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Abstract

Population-based structural health monitoring (PBSHM) systems use data from multiple structures to make
inferences of health states. An area of PBSHM that has recently been recognized for potential development is the
use of multitask learning (MTL) algorithms that differ from traditional single-task learning. This study presents an
application of the MTL approach, Joint Feature Selection with LASSO, to provide automatic feature selection. The
algorithm is applied to two structural datasets. The first dataset covers a binary classification between the port and
starboard side of an aircraft tailplane, for samples from two aircraft of the same model. The second dataset covers
normal and damaged conditions for pre- and postrepair of the same aircraft wing. Both case studies demonstrate that
theMTL results are interpretable, highlighting features that relate to structural differences by considering the patterns
shared between tasks. This is opposed to single-task learning, which improved accuracy at the cost of interpretability
and selected features, which failed to generalize in previously unobserved experiments.

Impact Statement

Multitask learning (MTL) is known to be beneficial for population-based structural healthmonitoring (PBSHM).
Joint feature selectionwith LASSO is the beginning of a thread of research intoMTLmethods that can be applied
to PBSHM to select physically meaningful features and to develop techniques for improving damage diagnosis
and prognosis.

1. Introduction

A core challenge within the field of data-based structural health monitoring (SHM) is that of selecting
meaningful features for damage detection. For example, features that are significantly different can be
selected even if their differences are only a result of operational and environmental effects rather than
structural differences (Rohrmann et al., 2000; Sohn, 2006). One data-driven approach for analyzing
structures is population-based structural health monitoring (PBSHM). PBSHM considers data from
multiple structures holistically, with the aim of improving performance, in comparison to data from
individual structures with their own respective models.

Multitask learning (MTL) is a suite ofmethods that considers multiple tasks simultaneously, as shown in
Figure 1, and this learning approach is relevant for PBSHM. Caruana (1997) developed an early form of
multitask learning using a neural network with backpropagation to train tasks simultaneously and improve
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generalization. One of the principles ofMTL algorithms is that, by sharing training data, the performance of
themodel will improve for all tasks in comparison to each task performed individually. By trainingmultiple
tasks together, in the form of multiple structures, the size of the dataset is effectively increased and hence
meaningful feature selection can occur by considering the patterns that are shared between tasks. From the
available data, not all feature variations will contain meaningful information about the structure, therefore
feature selection is critical. On top of improved generalization, selecting appropriate features can reduce the
signal processing requirements on the measured data (Staszewski, 2002) by using a subset of the full
measurements.MTL also has the potential to benefit PBSHM,where datasets are often incomplete, because
of the cost and safety implications of obtaining the data (Gardner et al., 2022).

This work utilizes MTL for both automatic feature selection and classification, while encouraging
sparsity in the resulting model. Two case studies demonstrate a sparse solution for both independent
learning and MTL, where MTL improves the selection of meaningful features by considering patterns that
are consistent between the related tasks. The paper is structured as follows: Section 2 provides an overview
of existing research and the contribution of this research to the field; Section 3 discusses the background of
the algorithm; Section 4 presents the first case study,which applies the algorithm to different structures from
the same aircraft model; Section 5 presents the second case study, which applies the algorithm to a structure
pre and postrepair of the same aircraft wing; and Section 6 concludes this paper.

2. Related work

MTL has been utilized in SHM:Wan and Ni (2019), Li et al. (2020, 2021) useMTLmodels to reconstruct
data; Liu et al. (2019) simultaneously detect the location and magnitude of damage on bridges; Dhada
et al. (2020) detect anomalies in asset fleets. In the context of modal analysis, Huang et al. (2019) use
hierarchical Bayesian models to learn multiple, correlated regression models. Di Francesco et al. (2021)
also use hierarchical models to build corrosion models from evidence at multiple locations, and
Papadimas and Dodwell (2021) infer model parameters of material constitutive models. This paper
focuses on the use of MTL to automate feature selection in SHM systems, which is often a manual
process. For example, Manson et al. (2003b) and Worden et al. (2003) manually selected features by
reviewing transmissibility features against a set of criteria (strong, fair, or weak) and used these as inputs
to pattern recognition models. While time-consuming, this process of manually selecting windows from
the frequency domain is common throughout the vibration-based monitoring literature. Worden et al.
(2008) present work toward automating feature selection, where a genetic algorithm (GA) was used to
maximize task prediction during selection. The GA improved classification when compared to earlier
studies, but the approach does not necessarily provide features that are interpretable, with clear meaning
in an engineering context.Mitra et al. (2002)measured the similarity between features, discarding features
that provide similar information to the existing set. This approach can provide a sparse set of features;
which is also the target of the method present here, to aid the selection of more structurally meaningful
features. However, these previous solutions are informed by a single task only. As such, this work
proposes that MTL can used to help select interpretable features. This is achieved by utilizing shrinkage
effects, and, most importantly, considering the patterns that are shared between multiple related tasks.

Independent Learner Model Multi-Task Learner Model

Data

Model

Data

Model

Task 1 Task 2

Data Data
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Task 1 Task 2

Figure 1. Comparison of independent and multitask machine learning.
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Another related and popular method for generating features in SHM is principal component analysis
(PCA) (Wang and Ong, 2009; Dackermann et al., 2014; Gordan et al., 2017; Bolourani et al., 2021). PCA
is typically used in a single-task setting for dimension reduction by maximizing the variance of a dataset
through a linear projection, which is then used to define a subspace. It is widely known that PCA is
effective, especially for visualization, though it does not always find a representation that is sensitive to
damage. Additionally, PCA is a form feature extraction rather than selection: it transforms the original
features (to generate new ones) rather than selecting a subset of those originally available.

