Mtloa and M € nQ} . Then

M = {(a) | a € FQ} u {(«)} and, by Resul t 1 ,

(301+6)3 = 3[ / (a )+ / i (6 ) ] + g(a) + fc(B), &s € FVF0> a f fQ J f ? 0 ,

and the four maps are additive homomorphisms.

LEMMA 1. Every elation of II with centre in M is a translation.

Proof. Suppose there is an elation with centre M d 14 which is not a

translation. There is an allowable coordinate system with Y = M . The

non-trivial (Y, Oy)-elations are in one-to-one correspondence with the

non-zero d i F such that

x(d+y) = xd + xy, Vx, y e F .

If there exists such an element d , then, for some 6 € F , 3 * 0 ,

and z i F\FQ , 3(6+3) = s3 + zz and 6(6+3) = 66 + 6s . Now

6(6+s) = 66 + 63 =» (6+2)^(6) + fc(6) = && + 3/1(6)

=» ft(e) = e ,

and

3(6+3) = 36 + zz •» (6+s-6)(6+s) = s6 + s / ( l ) + gr(l)

•» (6+2)/(i) + ? ( l ) + (6+s)^(-6) + fe(-B) =

•• / (1 ) + M-6) = B + / (1 )

= -6 .

This contradiction establishes the lemma.

LEMMA 2. II has an involutory (X, OY)-homology if and only if

f i= k = 0 (the zero map).

Proof. The (X, 0y)-homologies are given by (x, y) •*• (xb, j/) where

m '

iV = {i | ai.bc) = (ab)c; Va, a € F} .

Suppose (x, i/) •"»• (x2, j/) , where z € F\F , is an involutory homology.

Then (xz)z = x if x f F , so that 23 = 1 ; and 3(sd) = (22)01 = a if

a € F , so that / = 0 and g(a) = a" if a + 0 . But £ is an
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additive homomorphism and F i s a field of odd order, so we have a

contradiction.

Now the mult ipl icat ive group of F i s cycl ic , with unique

involution -1 , and i t i s easily verified that if f = k = 0 then

-1 € ff . Suppose, on the other hand, that -1 € N , a € F and

z t F\FQ . Then

a(-z) = (-a)s = -(012) ,

and so (-s)h(a) + k(a) = -[zh{u)+Ha) ] . Thus k = 0 , and, if 3 « FQ ,

= -[(ao+&)a]

whereas

(2a+3)(-s) = [(-s)(-a)+3](-3)

= (-2)/(-a) + a(-a) + (-

that is, / = 0 also.

LEMMA 3. Suppose II has an involutory (X, OY)-homology H ^ and

an involutory ( ( a ) , 0(.8))-homlogy K^ „ , where a and B are

(distinct) non-zero elements of F . Then H Q maps (2) to (-2) ,
O ^xt ,p

/or an s in F\Fo , and

g(i) = OBY«"1(Y~1T) for all K f ,

where Y = 2(ar-6) .

Proof. H g maps Y to (a) , where 0 = -|(a+S) , and therefore

H g maps any affine point (x, y) of II to (x̂ ,, y^ , where

y. - xB = [x^-x)a and j/ - # = (aĵ -xja .

The line y = xz i s mapped to a l ine y = xw . Substituting y = xz and

y = x.u in the above equations, we derive:

x w - x 0 = xS> - xa and x^u - x.a = xz - xa .
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These imply:

x 1 = x + (x&-xz){a-o) and x w = x a + x(&-o) .

Thus

(1) [x+(x&-xz)y]w = (x$-xz)ya + xB for all x € F ,

where Y = (o-a)"1 1

There exists an automorphism of F which maps z to W , while

tig eac

from (1):

fixing each element of F . Suppose this maps w to v . Then we deduce

[x+(x&-xw)y]v = (,x$-xv)yo + x6 for all x € F .

But H Q maps (w) to (z) , so (l) also yields:

x& for all a; € F .

It follows that v = z , whence w = -z + X for some A in F
o

Now let G be the cyclic group <IL _H Q> . There is a homomorphism

if> : G •* (F , +} which maps any ^ in G to the M in F such that

(a+y) = (a)= . We shall prove that cp is trivial. Write p equals the

characteristic of F , q = \FQ\ , and suppose that G contains an

element £ of order p . Since K, fixes 0 , and [q -1, p) = 1 , ]C

fixes another affine point 4 of II . It follows that K is a central

collineation with axis OA , when restricted to the subplane ttQ . We

readily conclude from this that either the two homologies have the same

centre or they have the same axis. This contradiction shows that

(|C|, |FOI) = 1 •

Since cp is trivial and H m maps (a) to (-z) , H „ also maps

(a) to (-a) .

Substituting w = -z , and restricting x to FQ , we may simplify

equation (l) to:

g[h(x)y) = XB(YO+1) - zh{x)yo .
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It follows that g{h(x)y) = x&(ya+l) for all x in FQ . Since

yo + 1 = oty , the lemma is proved.

