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ABSTRACT

A new multivariate distribution possessing arbitrarily parametrized and posi-
tively dependent univariate Pareto margins is introduced. Unlike the probabil-
ity law of Asimit et al. (2010), the structure in this paper is absolutely contin-
uous with respect to the corresponding Lebesgue measure. The distribution is
of importance to actuaries through its connections to the popular frailty mod-
els, as well as because of the capacity to describe dependent heavy-tailed risks.
The genesis of the new distribution is linked to a number of existing probability
models, and useful characteristic results are proved. Expressions for, e.g., the de-
cumulative distribution and probability density functions, (joint) moments and
regressions are developed. The distributions of minima and maxima, as well as,
some weighted risk measures are employed to exemplify possible applications
of the distribution in insurance.
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1. INTRODUCTION

At the outset, we fix the probability space (�, �,P) and define the random
vector (r.v.) X � X = (X1, . . . , Xn)

′ as a map from (�, �) to the n(∈ N)

-dimensional Borel space (Rn
+,B(Rn

+)). The cumulative distribution function
(c.d.f.) of X is in the sequel denoted by F1,...,n(x1, . . . , xn) := P[X1 ≤
x1, . . . , Xn ≤ xn], and the corresponding probability density function (p.d.f.) by
f1,...,n(x1, . . . , xn) := ∂n/(∂x1 · · · ∂xn)F1,...,n(x1, . . . , xn), where (x1, . . . , xn)′ ∈
Rn

+ := (0, ∞)n. Finally, Fi (x) and fi (x) denote, respectively, the marginal c.d.f.
and p.d.f. of Xi , i = 1, . . . , n. Clearly, when the coordinates of X are stochasti-
cally independent, there is only one way to formulate the c.d.f. F1,...,n, whereas
the shapes of the just-mentioned c.d.f. are infinite otherwise.
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We further discuss the so-called multivariate reduction approach to creating
random vectors with dependent coordinates. This paves the way to introducing
the main object of our interest in Section 2. For applications of the multivariate
reduction method in insurance, we refer to, e.g., Vernic (1997, 2000), Pfeifer and
Nešlehová (2004), Furman and Landsman (2005, 2010), Boucher et al. (2008)
and Tsanakas (2008), as well as to the references therein.

Let Y � Y = (Y1, . . . ,Yn+1)
′ be an (n + 1)-variate r.v. with mutually inde-

pendent univariate margins distributed gamma. Namely, for j = 1, . . . , n + 1,
the p.d.f. of Yj � Ga(γ j (∈ R+), α j (∈ R+)) is given by

g(y; γ j , α j ) = e−α j y
yγ j−1α

γ j
j

�(γ j )
, y ∈ R+, (1.1)

with the corresponding Laplace transform being well-defined on R+ := (0, ∞)

(the interval of interest herein) and given by

Ĝ(x; γ j , α j ) =
∫ ∞

0
e−xyg(y)dy =

(
1 + x

α j

)−γ j

. (1.2)

Definition 1.1 (Furman, 2008; Furman and Landsman, 2010). Let A ∈
Matn×(n+1)(R0,+) denote a deterministic n × (n + 1) matrix with suitable
non-negative entries. Then X = AY is distributed n-variate gamma with shape
parameters γ ∗

i = ti (γ1, . . . , γn+1) and rate parameters α∗
i = ui (α1, . . . , αn+1)

for appropriate positive Borel functions ti (·), ui (·), i = 1, . . . , n. Suc-
cinctly, we write X � Ga1,...,n(γ ∗, α∗), where γ ∗ = (γ ∗

1 , . . . , γ ∗
n )′ ∈ Rn

+ and
α∗ = (α∗

1 , . . . , α
∗
n)

′ ∈ Rn
+ are vectors of parameters.

Example 1.1 (Mathai and Moschopoulos, 1991; see also Cherian, 1941 and
Ramabhadran, 1951). Let Yj � Ga(γ j , α j ), j = 1, . . . , n + 1 be mutually
independent random variables distributed gamma with arbitrary parameters, and
choose the matrix A such that, for i = 1, . . . , n and σi > 0, it holds that
(A)i,n+1 = αn+1/αi , (A)i,i ≡ 1 and zero otherwise. Then X � Ga1,...,n(γ ∗, α),
where γ ∗ = (γn+1 + γ1, . . . , γn+1 + γn)

′ and α = (α1, . . . , αn)
′ are two n-variate

vectors of parameters.

