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Abstract

Background. Mitochondrial dysfunction has been implicated in the pathogenesis of major
depressive disorder (MDD); however, the causal contributions of specific mitochondrial genes
across regulatory layers remain unclear.

Methods. We integrated genome-wide association study summary statistics from the Psychi-
atric Genomics Consortium and FinnGen with quantitative-trait-locus (QTL) datasets for
DNA methylation, gene expression (eQTL), and protein abundance. Mitochondrial genes
were annotated using the MitoCarta3.0 database. Summary-based Mendelian randomization
and Bayesian colocalization were applied to assess causal relationships, with colocalization
determined by the posterior probability of a shared causal variant (PPH4), and the false
discovery rate used for multiple-testing correction. Brain-specific effects were evaluated using
Genotype-Tissue Expression eQTL data. Prioritized genes were ranked based on cross-omics
consistency and replication evidence.

Results. Five mitochondrial genes were prioritized. TDRKH showed consistent associations
across methylation, transcription, and protein levels, with hypermethylation at cg24503712
linked to reduced expression and a lower risk of MDD (Tier 1). METAPID (Tier 2) demon-
strated protective effects at both the transcript and protein levels. LONPI, FIS1, and SCP2 (Tier
3) exhibited consistent but complex regulatory patterns. Several signals were replicated in brain
tissues, including TDRKH in the caudate and METAPID in the cortex.

Conclusions. This study provides multi-omics evidence for the causal involvement of mito-
chondrial genes in MDD. TDRKH and METAPID emerged as key candidates, offering prom-
ising targets for future mechanistic research and therapeutic development.

Introduction

Major depressive disorder (MDD) is a complex psychiatric disorder affecting more than 300
million people worldwide and imposing major socioeconomic burdens; its multifactorial etiology
remains incompletely understood, complicating diagnosis and treatment (Trivedi, 2020). Gen-
etic studies demonstrate a heritable component in MDD, with heritability estimated at 30-50%
(Kendall et al., 2021). Mitochondria are increasingly implicated in MDD, not only via bioener-
getics but also through oxidative stress, cell survival, inflammation, and immunity processes
linked to depression (Biittiker et al., 2022; Chan, 2020; Ciubuc-Batcu, Stapelberg, Headrick, &
Renshaw, 2024; Larrea et al., 2024; Lee, Zamudio-Ochoa et al.,, 2023; Liu et al., 2024; Ye et al,,
2025; Zong et al., 2024).

Prior research has examined mitochondria and MDD at selected molecular levels. For
example, proteomic studies have reported abnormalities in mitochondrial components within
neuronal extracellular vesicles in patient plasma (Goetzl et al., 2021); peripheral immune-cell
studies have shown increased markers of mitochondrial fission, mitophagy, and apoptosis (Scaini
et al, 2022); transcriptomic analyses coupled with machine learning have proposed
mitochondria-related gene signatures with potential diagnostic value (Chen, Tang, Gu, & Zou,
2025; Lei, Chen, Wang, & Zhang, 2025; Liu, Wu, & Li, 2024). Genetic work has linked specific
mtDNA variants to MDD in certain subgroups or families (He et al., 2025; Yin et al., 2026) and
conventional two-sample MR has suggested possible bidirectional causal relationships between
mitochondrial proteins and MDD (Sun et al., 2026). However, these lines of evidence are often
limited by single-omics designs, modest sample sizes, and restricted population coverage; a
predominance of peripheral tissues with little integration of brain data; limited causal inference
without robust colocalization testing; sparse cross-cohort and cross-tissue replication; and an
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incomplete, systematic evaluation of nuclear-encoded mitochon-
drial genes. As a result, findings have been difficult to reconcile into
a clear and reproducible pathogenic model.

To address these gaps, we developed a larger-scale, methodologic-
ally strengthened framework. We integrate two independent
European MDD genome-wide association study (GWAS) resources
with three classes of molecular QTL — mQTL (epigenetic regulation),
eQTL (transcriptional regulation), and pQTL (protein abundance) —
to trace the regulatory cascade for the same gene from DNA methy-
lation through gene expression to protein levels (Giambartolomei
etal, 2014; Wu et al,, 2018). Our core analysis uses summary-based
Mendelian randomization (SMR), which treats the cis-QTL as an
instrumental variable to mitigate environmental confounding and
reverse causation; we pair this with the HEIDI test and Bayesian
colocalization to determine whether the molecular signal and disease
association share a single causal variant, thereby reducing linkage
disequilibrium (LD)-driven false positives (Giambartolomei et al.,
2014; Zhu et al,, 2016). Unlike conventional two-sample MR, SMR is
well suited for high-throughput gene-level screening of QTL—disease
relationships when valid instruments are few but effects are concen-
trated. To ensure reproducibility and biological relevance, we cross-
validate between the Psychiatric Genomics Consortium (PGC) and
FinnGen and extend analyses from peripheral blood to tissue-specific
QTL across multiple brain regions, retaining clinical translatability
while directly probing CNS pathology. Distinct from prior work that
often focused on mtDNA, we systematically target nuclear-encoded
mitochondrial genes curated in MitoCarta3.0, which directly regulate
mitochondrial function, have stronger genetic instruments, and
present more tractable therapeutic targets (Rath et al,, 2021). This
design consolidates previously fragmented, single-layer signals into a
coherent, reproducible, and mechanistically interpretable chain of
evidence.

