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Bianchi modular forms and the rationality
of periods
Gradin Anderson, Peter Harrigan, Louisa Hoback, McKayah Pugh,
and Tian An Wong

Abstract. Using an explicit Eichler–Shimura–Harder isomorphism, we establish the analog of Manin’s
rationality theorem for Bianchi periods and hence special values of L-functions of Bianchi cusp forms.
This gives a new short proof of a result of Hida in the case of Euclidean imaginary quadratic fields.
In particular, we give an explicit proof using the space of Bianchi period polynomials constructed by
Karabulut and describe the action of Hecke operators.

1 Introduction

1.1 Bianchi period polynomials

An important method of studying classical modular forms is through their period
polynomials. Let k ≥ 0 be an integer and let f be a cusp form of weight 2k + 2 on
SL2(Z). Then the period polynomial of f is defined to be

r( f )(X) = ∫
i∞

0
f (z)(X − z)2k dz =

2k
∑
n=0

i−n+1 (2k
n ) rn( f )X2k−n ,

and

rn( f ) = ∫
∞

0
f (it)tndt = n!(2π)−n−1L( f , n + 1), 0 ≤ n ≤ 2k,

is called the n-th period of f. The map r( f ) explicitly realizes the Eichler–Shimura
isomorphism, identifying the space of cusp forms with the space of period polyno-
mials. The rationality of periods provides a rich connection between modular forms
and arithmetic, e.g., [KZ84], and remains an active area of study.

Now consider K = Q(
√

−D), an imaginary quadratic number field andOK its ring
of integers. From an analytic point of view, Karabulut [Kar22] recently constructed
a space of Bianchi period polynomials over Euclidean K, relating it to the cuspidal
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2 G. Anderson et al.

cohomology of SL2(OK). Combes [Com24] further defined a Hecke action on period
polynomials by relating it to the space of Bianchi modular symbols. On the other
hand, the algebraic theory of Bianchi modular forms has also seen new developments,
such as [Wil17, BSW21, Pal23] and many others extending earlier works of Hida
[Hid94] and Ghate [Gha99] into the p-adic setting for general K.

1.2 Main results

In this article, we build on these recent advances to study the rationality of periods
of Bianchi modular forms. Let F be a Bianchi cusp form of parallel weight (k, k) on
SL2(OK), we construct the Bianchi period polynomial realizing the Eichler–Shimura–
Harder isomorphism in Theorem 3.3,

r(F)(X , Y , X , Y) = ∫
∞

0
ωF =

k
∑

p,q=0
(k

p
)(k

q
)rp,q(F)Xk−pY p Xk−qY q ,

where ωF is the differential 1-form associated with F and rp,q(F) is defined in (4.1) as
a period of the Bianchi modular form

2( 2k + 2
k + p − q + 1

)
−1

(−1)k+q+1 ∫
∞

0
t p+q Fk+p−q+1(0, t)dt.

The latter encodes the special values of the L-function of F by [Wil17, Theorem 1.8].
When K is Euclidean, we can identify the image of r(F) with the space of period
polynomials W̃k ,k , which is a specific quotient of the space Wk ,k described by [Kar22].
In particular, we explicitly construct for the first time the Bianchi period polynomial
in W̃k ,k associated with a given Bianchi cusp form F.

As an application of this construction, we establish the rationality of these periods,
and hence the rationality of special values of L-functions of Bianchi cusp forms. This
can be seen as a short proof of a special case of a theorem of Hida [Hid94, Theorem
8.1]. It is the analog of Manin’s rationality theorem for periods of classical modular
forms.

Theorem 1.1 Let K be a Euclidean imaginary quadratic field, F be a normalized Hecke
eigenform, and let K(F) be the number field generated by K and the Fourier coefficients
of F. Then there exists some Ω ∈ C× such that

1
Ω

rp,q(F) ∈ K(F)

for all 0 ≤ p, q ≤ k.

Our proof is explicit, following the classical methods such as laid out in [Lan95,
CS17], generalized to the Bianchi case using the explicit description of the space of
period polynomials W̃k ,k . Namely, we compute the action of Hecke operators on
Bianchi periods, then use this to obtain integral formulas for the periods from which
we deduce the main theorem. In fact, most of the article is dedicated to developing the
tools in this special case. A short proof for the case of general K was suggested to us by
an anonymous referee, the key observation being that it is enough to use the rational
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Bianchi modular forms and the rationality of periods 3

structure of the space of polynomials Vk ,k occurring in the Eichler–Shimura–Harder
isomorphism, given in Remark 6.3.

1.3 Outline of article

We conclude with a brief outline of the contents of the article. In Section 2, we
introduce notation and the properties of Bianchi modular forms that we will need.
In Section 3, we recall the integration map into the associated first cohomology space
and formulate the period map using the Eichler–Shimura–Harder isomorphism in
Theorem 3.3. In Section 4, we express general periods as integral linear combinations
of more basic periods using Hurwitz continued fractions, and use this to compute the
action of Hecke operators on the periods in Section 5. Finally, in Section 6, we apply
these results to prove Theorem 1.1.

2 Definitions

2.1 Notation

Let K = Q(
√

−D) be an imaginary quadratic number field with class number 1 and let
OK represent its ring of integers with associated norm N(α) = αα. In later definitions,
we will also refer to a Euclidean imaginary quadratic number field K, where D is
1, 2, 3, 7, or 11. We let

H3 = {(z, t) ∈ C × R ∣ t > 0}

designate hyperbolic 3-space, the unique simply-connected Riemannian manifold of
dimension 3 and constant sectional curvature −1. Additionally, we define the standard
action of GL2(C) onH3. Explicitly, for a matrix in GL2(C) of determinant Δ, we have

(a b
c d) ⋅ (z, t) = ((az + b)(cz + d) + ac̄t2

∣cz + d∣2 + ∣c∣2 t2 , ∣Δ∣t
∣cz + d∣2 + ∣c∣2 t2 ) .

