20

A Few Explicit Examples of Causal Variational
Principles

In this chapter, we introduce a few examples of causal variational principles and
analyze them in detail. These examples are too simple for being of direct physical
interest. Instead, they are chosen in order to illustrate the different mathematical
structures introduced previously. It is a specific feature of these examples that a
minimizing measure can be given in a closed form, making it possible to analyze
the system explicitly. Similar examples were first given in [68].

When constructing simple explicit examples, it is often convenient to choose
non-smooth Lagrangians, which involve, for example, characteristic functions or
are even distributional. In order to treat this non-smooth setting in a mathemati-
cally convincing way, one needs to work with additional jet spaces, which we now
introduce (for more details, see, e.g., [62, 57]).

Clearly, the fact that a jet u is smooth does not imply that the functions ¢
or L are differentiable in the direction of u. This must be ensured by additional
conditions that are satisfied by suitable subspaces of J, which we now define.
First, we let ' be those vector fields for which the directional derivative of the
function ¢ exists,

" = {u € C®(M,TTF) | Dyl(x) exists for all z € M} . (20.1)
This gives rise to the jet space
JH = C®°(M,R)@ " C J. (20.2)

For the jets in J*, the combination of multiplication and directional derivative
in (7.11) is well defined. We choose a linear subspace J** C J** with the property
that its scalar and vector components are both vector spaces, that is,

3tcst — Ctest (2\47 R) @ Ftcst g 3diff (203)

for suitable subspaces C***(M,R) C C*°(M,R) and I'*** C I'". We then write
the restricted EL equations (7.13) in the weaker form

Villp =0 for all u € F*=*. (20.4)

Finally, when considering weak solutions of the linearized field equations, it is
sometimes useful to restrict attention to jets in a suitably chosen subspace of J*=*,
which, in agreement with (14.14), we denote by

Je e (20.5)
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354 20 A Few FExplicit Examples of Causal Variational Principles

To summarize, we have the inclusions
3vary C 3test C 3diﬁ‘ C 3 X (206)

The compactly supported jets are always denoted by an additional subscript zero.

20.1 A One-Dimensional Gaussian

We let F = R and choose the Lagrangian as the Gaussian

L(z,y) = % e~ (@)? (20.7)

Lemma 20.1.1 The Lebesgue measure
dp = dz (20.8)

is a minimizer of the causal action principle for the Lagrangian (20.7) in the class
of variations of finite volume (see (6.14) and (6.13)). It is the unique minimizer
within this class of variations.

Proof Writing the difference of the actions as in (6.14), we can carry out the
integrals over p using that the Gaussian is normalized (see Exercise 20.1),

| cant = 1. (20.9)
We thus obtain

S(p) — S(p) =2 / d(p - p)(z) + / d(p - p)(x) / d(p - P)() L(z.y)

- /N d(p — p)(x) /N dlp— P)) L(z.y) . (20.10)

where in the last line we used the volume constraint (6.13). In order to show that
the last double integral is positive, we take the Fourier transform and use that the
Fourier transform of a Gaussian is again a Gaussian. More precisely,

/ ¢PEY) Lz y) dy = o5 = £(p). (20.11)
N

Moreover, the estimate

‘/Nei’” d(p—ﬁ)(x)‘ <[5 —p|(F) < o0, (20.12)

shows that the Fourier transform of the signed measure p — p is a bounded func-
tion g € L>=°(R). Approximating this function in L?(R), we can apply Plancherel’s
theorem and use the fact that convolution in position space corresponds to
multiplication in momentum space. We thus obtain

/ d(p - p)(x) / d(p - 5)(y) Liz,y)
N

N

:/N (F~1(f9)) (@) dlp— p)(z) =/ D e Fgp) dp>0,  (20.13)

— 00
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20.1 A One-Dimensional Gaussian 355

and the inequality is strict unless p = p. This concludes the proof. O
The EL equations read
/ L(x,y)dp(y) =1 forallz e R. (20.14)
F

We now specify the jet spaces. Since the Lagrangian is smooth, it is obvious that
JM=3=C®[R)® C>®(R), (20.15)

where we identify a vector field a(z) 0, on R with the function a(z). The choice
of Jt=* is less obvious. For simplicity, we restrict attention to functions that are
bounded together with all their derivatives, denoted by