In terms ofmultitask feature extraction, joint domain adaptation (JDA) can be used (Long et al., 2013;
Gardner et al., 2021). JDA is a projection technique that minimizes the distance between a source and
target distribution in a projected space (rather than maximizing variance, as with PCA). In turn, the
datasets can be assumed to have been generated from the same underlying distribution, and a shared
model can be learned. JDA is effective and utilized as a benchmark in this work; however, since it is used
for feature extraction it transforms the original features, whereas the proposed LASSO approach selects
from the original set (while also considering multiple tasks).

2.1. Novelty of work

The model used in this research provides both feature selection and classification in one step, as opposed to
separate feature selection and classification models. The model also provides shrinkage of the existing
features, which is utilized to improve the interpretability of the results. Unlike other feature selection/
extraction techniques, this model uses the original featureswithin themodel, rather than transformed features
– for example, the features generated in PCAor JDA.Therefore, thework provides a novel implementation of
a one-step feature selection and classification model, with the benefit of interpretable results. Most
interestingly, the resultant features can be used to generalize to new, previously unobserved experiments.

3. The algorithm

MTL has the benefit of providing improved generalization; in the context of SHM, this means that
commonalities between structures can be identified. The assumption is that commonalities identified
within an MTL model will relate to similarities between structures, and therefore utilizing MTL as a
means of feature selection should provide more interpretable features. The model used here is for binary
classification, where all of the original features are presented to the model, and only a subset of relevant
features are activated. Hence, this algorithm combines automatic feature selection and classification. The
sections below will define the model, how it is solved and how to measure the success of the algorithm.

3.1. The LASSO loss function

For both the independent learner and MTL, logistic regression is used for classification. To mathemat-
ically model binary classifications of “True” or “False” a linear regression is used in the form ofW Tx ið Þ,
followed by an activation function. The Sigmoid function is used in this case, to generate a predicted value
between zero and unity:

ŷ ið Þ ¼ 1

1þe�W Tx ið Þ (3.1)

where x ið Þ ∈ℝM is an observed set of readings of M features, W ∈ℝM is the weight vector with a
corresponding weight for each of theM features, and the superscript i refers to one of the N observed sets
of readings, i∈ 1,2,…,Nf g.

When the Sigmoid function is used, the resultant value from equation (3.1) will be a value between
0 and 1. The value can be interpreted as a probability that ŷ ið Þ is “True”. To set the classification output, a
threshold value must be selected; in this work, the typical value of 0:5 is used. The cross-entropy loss
function for learning is dependent on the predicted value ŷ and the observed value y:
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J y ið Þ, ŷ ið Þ;W
� �

¼� 1
N

XN
i¼1

y ið Þ log ŷ ið Þ
� �

þ 1� y ið Þ
� �

log 1� ŷ ið Þ
� �� �

(3.2)

Equation (3.2) represents the empirical loss function for a single task. The empirical loss function is a
measurement of error per sample, which is averaged over allN measurement sets.Without regularization,
the model is likely to overfit; that is, it will perform well for training data but will not perform well when
new data are tested. To reduce the likelihood of overfitting, a further term is added to the loss function. The
Least Absolute Shrinkage and Selection Operator (LASSO) algorithm (Tibshirani, 1996) adds a regu-
larization term to the empirical loss (3.2) in the form of an ℓ1 norm. To understand the impact of the ℓ1

norm on the loss function, it is useful to understand the general form of ℓp norms. If W is a vector,
w1,w2,…wM½ �, then the ℓP norm is given by,

kWkP ¼
XM
j¼1

wP
j

 !1
P

(3.3)

To visualize the effects of LASSO, consider a simple two-feature optimization; Figure 2 shows three
examples of such an optimization. Ŵ refers to the optimal solution of the weights without any penalty. If
implemented, this solution would fit the training data well but is likely to have high variance. Hence, a
penalty is included. The ‘constraint surface’ in the three examples is represented by the pink shape
centered on the origin. The penalties, for some c> 0, are visualized here for comparison as follows:

• ℓ1 (or LASSO) penalty:
PM

j¼1∣wj∣< c,

• ℓ2 penalty:
PM

j¼1w
2
j

� �1
2
< c,

• ℓ∞ penalty:
PM

j¼1w
∞
j

� � 1
∞
< c.

Figure 2. A visualization of the shrinkage gained from the LASSO compared to other regularization
methods.
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The solution to the optimization is the point where the contour of the optimal solutionmeets the edge of
the constraint surface.