In sum, by integrating multi-omics with strengthened causal
inference, cross-cohort replication, and cross-tissue analyses
including multiple brain regions, we identify mitochondrial genes
whose regulation is linked to MDD. This framework addresses
limitations of prior work, including small mtDNA studies, weak
causal validation, single-omics bias, and limited brain relevance,
and highlights translational candidates.

Methods

Large-scale genome-wide association summary statistics for depres-
sion were obtained from two independent European cohorts, the
PGC and the FinnGen study, together comprising more than 800,000
individuals. These datasets were analyzed alongside quantitative-
trait-locus (QTL) resources describing genetic influences on DNA
methylation, gene expression, and protein abundance, which
together served as the molecular exposures in our framework.

We applied SMR to test causal effects of mitochondrial regula-
tion on depression. We applied quality control to select the stron-
gest cis-QTLs and exclude inconsistent variants. Associations that
passed these steps were further evaluated with Bayesian colocaliza-
tion analysis to determine whether the same genetic variant under-
lies both the molecular trait and depression outcome.

By combining evidence across methylation, transcription, and
protein levels, and by validating findings across independent data-
sets, we prioritized mitochondrial genes with consistent multilayer
support. This integrative approach provided a systematic frame-
work to identify high-confidence candidate genes and to clarify the
contribution of mitochondrial regulation to the pathogenesis of

https://doi.org/10.1017/50033291725102559 Published online by Cambridge University Press

Jing Liao et al.

MDD. The workflow is illustrated in Figure 1. Ethical approval for
the study was obtained from the relevant review board (Howard
et al., 2019; Kurki et al., 2023).

Source of data for methylation, expression, and protein
quantitative trait loci

For DNA methylation, we used data from a large-scale meta-analysis
conducted by Min and colleagues, which included more than 32,000
participants across 36 population- and disease-based cohorts. Methy-
lation was profiled by high-density arrays with functional normaliza-
tion and extensive QC (age, sex, smoking, batch, cell composition, and
principal components). These measures improved the accuracy and
reproducibility of the methylation—genotype associations used in the
analysis (Min et al,, 2021). Rather than reestimating these associ-
ations, we employed the reported mQTL signals as instrumental
variables in our Mendelian randomization analyses to infer potential
causal pathways linking genetic variants, DNA methylation, and the
risk of MDD.

Gene expression data were derived from the eQTLGen consor-
tium, which analyzed whole-blood samples from more than 31,000
individuals. We focused on cis-eQTLs for 19,250 genes expressed in
blood. All SNP—gene pairs that met the criteria — namely, a physical
distance of less than 1 Mb between the SNP and the gene’s tran-
scription start site and being tested in at least two independent
cohorts — were included in our analysis. This rigorous selection
strategy ensured both the reliability and biological relevance of the
data (Vosa et al., 2021). To investigate potential brain-specific regu-
latory mechanisms related to MDD, we incorporated brain region-
specific cis-eQTL summary statistics from the Genotype-Tissue
Expression (GTEx) Project (Carithers et al., 2015; GTEx Consortium,
2020). This resource systematically identified cis-eQTLs derived from
whole-genome and RNA sequencing performed on post-mortem
samples from approximately 1,000 donors. Our study utilized eQTL
data from the following 12 brain regions implicated in mood regula-
tion: amygdala, anterior cingulate cortex (BA24), caudate (basal
ganglia), cerebellar hemisphere, cerebellum, cortex, frontal cortex
(BA9), hippocampus, hypothalamus, nucleus accumbens (basal gan-
glia), putamen (basal ganglia), and substantia nigra. In subsequent
SMR analyses, GTEx brain eQTLs served as the exposures, with the
PGC and FinnGen MDD GWAS datasets serving as the outcomes.