Ce={feC®R)| f™ e L*(R) for all n € No} . (20.16)

Now different choices are possible. Our first choice is to consider jets whose scalar
components are compactly supported,

3t = C°(R) & C°(R) . (20.17)

The linearized field equations (8.15) reduce to the scalar equation
/ (VLU + ng)ﬁ(m,y) dp(y) = Ve1=0 forallz e R, (20.18)
N

because if this equation holds, then the z-derivative of the left-hand side is also
zero. Differentiating the EL equations (20.14) with respect to x, we find that

/ VioL(z,y)dp(y) —Ve1=0 forallz e R. (20.19)
N
Subtracting this equation from (20.18), the linearized field simplifies to
/ Vaul(z,y)dp(y) =0 forallz € R. (20.20)
N

A specific class of solutions can be given explicitly. Indeed, choosing

u=(a,A) with acCP(R)and A(z) = /wa(t) dt € C(R),  (20.21)

o0

integration by parts yields

/ VauL(z,y) dp(y) =/ (A'(y) + Aly) 9y) L(w,y) dy = 0. (20.22)
N N

These linearized solutions are referred to as inner solutions, as introduced in a more
general context in Section 8.3 and [57]. Inner solutions can be regarded as infinites-
imal generators of transformations of M that leave the measure p unchanged.
Therefore, inner solutions do not change the causal fermion system but merely
describe symmetry transformations of the measure. With this in mind, inner solu-
tions are not of interest by themselves. But they can be used in order to simplify
the form of the jet spaces. For example, by adding suitable inner solutions, one
can arrange that the test jets have vanishing scalar components. Indeed, given a
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356 20 A Few FExplicit Examples of Causal Variational Principles

jet v = (b,v) € Jr* (with J*=* according to (20.17)), taking an indefinite integral

of b,
t
B(t) = / b(r) dr € C°(R), (20.23)
—o0
the resulting jet u := (—b, —B) is an inner solution (20.21). Adding this jet to v
gives
b:=v+u=(0,v—B) €I, (20.24)
which is physically equivalent to v and, as desired, has a vanishing scalar
component.

In our example, we can use the inner solutions alternatively in order to eliminate
the vector component of the test jets. To this end, it is preferable to choose the
space of test jets as

3 = C°(R) @ C°(R) . (20.25)

Now the vector component disappears under the transformation
v=(bhv)—bd:=v+u  with u=(-0v,—v)eJ". (20.26)

Therefore, it remains to consider the scalar components of jets. For technical
simplicity, we restrict attention to compactly supported functions. Thus, we choose
the jet space J as

3 = CF(R) @ {0} . (20.27)

Then, the linearized field operator in (8.15) reduces to the integral operator with
kernel L(z,y),

(A0.0) (@) = [ L) do) dy. (20.28)

20.2 A Minimizing Measure Supported on a Hyperplane

In the previous example, the support of the minimizing measure was the whole
space F. In most examples motivated from the physical applications, however, the
minimizing measure will be supported on a low-dimensional subset of F (see, for
instance, the minimizers with singular support for the causal variational principle
on the sphere in [74, 10] discussed in Section 6.1). We now give a simple example
where the minimizing measure is supported on a hyperplane of F. We let F = R?
and choose the Lagrangian as

Ll ) = <=0 (14 52) 1+, (20.29)

where (z,y), (¢/,y') € F.

Lemma 20.2.1 The measure

dp = dz x 5, (20.30)
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20.2 A Minimizing Measure Supported on a Hyperplane 357

(where 0, is the Dirac measure) is the unique minimizer of the causal action
principle for the Lagrangian (20.29) under variations of finite volume (see (6.14)
and (6.13)).