Alternatively, we may view elements of H3 as elements of the Hamiltonians H via the
map (z, t) ↦ z + t j. In this case, for u ∈ H, the action of GL2(C) is given by

(a b
c d) ⋅ u = au + b

cu + d
.

2.2 Bianchi modular forms

Let k be a non-negative integer. Then denote V2k+2(C) as the complex vector space of
homogeneous polynomials of degree 2k + 2 in variables X , Y . Define the multiplier
system

J(γ; (z, t)) = (cz + d −ct
c̄t cz + d) , γ = (a b

c d) ∈ SL2(C), (z, t) ∈ H3 .
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4 G. Anderson et al.

Given a function F ∶ H3 → V2k+2(C), fixing (z, t) we may represent it as a polynomial
as F(z, t) = P(X , Y) in V2k+2(C), equipped with the action

F (z, t) (γ (X
Y)) = P (γ (X

Y)) = P(aX + bY , cX + dY).

Following [Pal23], for example, given γ ∈ SL2(C) and a function F ∶ H3 → V2k+2(C),
we define the slash operator as

F∣γ(z, t) (X
Y) = ∣det(γ)∣−k F (γ ⋅ (z, t))

⎛
⎜
⎝

J
⎛
⎝

γ√
det(γ)

; (z, t)
⎞
⎠

−1

(X
Y)

⎞
⎟
⎠

,(2.1)

where we note that our J is transposed from that of Palacios. Although we may
define Bianchi cusp forms for any congruence subgroup of SL2(OK), we will only
be concerned with those of full level SL2(OK). For the remainder of our exposition,
we set � = SL2(OK). A more general definition is given by [Wil17, Definition 1.2].

We say that a function F ∶ H3 → V2k+2(C) is a cuspidal Bianchi modular form of
weight (k, k) and level � if it satisfies the following properties:
(i) F∣γ = F for every γ ∈ �.
(ii) ΨF = 0 and Ψ′F = 0.
(iii) F has at worst polynomial growth at each cusp of �.
(iv) ∫C/OK

F∣γ(z, t)dz = 0 for every γ ∈ �.

Here Ψ, Ψ′ represent the Casimir operators, which are two elements generating the
center of the universal enveloping algebra of the Lie algebra associated with the real
Lie group PSL2(C). If we do not impose (iv) in the above definition, then we say F is
a Bianchi modular form of weight (k, k) and level �, although we will not be making
use of Bianchi modular forms which are not cuspidal. Finally, we denote by Sk ,k(�)
to be the space of such Bianchi cusp forms.

2.3 Fourier–Bessel expansion

Let Kn(x) be the modified Bessel function that solves the differential equation

d2Kn

dx2 + 1
x

dKn

dx
− (1 + n2

x2 ) Kn = 0.

It is well established (see [Gha99, Pal23]) that a cuspidal Bianchi form F has a Fourier–
Bessel expansion given by

F(z, t) (X
Y) =

2k+2
∑
n=0

Fn(z, t)X2k+2−nY n ,

where

Fn(z, t) ∶= t(2k + 2
n

) ∑
α∈K×

c(αδ) ( α
i∣α∣ )

k+1−n

Kn−k−1(4π∣α∣t)e2πi(αz+αz),
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Bianchi modular forms and the rationality of periods 5

δ =
√

−D, and the Fourier coefficient c(I) is a function on the fractional ideals of K
with c(I) = 0 for I non-integral.

3 The period integral

3.1 The Eichler–Shimura–Harder isomorphism

Let Vk ,k = Vk ,k(C) denote the complex vector space of polynomials in X , Y , X , Y
which are homogeneous of degree k in X , Y and homogeneous of degree k in X , Y .
Denote by Vk ,k the locally constant sheaf on Y� = �/H associated with Vk ,k . Let
H1

cusp(Y� ,Vk ,k) denote the cuspidal cohomology of Y�. The Eichler–Shimura–Harder
isomorphism [Har87] shows that

Sk ,k(�) ≅ H1
cusp(Y� ,Vk ,k),(3.1)

while work by Ghate [Gha99, Section 5] gives an explicit form of this isomorphism,
which we shall describe.

When K is Euclidean, Karabulut [Kar22, Section 5] defines the parabolic group
cohomology H1

par(�, Vk ,k) ≃ H1
cusp(Y� ,Vk ,k) which is the quotient of parabolic cocy-

cles on � by parabolic coboundaries on �, which we present in the following section.
Karabulut then gives an isomorphism from H1

par(�, Vk ,k) to a quotient of an explicit
subspace Wk ,k ⊂ Vk ,k , which we denote W̃k ,k . We will combine these results to obtain
a map

Sk ,k(�) → W̃k ,k ,(3.2)

generalizing the Eichler integral for classical modular forms into the space of period
polynomials.