For protein abundance, we incorporated data from the UK
Biobank Pharma Proteomics Project. This initiative profiled the
plasma proteome in more than 54,000 individuals and performed a
comprehensive association analysis across 2,923 circulating pro-
teins. It identified over 14,000 significant genetic associations that
characterize the heritable architecture of protein expression (Sun
et al,, 2023). In the original QTL studies, multiple testing was
controlled using the false discovery rate (FDR, p < 0.05, Benja-
mini-Hochberg method), and only associations that passed this
threshold were included in the present analyses.

Mitochondrial genes were defined using the MitoCarta3.0 data-
base, a manually curated and experimentally validated catalogue of
1,136 human mitochondrial proteins. It served as the reference
standard for selecting mitochondria-associated loci for downstream
analyses (Rath et al,, 2021).

Outcome dataset

The discovery dataset was obtained from the PGC, comprising
246,363 individuals diagnosed with MDD and 561,190 ancestry-
matched controls. Diagnostic status was established based on self-
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Figure 1. Study design. SMR, summary-based Mendelian randomization; QTL, quantitative trait loci; MDD, major depressive disorder; PPH4, Posterior Probability of Causal Variant.

reported clinical history or treatment records. These data represent
one of the largest and most comprehensive resources available for
validating depression-related genetic associations (Howard et al,
2019). To validate our findings, we used a replication dataset from
the FinnGen study, which comprised 59,333 cases defined using clinical
diagnosis codes derived from national hospital discharge records and
death certificates, paired with 434,831 population-matched controls
derived from Finnish biobank infrastructure (Kurki et al., 2023). For
further information, see Supplementary Table S1.

SMR analysis

We used SMR to test whether genetically regulated mitochondrial
methylation, expression, or protein abundance influences MDD
risk. For eQTL, mQTL, and pQTL, we used publicly available
summary-level association statistics (effect sizes, standard errors,
and p values), rather than raw individual-level molecular data. The
analytical pipeline began with the selection of the most strongly
associated cis-QTL for each target gene, defined within a 1,000 kb
window on either side of the gene, and only variants with a
significant association (p < 5.0 x 10~%) were considered to ensure
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robustness. To mitigate potential biases due to allele frequency
discrepancies across datasets, any SNP with an allele frequency
difference greater than 0.2 between the LD reference, QTL, and
GWAS datasets was excluded, following the default recommenda-
tion of the SMR software to minimize potential mismatches across
datasets. Following this filtering step, we applied the HEIDI test,
which distinguishes true pleiotropic effects from associations
driven by LD. Associations with a P-HEIDI <0.01 were considered
likely to reflect linkage and were removed from further analysis.

All SMR and HEIDI tests were conducted using the SMR
software tool (version SMR v1.3.1), and only significant associ-
ations with a p < 0.05 and HEIDI test p > 0.01 were retained for
subsequent colocalization analysis, for elucidating the potential
causal link between genetically regulated methylation, expression,
or protein abundance of mitochondrial genes and MDD (Wu et al,,
2018).

The resulting set of associations provided candidate loci with
potential causal effects on depression risk. These loci were then
carried forward to colocalization analysis to further evaluate the
likelihood that shared genetic variants underlie both the molecular
trait and the disease phenotype.
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Colocalization analysis

To further evaluate whether the same genetic variant influences both
a molecular trait and the risk of MDD, we conducted colocalization
analysis using a Bayesian framework (Giambartolomei et al., 2014).
The analysis was implemented using the R package coloc, which
assesses five hypotheses via posterior probabilities (PPH): PPHO
(neither trait is associated), PPH1 (only gene expression is associ-
ated), PPH2 (only MDD is associated), PPH3 (both traits are asso-
ciated but with distinct causal variants), and PPH4 (both traits are
associated and share the same causal variant). In this study, a
colocalization probability defined as [PPH4/(PPH3 + PPH4)] greater
than 70%, a commonly used threshold in colocalization studies
(Giambartolomei et al., 2014), was taken as evidence that, in the
presence of a signal, the association signals, as supported by genetic
instruments, for gene expression and MDD likely derive from a
common causal variant.

To ensure both precision and biological relevance, the analysis
was restricted to SNPs within a 1-Mb window around the target
gene (from the transcription start to end sites), and additional
quality control measures were applied to filter out low-quality
variants. This approach not only minimizes confounding factors
but also robustly identifies shared genetic determinants, thereby
providing strong statistical support for a potential causal relation-
ship between mitochondrial QTLs and MDD.

Multi-omics association analysis

To systematically evaluate the strength of causal associations between
mitochondrial-related genes across different regulatory layers
(including methylation, transcription, and protein abundance) and
MDD, we integrated multi-omics data using SMR analysis, supple-
mented by HEIDI testing to exclude confounding effects due to
LD. We established a three-tier evidence grading system to rigorously
filter putative causal genes based on the strength and consistency of
associations across regulatory layers and datasets. Prioritization
required significant protein QTL (pQTL) evidence, as proteins rep-
resent the final functional products of gene regulation and are more
directly linked to cellular phenotype.