Note that this measure is supported on the x-axis,
M :=suppp =R x {0} . (20.31)

Proof of Lemma 20.2.1. Let p be a regular Borel measure on F satisfying (6.13).
Then, the difference of actions (6.14) is computed by

S()=5(0) = 2= [ A=) [ a0 @) (20.32)

o= [ A=) [ G- pa ) (1) 02 (2089)

Using that the negative part of the measure g — p is supported on the z-axis, the
first term (20.32) can be estimated by

2/ ~ —(z—z')? 2
— [ d(p—0p x,y/dx’e(xm) 1+y
2 [ ao-ptwn) [ (1+357)
(;) 2 d( ~ )( ) / d ’ ef(xfm')Q
= P —PIT,Y z
VT g N

- A d(p - p)(z,y) =0, (20.34)

where in the last step we used the volume constraint. The second term (20.33),
on the other hand, can be rewritten as

]_ / _ _\2
—= du(fc,y)/ dp(a’,y') e @), (20.35)
VT g T
with the signed measure p defined by

du(z,y) == (1+9°) d(5 - p)(z,y) - (20.36)

Now we can proceed as in the proof of Lemma 20.1.1 and use that the Fourier
transform of the integral kernel is strictly positive. For the uniqueness statement,
one uses that the inequality in (x) is strict unless p is supported on the z-axis.
Then, one can argue as in the proof of Lemma 20.1.1. O

For the minimizing measure (20.30), the function ¢ takes the form

Uz,y) = /3}(% yix',y) dp(a',y') —1 =142, (20.37)

showing that the EL equations (7.4) are indeed satisfied. We now specify the jet
spaces. Since the Lagrangian is smooth, it is obvious that

JUT =3 = C®(R) ® C*(R,R?), (20.38)

where C°° (R, R?) should be regarded as the space of two-dimensional vector fields
along the z-axis. As explained after (20.25), we want to use the inner solutions for
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358 20 A Few FExplicit Examples of Causal Variational Principles

simplifying the vector components of the jets. To this end, in analogy to (20.25),
we choose

3=t = C°(R) @ C° (R, R?) . (20.39)
The linearized field equations (8.15) read

0=V, ( / (Vi + Vau)e @ (14 4%) (14 ¢) dp(a, y’))

> y=y'=0
- vu (Vn \/E)
y=0
=V, ((1 +97) / (Vi + Vap)e @ dz’ — v, ﬁ) (20.40)
e y=y’'=0

Now the inner solutions are generated by the vector fields tangential to the z-axis.
More precisely, in analogy to (20.21), we consider the jet

o= (b,(B,0)) with be C5°(R) and
z (20.41)
B(z) ::/ b(t) dt € Cp°(R) .

Exactly as in the example of the one-dimensional Gaussian, integrating by parts
as in (20.22), one sees that the jet v indeed satisfies the linearized field equations.

By suitably subtracting inner solutions, we can compensate for the tangential
components of the jets. This leads us to choose

I = C°(R) @ ({0} @ C°(R)) . (20.42)
Then, the Laplacian simplifies as follows,

(u, Av)(z)

e[ st o o)
(5]
| m

> 2 1 N2
=7 u(x) v(z) /_Oo e~ @) dg’ 4 7= a(z) /_Oo e @=T)" p(g") da’

a(x L - z) e~ (@2 4’ _ p(x
+a@)( 5z [ ) )
=2u(z)v(x) + % a(x)/i e~ @2 gy da’ (20.43)

y=y'=0

y=0

where u = (a, (0,u)) and v = (b, (0,v)). Hence, the inhomogeneous linearized field
equations (8.16) with w = (e, w) give rise to separate equations for the scalar and
vector components,

w()

1 Ooe_(:”_’cl)2 2) da’ = e(x v(z) =
=/ ba') da' = efa),  o()= L. (20.44)
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20.8 A Nonhomogeneous Minimizing Measure 359

20.3 A Nonhomogeneous Minimizing Measure

In the previous examples, the minimizing measure p was translation invariant
in the direction of the z-axis. We now give a general procedure for constructing
examples of causal variational principles where the minimizing measure has no
translational symmetry. In order to work in a concrete example, our starting point
is again the one-dimensional Gaussian (20.7). But our method can be adapted to
other kernels in a straightforward way. In view of these generalizations, we begin
with the following abstract result.