Williams [Wil17, Section 2] defines elements of the compactly supported coho-
mology group H1

c(Y� ,Vk ,k) by identifying it with the space Symb�(Vk ,k) of Bianchi
modular symbols, sending F to ψF , where ψF is the map from pairs of cusps in P1(K)
to Vk ,k defined by

ψF(r, s) = ∫
s

r
ωF ,(3.3)

and ωF is a Vk ,k-valued differential form on H3 which is defined explicitly. Note that
the latter integral gives a perfect pairing between the relevant first homology and
cohomology groups. (Williams actually considers spaces V∗k ,k , the C-dual of Vk ,k , and
V r

k ,k , and the space Vk ,k with � acting from the right; we will use the latter.) The natural
image of H1

c(Y� ,Vk ,k) in H1(Y� ,Vk ,k) ≃ H1(�, Vk ,k) is often denoted H1
! (Y� ,Vk ,k)

[AS86, Section 1.4] and contains H1
cusp(Y� ,Vk ,k) [Hid94, Section 5] (cf. [RŞ13, Section

1] for a variation). Putting these together, we have

Sk ,k(�) ≃ H1
cusp(Y� ,Vk ,k) ≃ H1

par(�, Vk ,k) ≃ W̃k ,k(3.4)

which we shall make explicit. That is, given a Bianchi modular form F, we can associate
to it a cuspidal cohomology class such that its image in Symb�(Vk ,k) is the modular
symbol ψF above valued in Vk ,k , and its image in Vk ,k can be identified with the
quotient W̃k ,k .
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6 G. Anderson et al.

We first give an expression for ψF in a form useful to us. Set the binomial coefficient
( n

m ) = 0whenever m < 0 and m > n.

Lemma 3.1 For κ ∈ K, we have

ψF(κ, ∞) =
k

∑
p,q=0

⎛
⎝

(k
p
)(k

q
)

p

∑
i=0

q

∑
j=0

c i , j(κ, F)(−1)p+q−i− j(k − i
p − i

)(k − j
q − j

)κp−i κ̄q− j⎞
⎠

⋅ Y p Xk−pY q Xk−q

where

c i , j(κ, F) = 2( 2k + 2
k + i − j + 1

)
−1

(−1)k+ j+1 ∫
∞

0
t i+ jFk+i− j+1(κ, t)dt.(3.5)

Proof This is essentially [Wil17, Proposition 2.9], with the difference being that we
have Vk ,k in place of V∗k ,k . We use the following definition of a slash operator on Vk ,k .

For a polynomial P ∈ Vk ,k and a matrix γ = (a b
c d) ∈ GL2(C), we define

P(X , Y , X , Y)∣γ = P (aX + bY , cX + dY , aX + bY , cX + dY) .(3.6)

By [Wil17, Proposition 2.7], we have ψF(r, s) = ψF(γr, γs)∣γ , and in particular

∫
γ(∞)

γ(0)
ωF = ∫

∞

0
ωF ∣

γ−1
.(3.7)

Then, by [Wil17, Proposition 2.9] we have

ϕF(κ, ∞) =
k

∑
p,q=0

cp,q(κ, F)(Y − κX)k−pXp(Y − κ̄X)k−qX
q
,

where ϕF = η ○ ψF and η is the natural isomorphism from V r
k ,k to V∗k ,k as given in

[Wil17, Proposition 2.6], with X,Y,X,Y ∈ V∗k ,k . We note that the above equality is
corrected slightly as explained in [Pal23, Theorem 3.2].

Rewriting the latter summand as

⎛
⎝

p

∑
i=0

q

∑
j=0

c i , j(κ, F)(−1)p+q−i− j(k − i
p − i

)(k − j
q − j

)κp−i κ̄q− j⎞
⎠
XpYk−pX

q
Y

k−q
,

and undoing the isomorphism η via the inverse map

XpYk−pX
q
Y

k−q "→ (k
p
)(k

q
)Xk−pY p Xk−qY q

then gives the desired expression. ∎

3.2 Bianchi period polynomials

For the rest of this section, we assume K = Q(
√

−D) is Euclidean so that
D = 1, 2, 3, 7, 11. For each value of D, define ω = i , i

√
2, −1+i

√
3

2 , 1+i
√

7
2 , and 1+i

√
11

2 ,
respectively. Furthermore, let
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Bianchi modular forms and the rationality of periods 7

S = (0 −1
1 0 ) , T = (1 1

0 1) , Tω = (1 ω
0 1 ) , U = TS .

When D = 1, let L = ( i 0
0 −i) , when D = 3, let L = (ω2 0

0 ω), and when D = 11, let

E = T−1
ω STω ST .

Let C(�, Vk ,k) be the space of 1-cocycles on � as in [Kar22, Section 5]. Then, we
define the subspace Cp(�, Vk ,k) of parabolic cocycles by

Cp(�, Vk ,k) = { f ∈ C(�, Vk ,k)∣ f (T) = f (Tω) = f (L) = 0}

when D = 1, 3 and

Cp(�, Vk ,k) = { f ∈ C(�, Vk ,k)∣ f (T) = f (Tω) = 0}

when D = 2, 7, 11.
Karabulut [Kar22, Section 5] shows that the evaluation of a cocycle at S is an

isomorphism from the parabolic cocycles Cp(�) to a subspace Wk ,k of Vk ,k defined
for each D as the subspace of polynomials P ∈ Vk ,k satisfying the given relations:

D = 1, 3 ∶ P∣(I+S) = P∣(I−L) = P∣(I+U+U 2) = P∣(I+Tω SL+(Tω SL)2) = 0,
D = 2 ∶ P∣(I+S) = P∣(I+U+U 2) = P∣(I+STω+Tω S+T−1

ω STω S) = 0,
D = 7 ∶ P∣(I+S) = P∣(I+U+U 2) = P∣(T+STω+Tω ST+ST−1

ω STω) = 0,
D = 11 ∶ P∣(I+S) = P∣(I+U+U 2) = P∣(T+STω+T E+STω E−1+Tω ST+ST−1

ω STω) = 0.

More generally, we may define Wk ,k as the subspace of Vk ,k defined by the relations
amongst the generators of �.

For the isomorphism with H1
par(�, Vk ,k), it is necessary to identify the image

of Bp(�) of parabolic coboundaries, which Karabulut claims has dimension 1. We
will prove the explicit form of this image, which is also mentioned without proof in
[Com24].

Lemma 3.2 The image of Bp(�) in Wk ,k is spanned by the polynomial Xk Xk − Y k Y k .