Example 1.2 (Mathai and Moschopoulos, 1992; see also, Furman, 2008). Let
Yj � Ga(γ j , α j ), j = 1, . . . , n be mutually independent random variables
distributed gamma with arbitrary parameters, and choose the matrix A such that,
for i = 1, . . . , n, j = 1, . . . , i and σi > 0, it holds that (A)i, j = α j/σi and zero
otherwise. Then X � Ga1,...,n(γ ∗, σ ), where γ ∗ = (γ ∗

1 , . . . , γ ∗
n )′, γ ∗

i = ∑i
j=1 γ j

and σ = (σ1, . . . , σn)
′ are two n-variate vectors of parameters.

In the present paper, we employ the following modification of Examples 1.1
and 1.2.

Example 1.3 (Furman, 2008). Let Yj � Ga(γ j , α j ), j = 1, . . . , n + 1 be again
mutually independent random variables distributed gamma with arbitrary param-
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eters, and choose the matrix A such that, for i = 1, . . . , n, j = 1, . . . , i and
σi > 0, it holds that (A)i, j = α j/σi , (A)i,n+1 = αn+1/σi and zero otherwise.
Then X � Ga1,...,n(γ ∗, σ ), where γ ∗ = (γ ∗

1 , . . . , γ ∗
n )′, γ ∗

i = γn+1 +∑i
j=1 γ j and

σ = (σ1, . . . , σn)
′ are two n-variate vectors of parameters.

In the sequel, we embark on the idea in Example 1.3 to introduce an en-
compassing yet tractable multivariate distribution with univariate margins dis-
tributed Pareto.We note in passing that a real-valued r.v. is said to be distributed
Pareto of the 2nd kind, succinctly X � Pa(I I)(μ, σ, α), where μ ∈ R is a lo-
cation parameter, σ ∈ R+ is a scale parameter and α ∈ R+ is a tail index, if its
c.d.f. is given by

FX(x; μ, σ, α) = 1 −
(
1 + x− μ

σ

)−α

, x > μ, (1.3)

(see, e.g., Arnold, 1983; Pareto, 1897; Kotz et al., 2000). Similarly toAsimit et al.
(2010), we set μ = 0, which conveniently makes the support of the distribution
coincide with the positive half of the real line, i.e., suppF = {x ∈ R : f (x) 
=
0} = R+ and does not lead to any loss of generality. The resulting distribution
(Lomax distribution), notationally Pa(I I)(σ, α), enjoys a great variety of ap-
plications in all areas of applied mathematics in general and in actuarial science
in particular, as it naturally arises in the extreme value theory as the limiting
distribution of the excess-of-loss r.v. Xd := X − d| X > d, where d(∈ R+)

denotes a threshold (see, e.g., Pickands, 1975; Balkema and de Haan, 1974).
The rest of the paper is organized as follows. In Section 2, a multivariate

probability structure with dependent Pareto-distributed univariate margins is
introduced and linked to a number of existing multivariate models. Then distri-
butional properties of the new structure are derived and some characterization
results are proved in Sections 2 and 3. In Section 4, the new multivariate Pareto
is reintroduced as a variant of the minima-basedmultiple risk factor model, and
some applications to notions of actuarial interest are considered. In Section 5,
an application of the model is elucidated with the help of a numerical example
borrowed from the context of default risk. Section 6 concludes the paper. All
proofs are relegated to the appendix to facilitate the reading.