Lemma 20.3.1 Let p be a measure on the m-dimensional manifold F whose
support is the whole manifold,

suppu =9 . (20.45)

Moreover, let L(z,y) € LL (FxF,R}) be a symmetric, nonnegative kernel on F x

F. Next, let h € C°(F,R") be a strictly positive, continuous function on F. Assume
that:

(i) /&rﬁ(aj, y) h(y) dp(y) =1 forallz e &F.
(ii) For all compactly supported bounded functions with zero mean,
g€ LY (F,RT) and Ag du=0, (20.46)
the following inequality holds:

/ d(z) / duly) L(z,y) 9(x) g(y) > 0. (20.47)
F F

Then, the measure dp := hdu is a minimizer of the causal action principle under
variations of finite volume (see (6.14) and (6.13) ). If the inequality (20.47) is strict
for any nonzero g, then the minimizing measure is unique within the class of such
variations.

Proof We consider the variation
pr=p+7gdu=(h+7g)du. (20.48)

Since h is continuous and strictly positive and g is bounded and compactly sup-
ported, the function h 4 7g is nonnegative for sufficiently small |7|. Furthermore,
using that g has mean zero, we conclude that (20.48) is an admissible variation of
finite volume (6.13). Moreover, the difference of the actions (6.14) is well defined
and computed by

S(ir) —S(p) = 2T/dp($>g(m)/Ndp(y) h(y) L(z,y)

+72/Ndp(w)/]vdp(w) L(x,y) g(x) g(y) > 2T/Ng(y) dp(y) =0,
(20.49)
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360 20 A Few FExplicit Examples of Causal Variational Principles

where in the second step we used the abovementioned assumptions (i) and (ii).
The last step follows from the fact that g has mean zero. If the inequality (20.47)
is strict, so is the inequality in (20.49), showing that the minimizer p is unique.
We conclude that the measure p is a minimizer under variations of the
form (20.48). In order to treat a general variation of finite volume (6.13), we
approximate p by a sequence of functions g, with the property that the mea-
sures g, p converge to p (here one can work with the notion of vague convergence;
for details, see [8, Definition 30.1] or [31]). O

Our goal is to apply this lemma to kernels of the form

L(z,y) = f(z)e” @9 f(y), (20.50)

with a strictly positive function f, which for convenience we again choose as a
Gaussian,

fx)=e"  withaeR. (20.51)
This kernel has the property (ii) because for all nontrivial g € L5°(F,R™),

/ du(z) / duly) L(z,y) 9(z) 9(y)
F F
- / du() / duly) e (f)(@) (Fe)(w) >0,  (2052)
F F

where the last step is proved exactly as in the example of the Gaussian
(see (20.13)). In order to arrange (i), for h, we make an ansatz again with a

Gaussian,
h(z) = ce™ . (20.53)
Then,
(oo} 5 5 5
/ L(x,y) h(y) duly) = ¢ / e o= (@=u)" glatBy” gy
F —o0
2
= cexp (a:c2 —z? - m)
X/ exp{(a+ﬂ—1)(y—oé_~_ﬁ_1)}dy

2
_ ™ 2 _ .2 x
=c 1_a_ﬂexp(ax x a—&-ﬁ—l)' (20.54)

In order to arrange that this function is constant one, we choose

P B el et O R C )
T 1—«

(20.55)
For the abovementioned Gaussian integral to converge, we need to ensure that 1 —
a — > 0. In view of the formula

1

l1—«

l—a-p= : (20.56)
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20.4 A Minimizing Measure in Two-Dimensional Minkowski Space 361

this can be arranged simply by choosing @ < 1. Our finding is summarized as
follows.

Proposition 20.3.2 For any o < 1, we let f and h be the Gaussians (20.51)
and (20.53) with ¢ and B according to (20.55). Then, the measure dp = hdx is
the unique minimizer of the causal action corresponding to the Lagrangian (20.50)
within the class of variations of finite volume.

As a concrete example, we consider the well-known Mehler kernel (see, e.g., [93,
Section 1.5])

1 2(,.2 2\ _ 2
E(z,y) = ——— exp (— G’ )2 Mmy), (20.57)
1—p? (1—p?)
with g > 0. Rescaling « and y according to
1_ 2
T,y — a T,y , (20.58)

the Mehler kernel becomes
1
E(x,y) = \/ﬁ exp ( — u(az2 + yz) — 2azy) . (20.59)
—p

This kernel is of the desired form (20.50) if we choose

2
1
a=1-p<1, ﬁ:“u . (20.60)

We finally remark that this nonhomogeneous example can be used as the start-
ing point for the construction of higher-dimensional examples with minimizing

measures supported on lower-dimensional subsets, exactly as explained for the
Gaussian in Section 20.2.