For the three examples in Figure 2, the optimal weight is in the same position; the only difference
is the shape representing the penalty term. For LASSO, the intersection is on the axis, that is, w1 is
0, whereas for the other two penalties, the solution is not. To summarize, the visualization demon-
strates how LASSO can shrink some of the features to 0, whereas this is less likely with other ℓn

penalty terms. By implementing ℓ1 regularization the resulting model is more likely to be represen-
tative when given test datasets. However, it should be noted that if the regularization dominates,
then under-fitting will occur, and the model will perform poorly for both the training and the test
datasets. The total loss function given by the standard independent LASSO algorithm is,

ΓðyðiÞ, ŷðiÞ;W Þ¼ JðyðiÞ, ŷðiÞ;W Þþ λ∥W∥1 (3.4)

where λ is a scalar known as the regularization parameter, and ∥W∥1 ¼
PM

j¼1∣wj∣ is the ℓ1 norm of the
weight vector.

This total loss function can increase sparsity as it applies the ℓ1 norm. A large feature set is often less
interpretable; therefore, sparsity is a desirable characteristic as it not only offers a reduction in processing
requirements but has the additional benefit of better interpretability. In addition, if fewer features are
required in a model, this helps to combat the curse of dimensionality (Bellman and Kalaba, 1959), which
is often an issue for vibration-based SHM.

3.2. Multitask LASSO

To use the loss function across multiple tasks within one model, the loss function must consider all
related tasks. Joint regularization with LASSO was introduced in MTL by Obozinski et al. (2006) to
encourage features to share the same sparsity pattern among similar tasks by adding an ℓ2,1 constraint.
The constraint is ℓ2 across the different tasks, which is then combined into an ℓ1-norm across the
features,

∥W L∥2 ¼
XL
l¼1

w2
j,l

 !1=2

ℓ2across the tasks
� �

∥WM∥2,1¼
XM
j¼1

∣
XL
l¼1

w2
j,l

 !1=2

∣ ℓ1across the features
� � (3.5)

where L is the number of tasks, and W L ∈ℝM .
For each feature, there is an ℓ2 norm constraint between the tasks. The next layer of constraint is the ℓ1

norm. For this research, if a feature has a zero weight with this constraint, then all of the tasks will have a
zero weight for the given feature; that is, the weight matrix is shared and all of the tasks will share the same
sparsity pattern. For multiple tasks the empirical loss function (3.2), becomes,

J y ið Þ
l , ŷ ið Þ

l ;W l

� �
¼�1

L

XL
l¼1

1
Nl

XNl

i¼1

y ið Þ
l log ŷ ið Þ

l

� �
þ 1�y ið Þ

l

� �
log 1� ŷ ið Þ

l

� �� �
(3.6)

where W l ¼ w1,l,w2,l,…wM,l½ � refers to the weight vector, and Nl refers to the number of samples for a
given task l. Using the empirical loss function defined above (3.6), the total loss function (3.4),
becomes,

Γ y ið Þ
l , ŷ ið Þ

l ;W l

� �
¼ J y ið Þ, ŷ ið Þ;W l

� �
þ λ∥WM∥2,1 (3.7)

where ∥WM∥2,1 ¼
PM

j¼1∣
PL

l¼1w
2
j,l

� �1=2
∣.
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3.3. Solving with gradient boosting

Further sparsity can be achieved in both independent learning and multitask learning by using gradient
boosting to solve the algorithm (Obozinski et al., 2006). Gradient boosting uses coordinate descent as
opposed to gradient descent. Rather than updating all weights simultaneously in one iteration, gradient
boosting only updates the weight that provides the largest reduction in the loss. Algorithm 1 details the
methodology of gradient boosting for the multitask learner algorithm. As all of the weights are initially
zero and only oneweight is adjusted per iteration, if a feature has a low influence on the loss function, then
it will remain zero, hence encouraging sparse solutions.

Algorithm 1. Multitask boosted LASSO algorithm with a shared weight matrix

1: Set initial parameters: step size, ε and tolerance, ξ

E: ε≥ ξ.
2: Determine highest impact weight on the empirical loss,

ĵ, ŝ̂j
� �

¼ argmin
j,sj¼ ± ε

J yðiÞl , ŷðiÞl ;sjej
� �

⊳ĵ is the highest impact weight for the given step size, ŝj. ej is a matrix of 0 s except for a 1 in the jth