Tier 1: significant pQTL + concordant significant eQTL and
mQTL in the same dataset, PPH4/(PPH3 + PPH4) > 0.70, and
replication or consistent direction in an independent dataset. Tier 2:
significant pQTL + significant and concordant eQTL or mQTL
across two independent datasets, PPH4/(PPH3 + PPH4) > 0.70.
Tier 3: significant pQTL plus two omics layers significant within
one dataset, with consistent but not necessarily significant direction
in another dataset, PPH4/(PPH3 + PPH4) > 0.70.

This grading system allowed us to systematically classify mito-
chondrial genes according to the strength of multilayered evidence.
By integrating statistical associations, replication status, and bio-
logical concordance, we aimed to reduce false positives and identify
high-confidence putative causal genes for future mechanistic studies.

Results
Integration of multi-omics evidence

Multilayer SMR identified five genes showing putative causal asso-
ciations with MDD. These genes were prioritized based on the
convergence of methylation, transcription, and protein-level asso-
ciations, along with validation in independent datasets and evi-
dence of colocalization.
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TDRKH was prioritized as a Tier 1 gene. Methylation at a CpG
site within this gene (cg24503712) was significantly associated with
reduced gene expression and protein abundance, both of which
were linked to a lower risk of MDD. These findings were replicated
in the FinnGen dataset. The methylation, expression, and protein
associations exhibited concordant directions of effect and passed
both the colocalization threshold and HEIDI heterogeneity filter,
supporting a robust causal relationship.

METAPID was assigned Tier 2 status. Although no significant
association was observed at the methylation level, both transcript
and protein abundance showed consistent protective effects
against MDD. These associations were validated in an independent
dataset.

LONPI, FIS1, and SCP2 were categorized as Tier 3 genes. Each
showed protein-level associations with depression risk, accompan-
ied by either methylation or gene expression associations within a
single dataset. For FIS1, multiple CpG sites including cg17825709,
€g25385322,¢g01299997, and cg18158419 showed inverse relation-
ships with expression, consistent with a protective effect. For SCP2,
several CpG sites such as cg03609269, cg04310824, and cg12220753
were linked to reduced expression and elevated depression risk, while
others such as cg00581603 and cgl3078931 exhibited opposite
trends, suggesting context-specific regulatory effects. LONPI dem-
onstrated a similar bidirectional pattern, with sites like cg22499809
associated with increased risk and others such as cg00032366 and
cg00815325 linked to protective effects.

Furthermore, the mQTL-eQTL and eQTL-pQTL associations for
these genes were statistically significant and consistent with the
observed regulatory patterns, while HEIDI analysis provided strong
evidence of high concordance between these associations (P_HEIDI
>0.01), thereby reinforcing the robustness of the identified causal
relationships. Detailed results are provided in Supplementary Tables S8
and S9. A circular Manhattan plot illustrating the integrated multi-
omics associations is shown in Figure 2. The corresponding Manhat-
tan plots are presented in Figures 3, 4, and 5.

Mitochondrial gene methylation and MDD

After removing P-HEIDI<0.01, 614 CpGs near 210 genes were
observed (p < 0.05). Following FDR correction, 46 CpG sites located
within regions of 20 unique genes were retained, among which
43 signals exhibited strong colocalization evidence (PPH4 > 0.70),
supporting shared genetic regulation between DNA methylation
and MDD.

Several genes displayed multiple CpG signals with divergent dir-
ections of effect. For MSRA, methylation at cg26621943 was associ-
ated with increased depression risk (OR =1.10, 95% CI: 1.05-1.16). In
contrast, methylation at cg26966828 and cg18786515 was associated
with reduced risk (OR = 0.90, 95% CI: 0.85-0.96; OR = 0.93, 95% CI:
0.90-0.96, respectively). SCP2 also demonstrated site-specific effects,
with ¢g00581603 and cgl3078931 associated with decreased risk,
while other CpG sites in the same gene were linked to increased
susceptibility. A similar bidirectional pattern was evident in LONP]I,
where methylation at cg22499809 increased depression risk, whereas
€g00032366 and cg00815325 were associated with reduced risk.

Several methylation associations were replicated in the inde-
pendent FinnGen dataset, reinforcing their robustness. Notably,
the protective association for ¢g24503712 in TDRKH, previously
identified in the integrative analysis, was validated in the replication
cohort. The list of significant associated loci is provided in
Supplementary Tables S2 and S3, with corresponding associations
visualized in Figures 6 and 7.
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Figure 2. Circular Manhattan plots of multi-omics associations from two GWAS sources:
(a) PGC; (b) FinnGen. Each circular plot displays three concentric rings: DNA
methylation (mQTL, outer ring, green); gene expression (eQTL, middle ring, gold);
and protein abundance (pQTL, inner ring, red). Dots represent loci associated with
the respective traits, colored by chromosome. All loci shown meet nominal significance
(p < 0.05). Genomic positions are arranged circularly, and the -logl0(p) values are
plotted radially for each ring.