20.4 A Minimizing Measure in Two-Dimensional Minkowski Space

In the previous examples, the Lagrangian was strictly positive (see (20.7), (20.29),
(20.50)). Therefore, the causal structure of the resulting spacetime was trivial
because all pairs or points were timelike separated. We now give examples where
the minimizing measure gives rise to nontrivial causal relations in spacetime. We
let § = R2, denote the coordinates by (¢, z) and choose the Lagrangian

c@aﬂﬂj:eﬁ4V(ﬂa—ﬂywx—f»+5w~wq+m—xw).QQM)

The Lagrangian is nonnegative, and it is strictly positive on the “light rays”
(t—1t)==x(z—2).

Lemma 20.4.1 The Lebesgue measure
dp = dt dz (20.62)

is a minimizer of the causal action principle for the Lagrangian (20.61) in the class
of variations of finite volume (see (6.14) and (6.13)). It is the unique minimizer
within this class of variations.
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362 20 A Few FExplicit Examples of Causal Variational Principles

Proof Proceeding as in the proof of Lemma 20.1.1, our task is to show that the
Fourier transform of the Lagrangian is strictly positive. To this end, we note that

oo
/ 6(t —z) wtFT qt do = / e wr =ik oy — 21 §(w — k) . (20.63)
R2

— 00

We thus obtain
/RQ (5((t )= (@—a)) +6(t—t)+ (x— x’))) ewt=ike gt dg
=271 (6(w+ k) + 6w —Fk)) . (20.64)

Multiplying by the Gaussian in (20.61) corresponds to a convolution in momentum
space again by a Gaussian. This convolution gives a strictly positive function, as
desired. O

The Lagrangian (20.61) has the shortcoming that it is supported only on the
boundary of the light cone. In order to improve the situation, we next consider
the example

Ltz b z) = e =) (5((15 —t)—(z—2))+5(t—t)+ (v — 1:/)))

w2 (20.65)
+ae” 2 O(t—t)—(z-2)7).
Lemma 20.4.2 Choosing |a] < 1, the Lebesgue measure
dp = dt dz (20.66)

is a minimizer of the causal action principle for the Lagrangian (20.65) in the class
of variations of finite volume (see (6.14) and (6.13)). It is the unique minimizer
within this class of variations.

Proof We compute the Fourier transform of the Heaviside function.

/ @(t2 _ .Z’Q) eiwt—ikm e—s\t| dt dz
R2
= 4/ dx/ dt O(t — =) cos(wt) cos(kx) e =" dt dx
0 —oo
:2/ <_e. _e‘ >cos(kx)d1:
0 iw—e¢ —iw—¢
1 1 1
=— : + -
1w—5<1w+k;—5 1w—l<;—5)

1 1 1
— . 20.67
iws(iw+ks+iwk5) ( )

In the limit € \, 0, this converges to a tempered distribution that is singular
on the light cone. Taking the convolution with the Gaussian and choosing a suffi-
ciently small, the resulting function is dominated near the light cone by the Fourier

transform computed in the proof of Lemma 20.61. Moreover, due to its decay prop-
erties at infinity, the same is true away from the light cone. This concludes the
proof. O
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20.5 A Nonlinear Wave Equation in Two-Dimensional Minkowski Space 363
20.5 A Nonlinear Wave Equation in Two-Dimensional Minkowski
Space

In the previous examples, the minimizing measures were unique. This means,
in particular, that the systems had no dynamical degrees of freedom, and the
linearized field equations only admitted trivial solutions. We now explain how
one can build in dynamical degrees of freedom. For simplicity, we consider the
example of a nonlinear wave equation on a spacetime lattice, but the method can
be generalized to many other situations. We choose F = R? x S' and denote the
coordinates by (t,z) € R? and e!* € S1. We choose

L(t,z,a;t' 2 a') = e~ (=1 g=(@=a")? | St —t)d(x — ') (sina — sina’)?