feature column (for both tasks).
3: Initialize weight matrix,W 0

M ¼ ŝ̂j êj
4: Calculate the regularization parameter,

λ0 ¼ J yðiÞl , ŷ
ðiÞ
l ;0ð Þ�J yðiÞl , ŷ

ðiÞ
l ;W 0

Mð Þ
∥W 0

M∥2,1�∥0∥2,1

5: t¼ 0
6: while λt ≥ 0 do
7: Determine highest impact weight on the total loss,

ĵ, ŝ̂j
� �

¼ argmin
j,sj¼ ± ε

Γ yðiÞl , ŷðiÞl ;W t
M þ sjej,λ

t
� �

8: Calculate loss,

L¼Γ yðiÞl , ŷðiÞl ;W t
M þ sjej,λ

t
� �

�Γ yðiÞl , ŷðiÞl ;W t
M ,λt

� �
9: if L < � ξ then

10: Update weight matrix, WM tþ1 ¼W t
M þ ŝ̂j êj

11: Update regularization parameter, λtþ1 ¼ λt

12: else if L≥ � ξ then
13: Determine high impact weight on the empirical loss,

ĵ, ŝ̂j
� �

¼ argmin
j,s¼ ± ε

J yðiÞl , ŷðiÞl ;W t
M þ sjej

� �
14: Update weight matrix,W tþ1

M ¼W t
M þ ŝ̂j êj

15: Calculate regularization parameter,

λtþ1 ¼ min λt,
J yðiÞl , ŷ

ðiÞ
l ;W t

Mð Þ�J yðiÞl , ŷ
ðiÞ
l ;W tþ1

Mð Þ
∥W tþ1

M ∥2,1�∥W t
M∥2,1

� �
16: end if
17: t¼ tþ1
18: end while
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Algorithm 1 shows the equations that would be used for theMTL approach; however, themethodology
is similar in the case of single-task learning models too (utilizing equations (3.2) and (3.4)). To initialize
the algorithm, a step size needs to be selected (ε); this is the increment that one of the weights will change
by in each iteration, it is a measure of the sensitivity of the resulting weight matrix. In addition, a tolerance
needs to be specified (ξ), used to determine whether a forward or backward step will be taken. The
condition specified in Zhao and Yu (2004), is that ε≥ ξ. Larger values of these parameters will result in
sparser weight matrices. Only the features that have a significant impact on the loss result in updated
weights. With reduced sensitivity, the algorithm becomes less accurate, with less iterations, therefore, an
increased level of sparsity. With smaller values of the hyperparameters there will be increased sensitivity,
more iterations of the algorithm and hence a more accurate (but potentially less sparse) solution.

Following initialization, iterations continue by identifying the weight, which results in the largest
reduction in total loss (independent learner: (3.4) and MTL: (3.7), Algorithm 1 line 7). There now exists
the original weightmatrix and the newweightmatrix (with the alteration to theweight, which results in the
largest reduction in total loss). The difference between the total loss with the new weight matrix and the
total loss with the old matrix represents the loss, L (Algorithm 1 line 8).

A forward step is taken if L< � ξ; the weight matrix is updated and there are no changes to the
regularization parameter (Algorithm 1, line 10–11). However, if L≥ � ξ, then a backward step is taken.
For a backward step, the original weight matrix is used and the weight that results in the largest reduction
in empirical loss is identified (Algorithm 1, line 13). Theweightmatrix is updatedwith the alteration to the
weight, which results in the largest reduction in empirical loss (Algorithm 1 line 14). The regularization
parameter is also updated (Algorithm 1, line 15), as the minimum value between the original regulariza-
tion parameter and a new regularization parameter. The iterations of the algorithm continue until the
regularization parameter is less than, or equal to, 0. The result of gradient boosting is a sparse solutionwith
weights that do not impact the loss remaining at 0.

3.4. Algorithm performance

Two elements will determine the success of this algorithm: firstly, how close the algorithm is to finding the
true labels, and secondly, how sparse the resulting weightmatrix is. In this case, we assume sparsity is a good
indication of the interpretability of features. Often inmachine-learning problems, it is only the accuracy of the
algorithm that is assessed; however, a reduction in features can result in increased simplicity and interpret-
ability, as well as reduced processing times, whichwould be desirable outcomes for SHM applications. Both
studies demonstrate how sparse solutions can lead to more meaningful features and better generalization.

While iterating the algorithm, the value of the total loss function is used to assess performance via (3.4)
and (3.7); however, this loss is not intuitive when comparing different models against each other.
Therefore, to compare independent learning models and MTL models against each other, the F1 score
is used. The F1 score is suitable as it is bounded between 0–100%and applies if class sizes are uneven. The
F1 score is the harmonic mean of precision and recall, where precision is the percentage of accurate
positive classifications from all of the predicted positive classifications and recall is the percentage of
accurate positive classifications from all of the actual positive classifications.

Hurley and Rickard (2009) provide a comparison of different measures of sparsity; among several
methodologies for measuring sparsity, the Gini Index was highlighted as the most robust measure.
Originally used to measure wealth distribution by Farris (2010), it has since been applied to various
disciplines including ecology (Cordonnier and Kunstler, 2015) and medicine (Bandara et al., 2022). In
2017, the Gini Index was introduced in encoder-based applications to assess the health condition of
rotating machinery (Zhao and Lin, 2018). Hurley and Rickard (2009) defines the Gini Index as,

G Wð Þ¼ 1�2
XM
j¼1

wj

kWk1
M� jþ 1

2

M

� 	
(3.8)

where the W vector used in equation (3.8) has been ordered by magnitude such that ∣wx∣< ∣wxþ1∣ for
x∈ 1,…,Mf g. The Gini Index will not only consider if a weight has been activated or not, but the
magnitude of the weight too; this measure gives a result G Wð Þ∈ 0,1½ �.
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3.5. Benchmark tests

To provide a benchmark that relates closely to MTL LASSO, the performance will be analyzed against
JDA, which is supervised in both the source and target domains (using the F1 score). JDA aims to find a
space by using the kernel-trick and then projecting the data into a space where they become aligned across
domains. To provide classification, a two-step process is required: feature extraction, via JDA, followed
by a classifier (in this case, k-nearest neighbor (kNN)). JDA does not encourage sparsity, since the linear
projection on the kernel is not regularized in the same way. Hence, sparsity will not be assessed for the
benchmark.