Proof Consider an element f ∈ Bp(�). [Kar22] shows f is a function from � to Vk ,k
of the form γ ↦ P∣γ − P, where f (T) = f (Tω) = 0, and additionally f (L) = 0 for the
cases where d = 1, 3. Let Q(X , X) = P(X , 1, X , 1). We will show that Q is constant.

For this to occur, we must, in particular, have

0 = Q∣T − Q = Q(X + 1, X + 1) − Q(X , X),

0 = Q∣Tω − Q = Q(X + ω, X + ω̄) − Q(X , X).

Thus, Q(0, 0) = Q(n, n) = Q((a + bω)n, (a + bω)n) for all n ∈ N and fixed a, b ∈ N.
Thus, shows that Q(Z , Z) and Q((a + bω)Z , (a + bω̄)Z) are both constant polyno-
mials in Z since they attain the same value infinitely many times. In particular, they
are the same constant as seen when Z = 0. This shows that
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8 G. Anderson et al.

Q(Z , Z) = Q ( a + bω
a + bω̄

Z , Z) ,

so for all z ∈ C×, Q(w , z) attains the same value infinitely many times as long a, b ∈ N
are chosen so that a+bω

a+bω̄ is not a root of unity.
Therefore, Q(X , X) is constant as a polynomial in X. An analogous argument

shows it is also constant as a polynomial in X, so Q is constant. This shows P is of the
form cY k Y k , for some c ∈ C. Then, f (γ) = P∣γ − P and its image under evaluation by
S is thus

(cY k Y k)∣S − cY k Y k = −c(Y k Y k − Xk Xk),

and so the result follows. ∎

Hence, the evaluation at S map is an isomorphism from H1
par(�, Vk ,k) to Wk ,k

modulo the space generated by Xk Xk − Y k Y k , which we denote by W̃k ,k . We sum-
marize this as follows.

Theorem 3.3 Let K be Euclidean. The map

F ↦ ψF(S) = − 2
k

∑
p,q=0

(k
p
)(k

q
)cp,q(0, F)Xk−pY p Xk−qY q ,

where cp,q(0, F) is given in (3.5), is an isomorphism from Sk ,k(�) to W̃k ,k .

Proof We evaluate the Bianchi modular symbol ψF in (3.3) at the pair of cusps
(r, s) = (0, ∞) to obtain an element of Vk ,k , whereby

ψF(0, ∞) = ∫
∞

0
ωF .

Denoting this temporarily by P, we then form the 1-cocycle P∣γ − P and evaluate at
the element γ = S to obtain

P∣S − P = ∫
S−1(∞)

S−1(0)
ωF − ∫

∞

0
ωF = −2 ∫

∞

0
ωF

which is an element of W̃k ,k . (This realizes the isomorphism (3.4), and note that the
latter integral is referred to as the canonical period polynomial associated with F in
[Com24, (5.1)].) Then expanding the integral as in Lemma 3.1 with κ = 0 gives the
result. ∎

Remark 3.4 Since we are interested in the integrality of this map, we will rescale and
omit the factor of −2 in the rest of the article for the convenience; it does not affect the
isomorphism in any material way. We shall refer to the image of F under this map as
the period polynomial of F. We also write ψ(F) = ψF(S) when we wish to emphasize
the argument F.

Downloaded from https://www.cambridge.org/core. 11 Sep 2025 at 17:42:34, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Bianchi modular forms and the rationality of periods 9

4 Period relations

4.1 An intermediate expression

Let 0 ≤ p, q ≤ k be integers. Then, from Lemma 3.1, we may write

ψF(κ, ∞) =
k

∑
p,q=0

(k
p
)(k

q
)rp,q(κ, F)Y p Xk−pY q Xk−q ,

where we denote here

rp,q(κ, F) =
p

∑
i=0

q

∑
j=0

c i , j(κ, F)(−1)p+q−i− j(k − i
p − i

)(k − j
q − j

)κp−i κ̄q− j(4.1)

and c i , j(κ, F) is given in (3.5). We wish to write the coefficients rp,q(κ, F) as an
OK-linear combination of c i , j(0, F). Notice that when κ = 0, rp,q(0, F) = cp,q(0, F).
When the context is clear, we will denote rp,q = rp,q(F) = rp,q(0, F) = cp,q(0, F) and
rκp,q = rp,q(κ, F).

We first compute more general period polynomials.

Lemma 4.1 Let γ = (a b
c d) ∈ � such that γ(∞) = ∞. Then

ψF(γ(0), γ(∞)) =
k

∑
p,q=0

(k
p
)(k

q
)sp,q(γ, F)Y p Xk−pY q Xk−q ,

where sp,q(γ, F) is equal to

k
∑

i , j=0
(−1)p+q−i− j e p,q

i , j r i , j(0, F),

and

e p,q
i , j = ∑

u ,v∈Z
(p

u
)(k − p

i − u
)aubp−u c i−udk−p−i+u(q

v
)(k − q

j − v
)āv b̄q−v c̄ j−v d̄k−q− j+v .

In particular, e p,q
i , j ∈ OK .

Proof Using the identity (3.7), we obtain

ψF(γ(0), γ(∞)) = ∫
γ(∞)

γ(0)
ωF = (∫

∞

0
ωF) ∣

γ−1

.

Expanding the second integral and applying the γ action, we have

k
∑

p,q=0
(k

p
)(k

q
)rp,q(0, F)(−cX + aY)p(dX − bY)k−p(−cX + aY)q(dX − bY)k−q .
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10 G. Anderson et al.

The summand can also be written by evaluating the first integral as

k
∑

p,q=0
(k

p
)(k

q
)rp,q(γ(0), F)Y p Xk−pY q Xk−q .