+g(t—t,x—2') sina sina, (20.68)
where g is the convolution g = h * h with
h(t,z) :=0(t—1)d(x)+6(t+1)0(x) —6(t)d(z+1)—48(t)d6(z—1), (20.69)

thus h is the kernel of a discretized wave operator. We remark that this Lagrangian
violates our usual positivity assumption E(t,x,a;t’,x’,a’) > 0. However, this
inequality could be arranged without changing the qualitative properties of the
example by mollifying the § distributions and adding a constant.

Proposition 20.5.1 Fvery minimizing measure p has the form
dp(t,z, o) = dt dz 6 (o — ¢(¢,2)) da, (20.70)
where ¢(t,x) solves the nonlinear discrete wave equation

sin (¢(t+1,2)) +sin (¢(t—1,2)) —sin (¢(t,z+1)) —sin (¢(t,z—1)) = 0. (20.71)
We begin with a preparatory lemma.

Lemma 20.5.2 FEvery minimizing measure has the form
dp(t,z, ) = du(t,z) 6 (o — ¢(t, x)) der, (20.72)
with p the push-forward to the first two variables, that is,
= Twp with 7:R*x St - R?, (t,x,a) — (t,z), (20.73)

and ¢ : R2 = R is a u-measurable function.

Proof Let p be a measure on F. We introduce the function ¢(¢, z) by

2m
sin ¢(t, z) du(t,z) = / sinadp(t, z, a) . (20.74)
0

In words, sin ¢(¢, ) coincides with the mean of sin « integrated over the circle. The
function ¢(t,x) exists because this mean lies in the interval [—1, 1] and because
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364 20 A Few FExplicit Examples of Causal Variational Principles

the sine takes all values in this interval. Denoting the resulting measure of the
form (20.72) by p, we obtain

S(0) =53 = [ o) [ aplt' ') 1) 8w — ') (sina— o(1,1)
F F

(20.75)

Therefore, p is a minimizer if and only if p = 4. O

2

Proof of Proposition 20.5.1. For measures of the form (20.72), the action takes
the form

S:/ d,u(t,:c)/ du(t', ') e~ t=1)* g=(a—z
R? R?

/)2

+ du(t,a:)/ du(t',2') g(t —t',z — ') sing(t,x) sinp(t',2’) . (20.76)
R2 R2

Using that g is a convolution,

gt —t,z—2') = / h(t — 7,2 — 2) h(t' — 7,2" — 2) d7 dz, (20.77)
R2
the action can be rewritten as
S = d,u(t,aj)/ du(t,z') e~ (t1)? o= (@=a")? (20.78)
R? R?

+ /Rz (/Rz h(t — 7,2 — 2) sin¢(t, ) du(t,:z:))2 dr dz. (20.79)

Exactly as shown in Section 20.1, the minimizer of (20.78) is given by the Lebesgue
measure. The contribution (20.79), on the other hand, is minimal if sin ¢(¢, )
satisfies the discrete wave equation. This concludes the proof. O

20.6 Exercises

Exercise 20.1 (Functions with self-similar Fourier transform) The example of
Lemma 20.1.1 was based on the fact that the Fourier transform of a Gaussian is
again Gaussian (20.11).

(a) Prove (20.11) by direct computation.
(b) Another example of a function that is self-similar under Fourier transforms is
the distribution in Minkowski space

Ko(p) = 6(k*) e(k°) . (20.80)

Show that its Fourier transform indeed gives, up to a constant, the same
distribution back. Hint: The distribution Ky(p) is the analog of the causal
fundamental solution (13.109) for the scalar wave equation (see also (16.29)).
Using this fact, one can make use of the explicit form of the causal Green’s
operators for the scalar wave equation.
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20.6 Exercises 365

(¢) Can you think of other functions that are self-similar under the Fourier trans-
form in the above sense? Is there a systematic way to characterize them
all?

Exercise 20.2 (Nonnegative functions with nonnegative Fourier transforms)
Another specific feature of the Gaussian in (20.7), which was used in Lemma 20.1.1,
is that it is a positive function whose Fourier transform is again positive.

(a) Show that the same is true for the ¢ distribution. Can you come up with other
functions with this property.

(b) The Lagrangian (20.61) involves a function of two variables with the proper-
ties that it is nonnegative and has a nonnegative Fourier transform. How can
this idea be used to construct other Lagrangians with the property that the
Lebesgue measure is a minimizer?
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