3. Proof of the theorem

We now assume that each point of |1 is the centre of an involutory

homology with axis in II . The theorem is to be proved by considering

separately the cases q = \FQ\ H 3 (mod k) and q = 1 (mod h) . We shall

refer to the unordered pairs {(a), (3)} and {X, Y] corresponding to the

involutory ((a), 0(B))-, {X, OY)- and (J, Ctf)-homologies as "special

pairs". These special pairs partition tl and are permuted by each of the

homologies (by Result 2 and Lemma l ) .

Case 1: q = 3 (mod k). The permutation induced by H ^ on the set

of •jtq+l) special pairs fixes {X, Y) and therefore fixes at least one

other special pair {(a), (3)} . The corresponding homologies H „ and

Hg both interchange X and Y . We can change coordinates so that

H Q becomes H . By Lemma 3,

g{T) = -h"1(T) for all x i FQ .

Now consider any H - with a. ̂  ±1 . Since

££ niL afii ! = ii i T » we have, from Lemma 3 again

g(x) =

and so aSh'1 ( Y ^ T ) = h~ (a~ 3~ Y~ x) . Putting T = YP » we deduce that

7f1(cf16~1p) = a8fe"1(p) for all p € FQ .

It follows that either a$ is in the prime subfield GF(p) of FQ ,

or h~ induces an involutory automorphism of the extension of GF(p) by

a3 . Since q = 3 (mod h) , the first alternative is the only possibility.

Thus aS = ±1 , and # ( Y ) = ±Y&~ (l) = ±Y (since 1.2 = 3.1 ), whence

ti~ ( Y ) = -»Y • But Y ranges over exactly half of the non-zero elements of
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F , since y = 2(a-3)~ and if Y1 = Y then a'B' = a3 (Lemma 3). So

we may choose a basis for FQ (as a vector space over GF(p) } from among

the values taken by Y > and relative to this basis h has a diagonal

matrix whose diagonal entries are ±1 .

If one or more of these entries is -1 , then a contradiction results.

For M l ) = 1 implies that at least one entry is +1 , and so h has only

p + p - 1 eigenvectors, for sane i, j with p = p - q •> i > 0 ,

j > 0 . But h has at least j (pW-l) eigenvectors, so

p +jr - 1 i](p -l) . Simple calculations now show that (since p is an

odd prime) q = 9 > contradicting q = 3 (mod k) .

Thus 7I(T) = T and g(i) = -T for all T in FQ , that is F is a

Hall system.

Case 2: q = 1 (mod k) . We show first that H ^ does not

interchange the two points of any special pair. Suppose the contrary.

Then choose coordinates so that {(l), (-1)} is a special pair. Let £

be a square root of -1 in F , and {(e), (f3)} the corresponding

special pair. Each of IL „ and Jl ^ maps this special pair to a

special pair. So {(-e), (-3)) and -j(-e), (3~ } \ are special pairs,

that is 3 = -1 , and {(e), (-£)} is a special pair. By Lemma 3,

-h'1^) = g(?) = -efe"1(eT) for all T € FQ .

Thus h~ (e) = -e , and so e does not lie in GF(p) , and h induces

an involutory automorphism of the extension of GF(p) by £ . This field

contains an element p such that h(p)p = -1 . But

(s+p)2 = g(l) + zh(p) = -1 - zp"
1 K 1 )

if 2 € ̂ ^"n ' This contradiction proves our original assertion.

It follows that the collineation group K generated by our involutory

homologies is transitive on the set of j(q+l) special pairs.
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Let K* be the group induced on the points of M by K , and let H*

be the subgroup of K* generated by all the products of two non-trivial

elements of K* . Then K* is a subgroup of PSL(2, q) , since

q = 1 (mod h) . Also [K* : H*] = 2 and ± \K*\ . But j{q+l) is

odd, so q + 1 \K*\ and H* is transitive on the set of special pairs.

Row (\K*\, q) = 1 , by an argument used in the proof of Lemma 3;

also K* 5 PSL(2, q) , and q + 1 \K*\ . So either K* is dihedral of

order q + 1 or X* is isomorphic to 4^, S4 or 4 5 (Dickson [3]).

Since q = 1 (mod U) , X* is dihedral of order q + 1 , and #* is

cyclic.

The situation, then, is that our involutory homologies, restricted to

the affine portion of II , are the reflections in an orthogonal group

0(2, q) , and therefore cx8 has the same value for all JT „ . Since

g(y) = <X3Y f°r all y corresponding to homologies H . , an argument

used in Case 1 shows that ^(T) = O8T for all T in P . But

g(j) = a3Y?i~ (Y~ T} , and so h(i) = T for all T in F . Thus F is

once again a Hall system, and the theorem is proved.
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