Comparing coefficients, the identity follows. ∎

4.2 Continued fractions

In order to transform the endpoints of the period integral as desired, we turn to
the Hurwitz continued fractions algorithm for Euclidean imaginary quadratic fields,
given in [Kar22]. Let κ ∈ K, and let ⌊κn⌉ denote the element of OK nearest to κn in
the complex plane with respect to Euclidean distance; to break ties, we round down
in both the real and imaginary components. Then, our continued fraction algorithm
is of the form

κ0 = κ, βn = ⌊κn⌉, κn+1 = 1
κn − βn

,

with βn ∈ OK , and for any κ ∈ K is guaranteed to eventually terminate at some point
where κm = βm for some m. We define the n-th convergent of the continued fraction
for κ as μn/νn = [β1 , β2 , . . . , βn], where

μ−2 = 0, μ−1 = 1, μn = βn μn−1 + μn−2

ν−2 = 1, ν−1 = 0, νn = βnνn−1 + νn−2
(4.2)

and limn→∞
μn
νn

= κ. Hence, for κ = μm/νm , also denoted as κ = μ/ν, we express

μ
ν

= β0 + 1
β1 + 1

β2+ 1
⋱+

1
βm

= [β1 , β2 , . . . , βm] .

Analogous to the classical algorithm as in [CS17], we find it useful to express the
recursion relations of (4.2) in matrix form, with

g0 = (1 β0
0 1 ) , gn = ((−1)n μn−1 μn

(−1)nνn−1 νn
) , gn = gn−1 ( 0 (−1)n−1

(−1)n βn
) .

Note that det(gn) = 1, and hence gn ∈ �, for all n. Because we retain the same recur-
sion matrices as the classical algorithm with gn(0) = μn/νn and gn(∞) = μn−1/νn−1 =
gn−1(0), we can immediately conclude

m
∑
n=0

∫
gn(∞)

gn(0)
ωF = ∫

μ−1
ν−1

μm
νm

ωF = ∫
∞

μ
ν

ωF .(4.3)

4.3 Integral formulas

We now show that the coefficients rp,q(κ, F) can be given as an OK-linear combina-
tion of periods r i , j(0, F). From there, we also show that the cp,q(κ, F) coefficients can
be given as a linear combination of the rp,q(κ, F) coefficients.
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Lemma 4.2 For κ ∈ K, we have

ψF(κ, ∞) =
k

∑
p,q=0

(k
p
)(k

q
)rp,q(κ, F)Y p Xk−pY q Xk−q ,

where rp,q(κ, F) is an OK-linear combination of r i , j(0, F).

Proof By (4.3), we can write ψF(κ, ∞) as

∫
∞

μ
ν

ωF =
m
∑
n=0

∫
gn(∞)

gn(0)
ωF =

m
∑
n=0

k
∑

p,q=0
(k

p
)(k

q
)sp,q(gn , F)Y p Xk−pY q Xk−q

=
k

∑
p,q=0

(k
p
)(k

q
)rp,q(κ, F)Y p Xk−pY q Xk−q ,

equating coefficients and using Lemma 4.1 shows rp,q(κ, F) is equal to

m
∑
n=0

k
∑

i , j=0
(−1)p+q−i− jr i , j(0, F)(e p,q

i , j )n ,(4.4)

where (e p,q
i , j )n ∈ OK is equal to

∑
u ,v∈Z

(−1)n(i+ j)(p
u

)μu
n−1 μp−u

n (k − p
i − u

)ν i−u
n−1νk−p−i+u

n

(q
v
)μn−1

v μn
q−v(k − q

j − v
)νn−1

j−v νn
k−q− j+v .

Recalling from (4.2) that μn , νn ∈ OK for all n, we have that rp,q(κ, F) is an OK-linear
combination of the periods r i , j(0, F). ∎

We can now give a formula for the coefficients cp,q(κ, F) in terms of periods
r i , j(κ, F) as follows.

Lemma 4.3 For κ ∈ OK (alternatively K), the coefficients cp,q(κ, F) are an OK-linear
(K-linear) combination of periods r i , j(κ, F), given explicitly by the formula

cp,q(κ, F) =
p

∑
i=0

q

∑
j=0

(k − i
p − i

)(k − j
q − j

)κp−i κ̄q− jr i , j(κ, F).

Proof By (4.1), we have

rp,q(κ, F) =
p

∑
i=0

q

∑
j=0

c i , j(κ, F)(k − i
p − i

)(k − j
q − j

)(−κ)p−i(−κ̄)q− j .
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To invert this linear transformation, consider the polynomial

k
∑

p,q=0
rp,q(κ, F)Y p Xk−pY q Xk−q

=
k

∑
p,q=0

⎛
⎝

p

∑
i=0

q

∑
j=0

c i , j(κ, F)(k − i
p − i

)(k − j
q − j

)(−κ)p−i(−κ̄)q− j⎞
⎠

Y p Xk−pY q Xk−q

=
k

∑
p,q=0

cp,q(κ, F)(X − κY)k−pY p(X − κ̄Y)k−qY q .

Mapping X ↦ X + κY and X ↦ X + κ̄Y yields

k
∑

p,q=0
cp,q(κ, F)Xk−pY p Xk−qY q

=
k

∑
p,q=0

rp,q(κ, F)(X + κY)k−pY p(X + κ̄Y)k−qY q

=
k

∑
p,q=0

⎛
⎝

p

∑
i=0

q

∑
j=0

(k − i
p − i

)(k − j
q − j

)κp−i κ̄q− jr i , j(κ, F)
⎞
⎠

Y p Xk−pY q Xk−q ,

from which equating coefficients gives the desired result. ∎

Remark 4.4 The results and methods of this section easily generalize to K of class
number one by the generalized Euclidean algorithm due to Whitley [Whi90, Section
2.7], simply noticing that Whitley’s algorithm also produces a sequence of matrices in
SL2(OK).