4. Case study 1: Piper aircraft tailplane

Bull et al. (2021) conducted an experimental campaign on tailplanes, the data were used to determine
whether domain adaptation could be used for transfer learning between structures and hence to improve
novelty detection. One of the areas identified for future work was automatic feature selection, so Joint
Feature Selection using the LASSO is explored here to determine if classification accuracy can be
improved. The classification task is synonymous with analyzing structures prerepair and postrepair.
When a structure undergoes repair, the response of the structure is different from the prerepair condition;
two structures that are made to the samemanufacturing specifications will be similar but not the same, just
as for the pre- and postrepair conditions of the same structure.

4.1. Dataset generation

Two tailplanes labeled A and B from a PA-28 ‘Arrow’ aircraft were used to create the dataset.
The tailplane had elevators and wing tips removed and each was cut in half to create a port and a
starboard side. Tailplanes A and B have more or less the same geometry (although B was cut
asymmetrically). Had the tailplanes been cut symmetrically, then they would be classed as a
homogeneous population. A population is considered as homogeneous if the structures are nominally
identical (Gosliga et al., 2022) and there is structural equivalence (Gosliga et al., 2021). Thus,
tailplanes from A and B are not homogeneous as they were cut asymmetrically and are considered
here as weakly homogeneous.

The task analyzed as part of this case study is to determine which data are fromwhich tailplane (A or B)
using the frequency response function (FRF). This classification is viewed as similar to reviewing a
structure in normal condition (A tailplane) and some other condition such as operating, environmental or
damage conditions (B tailplane), or vice versa. As there are port and starboard parts of the tailplane, there
are two classification tasks.

During the experiments, Gaussian white noise excitation was applied to each of the tailplanes over
a frequency bandwidth of 1 kHz with a resolution of 0.3125 Hz; this resulted in 3200 points in the
frequency spectrum. The useful range of the FRF was deemed to be between 33.75 Hz and
217.1875 Hz (points 107 to 695). Frequencies lower than this were considered to be influenced too
strongly by rigid body movements and higher frequencies were highly influenced by noise. The port
and starboard sections each had 180 measurement response points, which were averaged and then
normalized across each tailplane, to generate the normalized FRF. The resulting FRF can be seen in
the top row of Figure 3.

In the frequency range, there are 588 measured frequencies, each corresponding to one feature. Only
one data point exists for each frequency (feature) corresponding to the summed average across all of the
180 response locations. Jain andWaller (1978) proposed that for uncorrelated features, the optimal sample
size isN ¼Mþ1 (whereN is the total number of samples andM is the total number of features), whereas
for highly correlated features the optimal sample size isN¼M2. This relationship is further backed up by
research of Hua et al. (2005). To increase the dataset from 1 to N, a demo dataset was generated using
Monte-Carlo sampling, with the mean from the experiments and the variance estimated using the
coherence function as in Worden (1998),
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σ Hp ωð Þ� �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2p ωð Þ

q
∣γp ωð Þ∣ ffiffiffiffiffi2np Hp ωð Þ (4.1)

where Hp ωð Þ is the measured frequency response at a given frequency, γp ωð Þ is the standard coherence
function and n¼ 6 is the number of values used to compute the FRF (that is, the number of average values
used to generate the resulting measured value).

Random sampling (10,000 samples used here) can be used to generate a dataset if the results are
assumed to have a Gaussian distribution. As sparsity is encouraged in the algorithm, there is
the implicit assumption that correlation between features exists, for the task of distinguishing A
from B. The number of meaningful features is unknown at this stage in the statistical model
development.

It is hoped that there will be high correlation between the features, so that a sparse solution can be
found. A high correlation between tasks would suggest that the number of samples required would be
354,744 (5882, or 172,872 per class). However, such a high number of samples drastically increases the
processing time required by the algorithm. Instead, a sample size of 1500 per task (that is 750 in each class)
was generated for training and validation.

To increase the training and validation datasets, fivefold cross-validation was implemented.
Fivefold cross-validation is generally accepted as the lower end of the permissible values for k-fold
cross-validation (Priddy and Keller, 2005; Mirkin, 2011). As opposed to separate training
and validation sets, fivefold cross-validation reduces bias within the model, hence enabling
optimal values for the hyperparameters to be selected. A further 500 samples per task (250 per class)
were generated for testing purposes. The hyperparameters that need to be selected are the step size, ε,
and tolerance, ξ. All three models were trained with the same hyperparameters, ε∈ 1,0:3,0:1,0:03f g,
and ξ ∈ 0:1,0:01,0:001f g, and all combinations of ε and ξ were tried subject to ε> ξ.

Three models were produced: an independent learner for Task 1, an independent learner for Task 2 and
amultitask learner for Tasks 1 and 2. To aid the review of the relative performance of the three models, the
FRF is split into 2 windows. The first window contains frequencies less than 125 Hz, it does not contain a
lot of information about the structures; however, the secondwindow contains a lotmore information about
the structures.

Figure 3. Port tailplane measurements (Task 1, left, blue for A and green for B) and starboard
measurements (Task 2, right, sky blue for A and purple for B), based on the average response of the

180 measurement points. Upper: Mean values only. Lower: Mean values and all 750 sample points per
structure shown as small translucent points.

Data-Centric Engineering e4-9

https://doi.org/10.1017/dce.2024.1 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.1


4.2. Trained model comparison

Following cross-validation, the resulting values are: ε¼ 0:3 and ξ ¼ 0:01 for both the independent and the
multitask models. Figure 4 shows the FRF overlaid onto vertical lines, which represent the activated
nonzero weights, and therefore the activated frequencies of the solution.