Mitochondrial gene expression and MDD

After excluding associations with P-HEIDI <0.01, a total of 87 asso-
ciations reached marginal significance. In the eQTL-SMR analysis,
the expression levels of TDRKH and FISI were positively correlated
with MDD risk, while METAP1D, SCP2, and LONPI were associ-
ated with a reduced risk. Notably, the associations for COQ8A4,
NT5DC2, and METAP1D were replicated in the FinnGen database,
further supporting the robustness of these signals. Significant eQTL
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results are summarized in Supplementary Tables S4 and S5, and
their corresponding visual representation is shown in Figure 8.

To further explore the tissue relevance of the identified mitochon-
drial genes, we extended our analyses using brain-specific eQTL data
from the GTEx Project as exposures and the PGC and FinnGen
GWAS as outcomes. For TDRKH, significant associations with
MDD were observed in the caudate basal ganglia when using GTEx
eQTLs with both the PGC and FinnGen GWAS outcomes, with effect
sizes in the range of OR = 1.04-1.06, while additional positive signals
were consistently detected in the cerebellum and cerebellar hemi-
sphere when using the FinnGen GWAS as the outcome, reinforcing
the evidence from peripheral analyses. For METAPID, no notable
signals were observed when using GTEx brain eQTLs with the PGC
GWAS, while when using the FinnGen GWAS, a protective associ-
ation was identified in the cortex (OR = 0.94). LONPI1 showed
consistent associations with MDD across multiple brain regions when
using the FinnGen GWAS, including the amygdala, anterior cingu-
late cortex, and hippocampus, with odds ratios ranging between 0.96
and 0.98, while no significant effects were observed with PGC. No
significant brain-specific associations were detected for FISI or SCP2
with either GWAS. Overall, the direction of these brain-based asso-
ciations was concordant with the trends observed in blood-derived
analyses (Figure 9 and Supplementary Tables S7).

Mitochondrial proteins and MDD

After excluding associations with P-HEIDI <0.01, and applying colo-
calization analysis (H4/(H3 + H4) > 0.70), we identified 11 mitochon-
drial proteins that were nominally associated with MDD risk (p < 0.05)
in the PGC discovery dataset. Given sample size and the number
of positive signals, multiple-testing correction was not performed.
Significant pQTL-MR results are summarized in Supplementary
Table S6 and visualized in Figure 10. At the protein level, genetically
predicted abundances of METAPID and SCP2 showed inverse asso-
ciations with MDD risk; for METAPID, the direction of effect repli-
cated in the FinnGen cohort, supporting robustness. In FinnGen,
LONPI protein levels were negatively associated with MDD risk,
whereas TDRKH and FISI showed positive associations.

Discussion

In this study, we systematically leveraged large-scale public GWAS
datasets from the PGC and FinnGen cohorts, integrating MR, colo-
calization, and multi-omics analyses with MitoCarta3.0 (Rath et al.,
2021) annotations to elucidate mitochondrial-associated genes
potentially linked to MDD. Our results show that blood-derived
methylation, expression, and protein signals strengthen the robust-
ness of our gene prioritization and underscore their translational
potential as accessible biomarkers for MDD. Our brain tissue results
indicate that mitochondrial effects may exert brain-region—specific
influences, particularly in the caudate, cortex, and cerebellum.

Integration of multi-omics data to identify prioritized genes

We identified TDRKH as a prominent gene associated with
MDD across multiple molecular levels, where hypomethylation at
specific CpG sites was associated with increased gene expression
and protein abundance, indicating an epigenetic-to-transcriptional-
to-protein regulatory cascade. In the PGC discovery cohort, hyper-
methylation at cg24503712 was associated with a lower risk of MDD
(mQTL OR = 0.96, 95% CI: 0.93-0.99), which replicated in FinnGen
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Figure 6. Associations of genetically predicted mitochondrial gene methylation with MDD in SMR (PGC). OR, odds ratio; Cl, confidence interval; PPH4, Posterior Probability of Causal
Variant.
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Figure 7. Associations of genetically predicted mitochondrial gene methylation with MDD in SMR (FinnGen). OR, odds ratio; Cl, confidence interval; PPH4, Posterior Probability of

Causal Variant.