5 Hecke operators

Now let K be Euclidean and let p = (π) be a prime ideal of OK . Define the Hecke
operator Tp acting on Bianchi modular forms (at full level) as

F∣Tp
= ∣π∣2k ∑

b∈(OK/π)×
F∣( 1 b

0 π )
+ F∣( π 0

0 1 )

and extend multiplicatively to all of OK (e.g., [CW94, Pal23]). Thus, for a Hecke
operator Tn for a nonzero integral ideal n = nOK , we have

TnF = ∣ det(γ)∣2k ∑
γ∈Bn

F∣γ ,(5.1)

where

Bn = {(a b
0 d) ∣ ad = n, and b mod d}

and the slash operator is defined in (2.1).
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Theorem 5.1 Let n ∈ OK . Then, rp,q(0, TnF) is an OK-linear combination of periods
of F given by

∑
d ∣n

⎡⎢⎢⎢⎢⎢⎢⎣

p

∑
i=0

q

∑
j=0

∑
b mod d
(b ,d)=1

(k − i
p − i

)(k − j
q − j

)bp−i d i b̄q− j d̄ jr i , j(b/d , F)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
∑

e1 e2= n
d

e p
1 ē1

q ek−p
2 ē2

k−q
⎤⎥⎥⎥⎥⎥⎦

,

where rp,q(b/d , F) is given in (4.4).

Proof Using Theorem 3.3, we first compute

ψ(TnF) = ∣n∣2k ∑
γ∈Bn

ψ(F∣γ),

by expanding the inner summand as

ψ
⎛
⎝

∣n∣−k
2k+2
∑
m=0

(
√ a

d
)

2k+2−m

(
√ a

d
)

m

Fm(γ(z, t))X2k+2−mY m⎞
⎠

.

Then applying the map ψ and simplifying, we have the K-linear sum

∣n∣−k
k

∑
p,q=0

⎛
⎝

2( 2k + 2
k + p − q + 1

)
−1

(k
p
)(k

q
)(−1)k+q+1

⋅ ∫
∞

0
t p+q (∣ a

d
∣ k+1 ( a

d
⋅ ∣ d

a
∣)

q−p
Fk+p−q+1(γ(0, t)))

⎞
⎠

Y p Xk−pY q Xk−q .

Then using the change of variables t = ∣n∣t∣d ∣2 , so that γ(0, t) = ( b
d , ∣n∣t∣d ∣2 ), we can write

rp,q(TnF) = ∣n∣k ∑
γ∈Bn

⎛
⎝

∣ a
d

∣ k+1 ( a
d

⋅ ∣ d
a

∣)
q−p

⋅ [2( 2k + 2
k + p − q + 1

)
−1

(−1)k+q+1 ∫
∞

0
t p+q Fk+p−q+1 ( b

d
, ∣n∣t
∣d∣2 ) dt]

⎞
⎠

.

By Lemma 4.3, the expression in brackets is equal to

∣ d2

n
∣ p+q+1Rb/d

p,q ∶= ∣ d2

n
∣ p+q+1

p

∑
i=0

q

∑
j=0

(k − i
p − i

)(k − j
q − j

)( b
d

)
p−i

( b
d

)
q− j

rb/d
i , j .

We thus have a K-linear expression, which we shall show can be rewritten as an
OK-linear one.

Now let χ(z) = ( z
∣z∣)

q−p
which is totally multiplicative. Using the definition of Bn ,

we get

rp,q(TnF) = ∣n∣2k−p−q ∑
d ∣n

∑
b mod d

∣d∣2(p+q−k)χ( n
d2 )Rb/d

p,q ,
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14 G. Anderson et al.

where we say that d∣n if there exists some e ∈ OK such that n = de. Writing b ↦ be,
d ↦ de where gcd(b, d) = e, the inner sum becomes

∑
e∣ nd

∑
b mod d
(b ,d)=1

∣de∣2(p+q−k)χ( n
d2e2 )Rb/d

p,q .

Rearranging, we see rp,q(0, TnF) is equal to

∣n∣2k−p−q χ(n) ∑
d ∣n

∣d∣2(p+q−k)χ(d−2)

⎡⎢⎢⎢⎢⎢⎢⎣
∑
e∣ nd

∣e∣2(p+q−k)χ(e−2) ∑
b mod d
(b ,d)=1

Rb/d
p,q

⎤⎥⎥⎥⎥⎥⎥⎦

,

where the expression in brackets can be rewritten as

d−p d̄−q
⎡⎢⎢⎢⎢⎢⎣

∑
e∣ nd

∣e∣2(p+q−k)χ(e−2)
⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

p

∑
i=0

q

∑
j=0

∑
b mod d
(b ,d)=1

(k − i
p − i

)(k − j
q − j

)bp−i d i b̄q− j d̄ jrb/d
i , j

⎤⎥⎥⎥⎥⎥⎥⎦

.

Notice that the second term

tp,q(d) =
p

∑
i=0

q

∑
j=0

∑
b mod d
(b ,d)=1

(k − i
p − i

)(k − j
q − j

)bp−i d i b̄q− j d̄ jrb/d
i , j

is an OK-linear combination of periods of F. We then see that the first term is equal to

∑
e∣ nd

∣e∣2(p+q−k)χ(e−2) = ∑
e∣ nd

∣ n
de

∣ 2(p+q−k)χ (( n
de

)
−2

) .