The independent learners (Figure 4(a)) both have activated frequencies at the lower end of the
frequencies analyzed. The large number of activated weights at this lower end is not informative of the
differences in the structure, but rather of the differences in the rigid body movements created because of

Figure 4. FRF and activated weights for test data for both Task 1 (upper, Class 1 blue andClass 2 green) and
Task 2 (lower, Class 1 sky blue andClass 2 purple) for (a) LASSOand (b) Joint Feature Selectionwith LASSO,
ε¼ 0:3 and ξ ¼ 0:01. The activated weights are shown as vertical lines and the color of the vertical line
represents the value of theweight. The dashed black vertical line represents the boundary for the twowindows.
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the experimental setup. For Window 2 (frequencies > 125 Hz), there appear to be similarities in the
activated weights between Task 1 and Task 2. This is to be anticipated, as the samples are from the same
aircraft and the motivation for using a multitask learner on this dataset! The benefit of the MTL will
become evident in the next section when the model is applied to an unseen task.

Figure 4(a) shows that near-perfect F1 scores are obtained for both tasks and both windows. However,
the Gini Index forWindow 1 across both tasks is 10% points lower than the Gini Index forWindow 2. For
Task 1, it could be argued that the feature set from either of the windows could be used; Window 1 has a
perfect F1 score; however, there is a marked improvement in Gini Index in Window 2, which is arguably
worth the small reduction in F1 score. The selection of thewindow for Task 2would beWindow 2 as it has
a perfect F1 score and a high Gini Index.

For Figure 4(b), the F1 scores are lower than the independent learner equivalent. For Window 1, the
frequencies that have been activated are at the higher end of the frequency range, and there is only one
frequency activated less than 80 Hz. The absence of low frequencies being activated indicates that the
experimental setup (which would be different across all four samples), is no longer useful to differentiate
between the two classes. Window 2 outperforms Window 1 for both tasks, with higher F1 scores but a
lower Gini Index.

4.3. Transfer of results

To determine the success of the models in finding general features, rather than experiment-specific ones, it is
useful to implement the weight matrix (features selected) from the two independent learners and themultitask
learner on the two existing tasks and on a third, unseen task. This can be viewed as a form of transfer learning.

In the tailplane dataset, there is a third tailplane, C, which is taken from a PA-28 ‘Cherokee’ aircraft.
The structure set is no longer weakly homogeneous, rather it is heterogeneous, as C is a different variant of
aircraft. The starboard side of the tailplane (C2) was damaged and the port side of the tailplane (C1) was
not damaged. To formulate a task that has similarities with the original task set, a useful classification is to
differentiate from the port side of tailplane C and tailplane B. Figure 5 shows the FRF for the two original
tasks (upper and middle) and the third task (lower), which has the FRF data from C1.

There are three tasks and there are also three potential weight matrices plus the benchmark JDA; this
results in 12 different models in which the F1 score can be analyzed, Figure 6 shows the results for
Window 2. Figure 6 shows that the multitask learner is successful in the classification of the third task, to
the same accuracy as the two tasks that it was trained on. The independent learner weight matrix for ‘A1vs

Figure 5.FRF for the three different tasks showing plus andminus one standard deviation (shaded band).
Upper: A1 vs B1, Middle: A2 vs B2, and Lower: C1 vs B1.
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B1’ (Task 1) scores perfectly on the task it was trained for, however, there is a drop in the F1 score
(to below the performance of the multitask learner) when applied to the unseen third task of ‘C1 vs B1’.
This is because the independent model learned experiment-specific features, as opposed to features
relating to the physics of the structure. As the features were less structurally meaningful, themodel fails to
generalize to the third unseen task.

For Task 1 and Task 2, there appears to be an issue with labeling, such that the classification of Task 1 is
perfect with the weight matrix trained on Task 1; however, when the weight matrix for Task 1 is applied to
Task 2 there is almost a perfect misclassification. When looking at the FRF and weight matrices for
comparison (Figure 4), it becomes apparent that, although the same data are used in all models, the
features selected for Task 2 are at frequencies that provide the opposite classification for Task 1. This is
particularly apparent at around 150 Hz in Figure 4. While JDA outperforms MTL for the tasks that it was
trained on (that is, Task 1 and Task 2) for the third unseen task, the JDA features result in a decline in kNN
performance, demonstrating that the transformation learned by JDA is less general.

In applying the matrices from the three models to a third, unseen task, it is shown that good
generalization has occurred in the case of the multitask learner. The multitask learner did not see a
reduction in the F1 score when applied to the third task, which demonstrates that the selected features are
representative of the physics of the structure as opposed to differences in experimental setup. Positive
transfer, to a previously unobserved experimental setup, demonstrates the advantage of more general
feature selection by using MTL in SHM.

4.4. Discussion

Successful automatic feature selection has been demonstrated on the tailplane dataset. Gradient
boosting yielded results with good sparsity in both independent and MTL settings. The following

Figure 6.F1 results for three different weight matrices and JDA (y-axis) applied to three different tasks (x-
axis) for Window 2.
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table details the number of features selected out of the 295 potential features for each model and each
window:

Classification of the two tasks was near-perfect (that is, 100% F1 score) for the independent learner;
however, Window 1 shows that differences in experimental setup was a key driver in feature selection.
The features that were consequently selected were specific to the one task, and did not generalize between
tasks.