(OR = 093, 95% CI: 0.89-0.97); meanwhile, higher genetically
predicted expression and protein abundance were associated with
increased risk in FinnGen (eQTL OR = 1.04, 95% CI: 1.01-1.08;
pQTL OR = 1.06, 95% CI: 1.02-1.10). In brain tissue analyses,
TDRKH showed a significant positive association in the caudate
when using GTEx eQTLs with the PGC GWAS (OR = 1.05, 95%
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CIL: 1.01-1.10, p = 0.016) and FinnGen GWAS (OR = 1.04, 95% CI:
1.01-1.07, p = 0.009), with a nominal effect also observed in the
cerebellum with FinnGen GWAS (OR = 1.03, 95% CI: 1.00-1.06,
p = 0.048). This cross-layer pattern supports the plausibility that
epigenetic variation may elevate transcription and propagate to
protein-level changes, thereby contributing to MDD. TDRKH, located
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Figure 8. Associations of genetically predicted mitochondrial gene (eQTL) with MDD in SMR from PGC (a) and FinnGen (b).

on the mitochondrial membrane, encodes a protein with Tudor and
KH domains. Prior studies demonstrated that TDRKH serves as a
mitochondrial anchor protein interacting with MIWI through its
Tudor domain, catalyzing pre-piRNA trimming essential for piRNA
stability and reproductive function (Izumi et al,, 2016; Saxe, Chen,
Zhao, & Lin, 2013; Wei et al,, 2024). Furthermore, mutations in
TDRKH have been linked to hereditary motor neuropathies (Dohrn
& Saporta, 2020). Given that the KH domain is involved in RNA or
single-stranded DNA binding (Lamb et al., 2000), TDRKH might
regulate mitochondrial RNA metabolism. Our findings suggest a novel
epigenetic role for TDRKH in MDD, warranting further validation.

Importantly, METAPID showed a significant negative correlation
with MDD across expression and protein levels, with consistent
protective effects across cohorts. In PGC, increased expression and
protein abundance were associated with reduced risk (¢QTL OR=0.92,
95% CI: 0.85-0.99; pQTL OR = 0.80, 95% CI: 0.67-0.96), with stronger
protective effects in FinnGen (eQTL OR = 0.82, 95% CI: 0.73-0.92;
pPQTL OR = 0.62, 95% CI: 0.47-0.83). In brain cortex analyses, a
protective association was observed with FinnGen GWAS (eQTL
OR = 0.94, 95% CI: 0.90-0.99, p = 0.022), whereas analyses with
PGC GWAS did not show a significant effect (eQTL OR = 0.98,
95% CI: 0.93-1.03, p = 0.41). This discrepancy may reflect differences
in sample size and power across cohorts. METAPID encodes a
mitochondrial aminopeptidase localized within the mitochondrial
matrix, responsible for removing N-terminal methionine from nas-
cent proteins, and is critical for mitochondrial protein maturation and
functionality (Cheng, Chi, Liang, Yu, & Wang, 2022; Lee, Kim et al,,
2023). METAPID emerges as a promising target in MDD, though
brain replication is inconsistent.

Complex regulatory patterns in multi-omics layers: LONP1, FIS1,
and SCP2

LONP]I exhibited complex, bidirectional methylation effects across
CpG sites. Some CpG loci were linked to reduced MDD risk by
aligning with protective downstream expression and protein changes,
whereas others were associated with increased risk. In PGC, most
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associations were not significant. In FinnGen, cg22499809 was asso-
ciated with increased MDD risk (OR = 1.08, 95% CI: 1.01-1.15,
p = 0.028), while cg00032366 and cg00815325 showed protective
effects (OR = 0.93, 95% CI: 0.88-0.99, p = 0.017; OR = 0.88, 95%
CL: 0.79-0.97, p = 0.009). Beyond site-specific variation, LONPI
demonstrated concordant protective associations across molecular
layers in FinnGen (eQTL OR = 0.96, 95% CI: 0.93-0.99, p = 0.015;
PQTL OR = 0.87, 95% CI: 0.81-0.94, p < 0.001), underscoring robust
cross-layer evidence despite cohort-level heterogeneity. In brain eQTL
analyses, protective associations were detected in multiple regions
with FinnGen GWAS, including the amygdala (OR = 0.97, 95% CI:
0.94-1.00, p = 0.045), anterior cingulate cortex (OR = 0.96, 95% CI:
0.92-0.99, p = 0.012), hippocampus (OR = 0.96, 95% CI: 0.93-0.99,
p = 0.018), and striatum (OR = 0.97, 95% CI: 0.94-0.99, p = 0.022),
while no significant effects were observed with PGC GWAS.