From this, we find

rp,q(TnF) = ∣n∣p+q χ(n−1) ∑
d ∣n

d−p d̄−q tp,q(d) ∑
e∣ nd

∣e∣2(k−p−q)χ(e2)

= np−q ∣n∣2q ∑
d ∣n

d−p d̄−q tp,q(d) ∑
e∣ nd

∣e∣2(k−2q)e2(q−p)

= ∑
d ∣n

tp,q(d) ∑
e∣ nd

np n̄qd−p d̄−q ek−2p ēk−2q .

Since the inner sum of the above is equal to

∑
e∣ nd

( n
de

)
p

( n
de

)
q

ek−p ēk−q = ∑
e1 e2= n

d

e p
1 e1

q ek−p
2 e2

k−q

which is an element of OK , we find rp,q(TnF) is an OK linear combination of rb/d
i , j (F)

and hence the periods r i , j(F) by Lemma 4.2. ∎
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Bianchi modular forms and the rationality of periods 15

6 Rationality of periods

6.1 Combinatorial lemmas

We make use of our previous discussion on Hecke operators to prove an analog
of Manin’s rationality result for periods of classical modular forms. We will prove
the main Theorem 1.1 following the strategy of the proof of the classical case [CS17,
Theorem 11.11.2]. First, for a cusp form F, we define

r(F) = (r0,0(F), r0,1(F), r0,2(F), . . . , rk ,k(F))T ,

where we interpret r(F) as a column vector mapping Sk ,k(�) to C(k+1)2
. For any

n = nOK , note that since rp,q(TnF) is an OK-linear combination of r i , j(F), then
there exists some matrix A(n) with entries in OK such that r(TnF) = A(n)r(F).
Additionally, let

σ̃k(n) = ∑
d ∣n

∣d∣k

similar to the standard sum of divisors function.
First, we note some observations about r0,0(TnF) in terms of the following lemma.

Lemma 6.1 The first component of A(n)(1, 0, . . . , 0, −1)T is σ̃2k+2(n).

Proof By Theorem 5.1, we have

r0,0(TnF) = ∑
d ∣n

⎡⎢⎢⎢⎢⎢⎢⎣
∑

b mod d
(b ,d)=1

rb/d
0,0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
∑
e∣ nd

ek ēk
⎤⎥⎥⎥⎥⎥⎦

= ∑
d ∣n

σ̃2k ( n
d

) ∑
b mod d
(b ,d)=1

rb/d
0,0 .

Let b�/d� represent the �th convergent of b/d and let m be the index such that
bm/dm = b/d . When p = q = 0, the proof of Lemma 4.2 gives

rb/d
0,0 =

m
∑
�=0

k
∑

i , j=0
[(−1)(n−1)(i+ j)(k

i
)d i

�−1dk−i
� (k

j
)d�−1

j
d�

k− j] r i , j(F);

putting these results together gives that r0,0(TnF) is equal to

∑
d ∣n

σ̃2k ( n
d

) ∑
b mod d
(b ,d)=1

m
∑
�=0

k
∑

i , j=0
[(−1)(n−1)(i+ j)(k

i
)d i

�−1dk−i
� (k

j
)d�−1

j
d�

k− j] r i , j(F).

In particular, the coefficient of r0,0(F) within the linear combination for r0,0(TnF)
is given by

∑
d ∣n

σ̃2k ( n
d

) ∑
b mod d
(b ,d)=1

m
∑
�=0

∣d�∣2k ,
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and the coefficient of rk ,k(F) within the linear combination for r0,0(TnF) is given by

∑
d ∣n

σ̃2k ( n
d

) ∑
b mod d
(b ,d)=1

m
∑
�=0

∣d�−1∣2k .

Finally, note that since ψ(F) ∈ Wk ,k , we have ψ(F)∣(I+S) = 0. This implies r0,0(F) =
rk ,k(F) and so the difference between the coefficients are given by

∑
d ∣n

σ̃2k ( n
d

) ∑
b mod d
(b ,d)=1

m
∑
�=0

(∣d�∣2k − ∣d�−1∣2k) = ∑
d ∣n

σ̃2k ( n
d

) ∑
b mod d
(b ,d)=1

∣d∣2k .

At this point, let
ϕ̃(n) = ∣{m ∈ OK ∶ N(m) < N(n), (m, n) = 1}∣ .

Note that since OK is a Euclidean domain, ϕ̃(n) is also equal to ∣(OK/nOK)×∣, and
hence, is multiplicative by the Chinese Remainder Theorem for number fields. We
claim that

∑
d ∣n

ϕ̃(d) = N(n) = ∣n∣2 .

Let π denote a prime of OK , and eπ the largest power of π dividing n. We have

∑
d ∣n

ϕ̃(d) = ∏
π∣n

eπ

∑
ν=0

ϕ̃(πν).

Since the norm is multiplicative, it suffices to show that ∑eπ
ν=0 ϕ̃(πν) = N(πeπ ). We

then compute ϕ̃(πν) by
∣{m ∈ OK ∶ N(m) < N(πν)}∣ − ∣{m ∈ OK ∶ N(m) < N(πν), π∣m}∣
= ∣{m ∈ OK ∶ N(m) < N(πν)}∣ − ∣{m ∈ OK ∶ N(m) < N(πν−1)}∣
= N(πν) − N(πν−1),

and so
eπ

∑
ν=0

ϕ̃(πν) =
eπ

∑
ν=0

(N(πν) − N(πν−1)) = N(πeπ ).

Using this, we get our desired result as

∑
d ∣n

σ̃2k ( n
d

) ∑
b mod d
(b ,d)=1

∣d∣2k = ∑
d ∣n

σ̃2k ( n
d

) ∣d∣2k ϕ̃(d) = ∑
d ∣n

∑
e∣ nd

∣e∣2k ∣d∣2k ϕ̃(d)

= ∑
D∣n

∣D∣2k ∑
d ∣D

ϕ̃(d) = ∑
D∣n

∣D∣2k+2 = σ̃2k+2(n). ∎

6.2 Proof of Theorem 1.1

We are now ready to prove the rationality theorem for the Bianchi case. Let F be
a normalized Hecke-eigenform. It follows that Tn(F) = c(nδ)(F), with δ =

√
−D.