Compared to independent learning, and without any engineering judgment, the result of the MTL is
such that the F1 score is lower, as is the Gini Index; therefore, the MTL has not outperformed the
independent learner. However, the inference that can be taken from the result of transfer learning is quite
powerful. The performance of theMTL on the third unseen task is comparable with the initial two tasks;
however, the performance of the third task when using the matrices from the independent learners is
poor. This supports the theory that the MTL has selected features that are more meaningful and
representative of changes in the structure, rather than the independent learner, which has found
differences in the data.

5. Case study 2: GNATaircraft wing

5.1. The dataset

To further demonstrate how joint feature selection can aid interpretability and general features, a subset of
the GNAT dataset used byManson et al. (2003b) will be tested. Ground-vibration tests were conducted on
the wing by applyingwhite Gaussian excitation via an electrodynamic shaker. Figure 7 shows a schematic
of the wing; it contained nine panels, which were removed and replaced in a series of experiments to
mimic damage followed by maintenance, as described in Manson et al. (2003b).

Each panel has an associated transmissibility, that is, the ratio of the response transducer spectrumwith
the reference transducer spectrum. The transmissibilities were measured and converted into magnitudes
(Manson et al., 2003b). The lower frequencies were deemed to be insensitive to damage (Manson et al.,
2003a) and hence the frequency range of the spectrum is 1024 Hz to 2048 Hz, with 1024 spectral lines.

There were 25 iterations of removing and replacing panels, each iteration containing 100 samples. For
this work, rather than readings from all 9 transmissibilities, only transmissibilities and damage associated
with panel 1 (A1) will be reviewed. There will be 1024 features corresponding to the frequency
transmissibility measurements for A1. A lot of samples relate to damage occurring at different panels,
and hence the dataset will be reduced to the following classes:

• Normal 1: Prerepair normal condition – The initial normal condition with all plates in place
(X ∈ℝ100× 1024)

• Damage 1: Prerepair Panel 1 removed – Plate P1 removed (X ∈ℝ100× 1024)
• Normal 2: Postrepair normal condition – The normal condition after plate P1, plate P2 and plate P3
have been sequentially removed and replaced. (X ∈ℝ100× 1024)

• Damage 2: Postrepair Panel 1 removed – plate P1 removed again after plate P1, plate P2 and plate P3
have been sequentially removed and replaced. (X ∈ℝ100× 1024)

Model Window Features selected

Task 1 independent learner 1 59
2 27

Task 2 independent learner 1 51
2 19

Multitask learner 1 21
2 55
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• Normal 3: Post-2nd-repair normal condition – The normal condition after plate P1, plate P2 and plate
P3 have been sequentially removed and replaced for a second time. (X ∈ℝ100× 1024)

Initially, the data will be split into two tasks: Prerepair and Postrepair (omitting the 2nd postrepair class).
Each task will have a normal condition class and a damage class. Figure 8 shows the two tasks (the data
undergo a log base-10 transformation). This transformation is useful for FRF analysis, with different
magnitudes of responses. As before, for MTL, two hyperparameters need to be selected; the step size ε,
and tolerance ξ.

Three models were produced; an independent learner for prerepair, an independent learner for
postrepair and a multitask learner for task pre- and postrepair. All three models were trained with the
same hyperparameters, the values of the step size, ε, were selected to be approximately three times smaller
than the previous value, ε∈ 10,3,1,0:3,0:1f g, and the tolerance was trialed for two different orders of
magnitude, ξ ∈ 1,0:1f g. The value of ξ has less of an impact on the final results than ε, hence less
sensitivity analysis for ξ. All combinations of ε and ξ were tried subject to ε> ξ.

Figure 7. GNAT plane schematic recreated from Gardner et al. (2021).
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5.2. Trained model comparison

Following tuning of the hyperparameters, the results are: ε¼ 0:3 and ξ ¼ 0:1 for both the independent and
the multitask models. Figure 9 shows the transmissibilities overlaid onto vertical lines, which represent
the activated weights and therefore the activated frequencies of the solution. The prerepair independent
learner (Figure 9(a), top), has the lowest F1 score of the models and also the highest Gini Index. The
majority of theweights activated arewithin a band at around spectral line 1500 and there is another band of
activated frequencies at around spectral line 1280. For the independent learner for postrepair (Figure 9(a),
bottom) there are more spectral lines that have been selected and there appears to be less grouping of the
activated spectral lines.

Figure 9(b) shows that the MTL has improved F1 scores for the prerepair task over the independent
equivalent. However, as with the previous example dataset, the Gini Index is lower for the MTL than
either of the two independent learners.

5.3. Domain adaptation as a result of the models

To understand how the multitask model aids the discovery of a general feature space, it is useful to
visualize the PCA subspaces of the full features. In this paper domain adaptation refers to multiplying the
original data by the weights that have been calculated in the corresponding models (either weights from
the single-task learning models or weights fromMTL). Figure 10 shows the four classes, following PCA
transformation for three different scenarios.

Figure 10(a) shows the normalized data without any domain adaptation. There are four distinct clusters
that are present. The clusters that are closest to each other are the Postrepair Normal Condition and the
Postrepair Panel 1 Removed. The classification boundary between normal condition and panel removal
is not linear.