Functionally, LONP]I is an ATP-dependent protease located in
the mitochondrial matrix that maintains proteostasis and cellular
stress adaptation (Bahat et al., 2015; Lu et al, 2003). Impaired
LONPI function leads to abnormal mitochondrial protein accu-
mulation, oxidative damage, and subsequent neuronal dysfunction.
Consistently, dysregulation of LONPI has been associated with
abnormal CNS development (Wang et al., 2019) and neurodegen-
erative diseases, including Parkinson’s disease (Baden et al., 2023;
C. Chen et al,, 2023) and Alzheimer’s disease (Wang et al., 2023).
Additionally, LONPI alleviates mitochondrial overload of active
caspase-3 and HMGBI, thus preserving neuronal viability (Kim,
Park, Kim, & Kang, 2021). These findings suggest a protective role
of LONPI in MDD, supported by FinnGen.

For FIS1, we observed that methylation at several CpG sites was
strongly associated with reduced gene expression. At the disease
level, methylation instruments indicated lower MDD risk, whereas
higher genetically predicted protein abundance was associated with
increased risk (OR = 1.10, 95% CI: 1.02-1.19). Concordantly,
genetically predicted expression showed a modest risk increase
(OR = 1.04, 95% CI: 1.01-1.07) and was positively coupled with
protein abundance, supporting a model whereby methylation-
mediated downregulation of FISI may be protective. In brain tissue


https://doi.org/10.1017/S0033291725102559

12

Jing Liao et al.

Gene Symbol OR(95%CI) p_SMR or
TDRKH  Brain_Caudate_basal_ganglia :l—o 1.04(1.01-1.04) 0.0099 1.04
Brain_Cerebellar_Hemisphere —— 1.01(0.98-1.01) 0.6591 1.01
Brain_Cerebellum |—:-o 1.01(0.99-1.01) 0.4308 1.01
LONP1  Brain_Amygdala —e 1.01(0.99-1.01) 0.2389 1.01
Brain_Anterior_cingulate_cortex }-0 1.01(1.00-1.01) 0.0898 1.01
Brain_Caudate_basal_ganglia li—o 1.02(1.00-1.02) 0.0880 1.02
Brain_Cerebellar_Hemisphere ——e 1.01(0.99-1.01) 0.2331 1.01
Brain_Cerebellum e 1.01(1.00-1.01) 02321 1.01
Brain_Cortex t—:o 1.01(0.99-1.01) 0.2345 1.01
Brain_Frontal_Cortex_BA9 !—0 1.02(1.00-1.02) 0.0897 1.02
Brain_Hippocampus l—:—‘ 1.01(0.99-1.01) 0.2445 1.01
Brain_Hypothalamus —e 1.02(1.00-1.02) 0.0917 1.02
Brain_Nucleus_accumbens_basal_g '—;-0 1.01(0.99-1.01) 0.1601 1.01
Brain_Putamen_basal_ganglia n—:o 1.01(0.99-1.01) 0.4359 1.01
4
protective factor risk factor
B
Symbol Tissue OR(95%Cl) P-value or
TDRKH Brain_Caudate_basal_ganglia : —e 1.06(1.02-1.06) 0.0023 1.06
Brain_Cerebellar_Hemisphere | — 1.05(1.01-1.05) 0.0216 1.05
Brain_Cerebellum1 : — 1.05(1.02-1.05) 0.0063 1.05
METAP1D  Brain_Cortex1 — : 0.94(0.90-0.94) 0.0015 0.94
LONP1 Brain_Amygdala1 — : 0.96(0.93-0.96) 0.0209 0.96
Brain_Anterior_cingulate_cortex —e I 0.96(0.94-0.96) 0.0039 0.96
Brain_Caudate_basal_ganglia —s : 0.96(0.93-0.96) 0.0033 0.96
Brain_Cerebellar_Hemisphere — : 0.97(0.95-0.97) 0.0152 0.97
Brain_Cerebellum1 —e | 0.98(0.96-0.98) 0.0144 0.98
Brain_Cortex1 — : 0.97(0.94-0.97) 0.0165 0.97
Brain_Frontal_Cortex_BA91 — : 0.96(0.93-0.96) 0.0039 0.96
Brain_Hippocampus1 — : 0.97(0.93-0.97) 0.0319  0.97
Brain_Hypothalamus1 —a I 0.96(0.93-0.96) 0.0045 0.96
Brain_Nucleus_accumbens_basal g — : 0.97(0.94-0.97) 0.0143 0.97
Brain_Putamen_basal_ganglia — : 0.96(0.93-0.96) 0.0015 0.96
T
1

protective factor risk factor

Figure 9. Brain eQTL forest plots for mitochondrial genes and MDD. (a) PGC: Associations between GTEx brain-region cis-eQTLs (exposures) and PGC MDD GWAS (outcome). The plot
shows ORs and 95% Cls for mitochondrial genes, including TDRKH and LONP1, in the caudate basal ganglia, cerebellar hemisphere, cerebellum, and other brain regions. Significant
associations are marked with p <0.05. (b) FinnGen: Replication using the same GTEx brain eQTLs with FinnGen MDD GWAS as the outcome. ORs and 95% Cls for TDRKH, METAP1D,
LONPI, and other genes across brain regions are displayed. Statistically significant associations (p < 0.05) are highlighted, confirming key findings from the PGC data.