Thus,
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Bianchi modular forms and the rationality of periods 17

r(F) ∈ EF = ⋂
n∈OK/{0}

Ker(A(n) − c(nδ)I),

defined over K(F). We shall identify the algebraic closure of K with a subset of C,
so that r maps Sk ,k(�) to a subspace Rk of C(k+1)2

, where the relations defining this
subspace are completely determined by the action of � on periods. It follows then that
we can identify Rk with Wk ,k , and moreover r(F) ∈ EF ∩ Wk ,k , a C-vector space.

Lemma 6.2 Let K be Euclidean. If v ∈ EF ∩ Wk ,k , then there exists a Bianchi cusp
form G ∈ Sk ,k(�) such that v = r(G).

Proof By Theorem 3.3, we have a map from Sk ,k(�) to the space of period polyno-
mials W̃k ,k = Wk ,k/U , where U is spanned by Xk Xk − Y k Y k . This can be represented
by the coefficient vector (x , 0, . . . , 0, −x)T generated by the cocycle γ ↦ (1∣γ − 1).
Thus, if v ∈ EF ∩ Wk ,k , then there exists a Bianchi cusp form G ∈ Sk ,k(�) such that

v = r(G) + (x , 0, . . . , 0, −x)T .

Consider the first component of the product

A(n)(x , 0, . . . , −x)T = A(n)(v − r(G)).

From Lemma 6.1, this is equal to xσ̃2k+2(n). However, we also see that

A(n)(v − r(G)) = A(n)v − A(n)r(G) = a(n)v − r(TnG),

where a(n) is the n-th Fourier coefficient and Tn eigenvalue of G, and has the first
component

a(n)(r0,0(G) + x) − r0,0(TnG).

By the recent proof of the Ramanujan conjecture for cuspidal Bianchi eigenforms
[BCG+25], we have that ∣a(n)∣ = O(N(n)(k+1)/2) (though any weaker nontrivial
bound suffices). Furthermore, it is known [Gar18, Theorem 2.6.2] that

G =
g

∑
i=1

λ i Fi

for Fi normalized eigenforms. Therefore,

r0,0(TnG) =
g

∑
i=1

λ i r0,0(TnFi) =
g

∑
i=1

λ i a i(n)r0,0(Fi),

where a i(n) is the Fourier coefficient of Fi , which shows that ∣r0,0(TnG)∣ =
O(N(n)(k+1)/2) also. But since ∣xσ̃2k+2(n)∣ = O(N(n)k+1), this is a contradiction
unless x = 0. Therefore, v = r(G) for some G ∈ Sk ,k(�). ∎

We now complete the proof of the main theorem. First, assume that K is Euclidean.
If v ∈ EF ∩ Wk ,k , then by Lemma 6.2 there exists a Bianchi cusp form G ∈ Sk ,k(�)
such that v = r(G). Since v ∈ EF , we have by definition that A(n)v = c(nδ)v, and by
the definition of A(n) that

r (TnG − c(nδ)G) = 0.
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18 G. Anderson et al.

On the other hand, it follows from our realization of the Eichler–Shimura–Harder
in Theorem 3.3 and the proof of the previous lemma that Sk ,k(�) is isomorphic to a
codimension 1-subspace of Rk not containing the vector (x , 0, . . . , −x)T. In particular,
r is injective and thus

TnG = c(nδ)G .

It follows by multiplicity one (e.g., [Hid94, p. 432]) that if two eigenfunctions for all
Tn have the same eigenvalues, then they must be scalar multiples of one another, so
G = λF for some λ ∈ C. Thus, every element of EF ∩ Wk ,k has the form r(λF) = λr(F)
by the definition of r and the properties of r i , j . But from this it follows that EF ∩ Wk ,k
has dimension one, and hence

⟨r(F)⟩C = EF ∩ Wk ,k .

Note however that EF , Wk ,k , and Tn are all defined over K(F). Thus, for each rp,q(F),
there exists Ω ∈ C× such that

1
Ω

rp,q(F) ∈ K(F), ∀ 0 ≤ p, q ≤ k.

Remark 6.3 Let K be an arbitrary imaginary quadratic field with class number h. We
briefly outline the idea of the proof of the main Theorem 1.1. Consider the intersection

E′F = ⋂
(0)≠n⊂OK

Ker(Tn − c(n)) ⊂ SymbGL2(ÔK)(Vk ,k)

in the space of modular symbols valued in Vk ,k , with notation as in [Wil17, Sec-
tion 2]. Let Wk ,k be the subspace of Vk ,k determined by the Eichler–Shimura–Harder
isomorphism, evaluating (3.3) at the pair of cusps (r, s) = (0, ∞) as before. Again
by multiplicity one and Eichler–Shimura–Harder, E′F ∩ Wk ,k is one-dimensional and
spanned by ψF = (ψF 1 , . . . , ψF h ), where F 1 , . . . , Fh are the components of the Bianchi
modular form F as in [Wil17, Proposition 2.7]. As before, the action of Tn on modular
symbols over K(F) is again defined over K(F), so the intersection

SymbGL2(ÔK)(Vk ,k(K(F))) ∩ E′F

is again one-dimensional and spanned by ψF/Ω for some fixed Ω ∈ C× (see [Wil17,
Proposition 2.12]). We then obtain ψF i (0, ∞)/Ω ∈ Vk ,k(K(F)) for each i = 1, . . . , h.
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