Figure 8. The transmissibility prerepair (Task 1, upper) and postrepair (Task 2, lower) of reference
transducer AR to response transducer A1 for normal condition and panel 1 removed. Prerepair, Task
1, has Class 1 as normal condition (purple) and Class 2 as Panel 1 removed (sky blue) and postrepair,
Task 2 has Class 1 as normal condition (green) and Class 2 as Panel 1 removed (orange). One standard

deviation of banding is shown for each class.
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The impact of the independent learning models on the clusters is shown in Figure 10(b). Alike clusters
are closer together; note that the scale on (b) is different to the scale on (a). In addition, the clusters appear
evenly spaced from one another, with each class having its own distinct cluster, as in (a).

Figure 10(c) shows how MTL has adapted the domains such that the two classes classified as Normal
Condition overlap and the two classes classified as Panel 1 Removed overlap as well. This implies that the
similarities between the two Normal Condition classes have been identified by the MTL, as have the
similarities between the two Panel 1 Removed classes. In effect, the datasets and tasks have been

Figure 9. Transmissibilities and activated weights for test data for both Task 1 (upper, normal condition
purple and panel 1 removed blue) and Task 2 (lower, normal condition green and panel 1 removed

orange) for (a) LASSO and (b) Joint Feature Selection with LASSO, ε¼ 0:1 and ξ ¼ 0:1. The activated
weights are shown as vertical lines and the color of the vertical line represents the value of the weight.
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harmonized. A linear classification boundary can be readily applied to differentiate between the normal
condition and panel removal, unlike the original data and single-task learning. In addition, the F1 score of
theMTL shows that the model can accurately classify between the two different classes; this is a promising
result, asMTL intends to learn similarities between the tasks for each class and then uses these similarities to
select features that can accurately perform the binary classification. Figure 10(d) is included to show how
MTL achieves similar domain adaptation to JDA, while also learning the classification task at the same
time, and selecting from the original feature set, rather than transforming them.

5.4. Discussion

The results of the independent learner vs MTL for the GNAT dataset demonstrate successful automatic
feature selection. Grouping is not encouraged in the algorithm; however, the results from the independent
learner for prerepair (Figure 9(a), top) show that the activated weights occur, roughly, within two bands.
This selection of features is intuitive: similar to the features that would be selected manually, where

Figure 10. PCA of the four classes: prerepair normal condition (purple), prerepair Panel 1 removed
(blue), postrepair normal condition (green) and postrepair Panel 1 removed (red). (a) PCA of normalized
data. (b) PCA after data is multiplied by the weights and bias for the two independent learners (on the
corresponding task), concatenated, and then normalized. (c) PCA after data has been multiplied by the
weights and bias of the MTL, for both tasks, and then normalized. (d) Shared domain created with JDA.
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selections would lead to bands of spectral lines, which contain information about the structures across the
multiple classes. In contrast, the independent learner for postrepair and the MTL do not have meaningful
groupings of activated weights; instead, there are several places along the spectrum that have individual
activated weights/spectral lines – which are harder to interpret in an engineering context.

The F1 scores of the MTL are on par with the scores of the independent learners. From visual
inspection of Figure 9, the weights activated around spectral line 1500 provide opposite classification in
the independent learner for prerepair, when compared to both postrepair and the MTL; this is the same
phenomena previously seen in the tailplane (Figure 6).

A useful insight from this analysis is the effective domain adaptation. Previous work by Bull et al.
(2021) used domain adaptation to provide transfer learning between prerepair and postrepair conditions.
Figure 10(d) shows that JDA can separate the data into clusters for the separate classes. The PCA domain
of the MTL shown in Figure 10(c) demonstrates that by learning the two tasks together, the domains for
the two Normal Condition classes and the two Panel 1 Removed classes overlap, respectively. This
demonstrates that MTL can identify shared features, which map similar classes onto one another (when
applying domain adaptation) while providing good classification results. The additional benefit of the
MTL is that the features selected are the original features (unlike the transformed features in JDA) and
hence the MTL remains more interpretable.

6. Conclusion

This work has demonstrated how multitask boosted LASSO can select meaningful features for engin-
eering datasets, by considering the shared patterns between multiple related tasks. The first study
illustrated that MTL LASSO will select meaningful underlying features, as opposed to features that
capture experiment-specific differences, but no structural significance. The improvement in the perform-
ance when transferring feature knowledge to a previously unobserved task shows that MTL LASSO can
be applicable to transfer learning. Successful knowledge transfer also highlights the ability to find more
general/meaningful features, by utilizing patterns shared across multiple tasks. MTL LASSO improved
generalization and interpretability when compared to the benchmark JDA and kNN approach.

The second study showed howMTL selected features that allowed the domains (data) of two tasks to
be mapped onto each other, further highlighting the ability to learn general representations, which can be
shared between systems and/or structures.MTLLASSOmatches the performance of the JDAbenchmark,
with the benefit of learning both the feature selection and classifier in the same algorithm. Additionally,
MTL LASSO naturally provides shrinkage, which was utilized to provide interpretable features in the
context of vibration-based monitoring.

Data availability statement. The code used to recreate the results can be found in: https://github.com/Sarah-Bee/MTL_Feature_
Selection.
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