analysis, no significant associations were detected with either PGC
or FinnGen GWAS, suggesting that FISI may have a limited role in
brain tissue. FISI localizes to the outer mitochondrial membrane
and plays an important role in fission, biogenesis, remodeling, and
quality control. Elevated FISI expression has been shown to drive
excessive mitochondrial fragmentation, impairing mitochondrial
function and immune responses (Liu et al., 2023; Mukherjee et al.,
2022). Moreover, FISI regulates mitochondrial-ER contact sites,
thereby modulating intracellular calcium dynamics and lipid
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exchange essential for neuronal survival. Dysregulation of FISI
may thus lead to mitochondrial dysfunction, calcium imbalance,
and increased neuronal vulnerability, which could contribute to the
pathogenesis of MDD (Ihenacho, Meacham, Harwig, Widlansky, &
Hill, 2021), but the lack of brain replication suggests tissue depend-
ence and need for validation.

In SCP2, multiple CpG sites exhibited heterogeneous methylation
effects, with site-specific and bidirectional effects rather than a single
monotonic pattern. Cross-layer analyses indicated nominally
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Figure 10. Associations of genetically predicted mitochondrial protein abundance with MDD in SMR from PGC (a) and FinnGen (b).

protective expression effects (eQTL OR = 0.98, 95% CI: 0.97-1.00)
and a stronger protective signal at the protein level (pQTL OR =0.78,
95% CI: 0.63—0.96). However, none of these associations were rep-
licated in FinnGen blood analyses, and no significant associations
were observed in brain tissues when using either cohort. Function-
ally, SCP2 plays an important role in intracellular lipid transport,
cholesterol homeostasis, and peroxisomal lipid metabolism (Dai
etal,, 2023; Galano, Venugopal, & Papadopoulos, 2022; Kriska, Pilat,
Schmitt, & Girotti, 2010). Dysfunction in SCP2 may disrupt neuronal
lipid metabolism critical for membrane integrity, signal transduction,
and synaptic plasticity, contributing to MDD susceptibility (Galano,
Ezzat, & Papadopoulos, 2022; Horvath et al., 2015). Further, SCP2
dysfunction may indirectly impact MDD risk through its associ-
ations with lipid metabolism disorders and neurodegenerative dis-
eases frequently presenting with depressive symptoms (Bhatt,
Nagappa, & Patil, 2020; Hong, Kim, & Im, 2016). Although blood-
based analyses suggested a potential protective effect of SCP2 in PGC,
this finding did not replicate in FinnGen, and no significant associ-
ations were observed in brain tissues in either cohort. These discrep-
ancies indicate that the role of SCP2 in MDD remains uncertain and
requires replication in larger cohorts.

Limitations

First, eQTL datasets primarily derived from blood tissue restrict
direct inferences regarding brain-specific mitochondrial regulation.
Although we incorporated brain QTL data, limited sample sizes and
bulk tissue heterogeneity likely contributed to inconsistent replica-
tion, particularly for METAPID and LONPI. Second, while we
combined HEIDI filtering and Bayesian colocalization to mitigate

https://doi.org/10.1017/50033291725102559 Published online by Cambridge University Press

LD-driven false positives, these approaches reduce but do not fully
exclude the possibility of horizontal pleiotropy. Third, our analyses
were conducted in predominantly European populations, limiting
generalizability to other ancestries. Finally, experimental validation
remains absent, and our focus was limited to nuclear-encoded
mitochondrial genes annotated in MitoCarta3.0, not mtDNA vari-
ation. Accordingly, mechanistic interpretations derived from these
statistical associations should be regarded as hypotheses rather than
established functional consequences. Future experimental studies
will be essential to substantiate these findings, and future work
integrating mtDNA variants, copy number, and haplogroup data
alongside nuclear-encoded genes may provide a more comprehen-
sive picture of mitochondrial contributions to MDD.

Conclusion

Our multi-omics MR framework supports potential causal roles of
mitochondrial genes in MDD. These findings underscore the import-
ance of key mitochondrial genes, including TDRKH, METAPID,
LONPI, FIS1, and SCP2, offering valuable targets for future mechan-
istic research and therapeutic interventions.
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