2. NEW MULTIVARIATE PARETO DISTRIBUTION

Let Y = (Y1, . . . ,Yn+1)
′ be an r.v. with mutually independent coordinates Yj �

Ga(γ j , 1), γ j ∈ R+, and choose the matrix Ac ∈ Matn×(n+1) such that (Ac)i, j =
ci, j/σi , where ci, j ∈ {0, 1} are deterministic constants, σi ∈ R+, i = 1, . . . , n
and j = 1, . . . , n + 1. The following definition unifies Examples 1.1–1.3 and
serves as an auxiliary tool for constructing the multivariate Pareto distribution
of interest.
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Definition 2.1. Let X = (X1, . . . , Xn)
′ = AcY, then it follows an n-

variate gamma distribution, notationally X � Ga1,...,n(γ ∗
c , σ ), where γ ∗

c =
(γ ∗

c,1, . . . , γ
∗
c,n)

′ ∈ Rn
+ with γ ∗

c,i = ∑n+1
j=1 ci, jγ j , i = 1, . . . , n and σ =

(σ1, . . . , σn)
′ ∈ Rn

+ are two vectors of parameters.

We note in passing that Definition 2.1 (auxiliary for the present paper) es-
tablishes an encompassing multivariate probability law with gamma-distributed
univariate margins and an additive background risk dependence structure (see,
Gollier and Pratt, 1996; Tsanakas, 2008; Furman and Landsman, 2010 for ap-
plications of the additive background risk models in economics and actuarial
science). More specifically, the following simple special cases of Ga1,...,n(γ ∗

c , σ )

readily recover the models of, respectively, Mathai and Moschopoulos (1991,
1992) and Furman (2008):

• ci,i = ci,n+1 ≡ 1 for i = 1, . . . , n and zero otherwise — Example 1.1;
• ci, j ≡ 1 for 1 ≤ j ≤ i ≤ n and zero otherwise — Example 1.2;
• ci, j = ci,n+1 ≡ 1 for 1 ≤ j ≤ i ≤ n and zero otherwise — Example 1.3.

Some elementary but useful properties of X � Ga1,...,n follow directly by
definition or from the Laplace transform that is established next.

Proposition 2.1. Let X � Ga1,...,n(γ ∗
c , σ ) be the r.v. distributed multivariate

gamma as in Definition 2.1, then the corresponding Laplace transform is given
by

Ĝ1,...,n(t) =
n+1∏
j=1

(
1 +

n∑
i=1

ci, j
σi
ti

)−γ j

,

and it is well defined on Rn
+.

Immediate consequences of Proposition 2.1 are, for k, l = 1, . . . , n, that

• the distribution of X � Ga1,...,n(γ ∗
c , σ ) is “marginally closed,” i.e., Xk �

Ga(γ ∗
c,k(∈ R+), σk(∈ R+));

• the expectation of the kth coordinate is E[Xk] = γ ∗
c,k/σk;

• the variance of the kth coordinate is Var[Xk] = γ ∗
c,k/σ

2
k ;• for k 
= l, the covariance between the coordinates Xk and Xl is non-negative

and given by

Cov[Xk, Xl ] =
∑n+1

j=1 ck, j cl, jγ j

σkσl
,

• for k 
= l, the Pearson linear correlation between the coordinates Xk and Xl
is non-negative and given by

ρ[Xk, Xl ] =
∑n+1

j=1 ck, j cl, jγ j√
γ ∗
c,kγ

∗
c,l

.
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We are now in a position to introduce the multivariate Pareto distribution
of interest. In fact, simple observation (1.2) along with Proposition 2.1 results
in the following definition.

Definition 2.2. We call the r.v. X = (X1, . . . , Xn)
′ having the decumulative distri-

bution function (d.d.f.)

F1,...,n(x1, . . . , xn) =
n+1∏
j=1

(
1 +

n∑
i=1

ci, j
σi

xi

)−γ j

, where (x1, . . . , xn)′ ∈ Rn
+,

(2.1)
a multivariate Pareto of the 2nd kind. Succinctly, we write X � Pac1,...,n
(σ , γ , γn+1), where σ = (σ1, . . . , σn)

′, γ = (γ1, . . . , γn)
′ are two deterministic

vectors of positive parameters, and γn+1 ∈ R+ and c ∈ Matn×(n+1)({0, 1}) are
scalar-valued and matrix-valued parameters, respectively.

Generally, distributions with Paretian tails have been applied in a multitude
of areas. Herein we refer to: Benson et al. (2007) for applications in modeling
catastrophic risk; Koedijk et al. (1990), Longin (1996), Gabaix et al. (2003) for
applications in general financial phenomena; Cebrián et al. (2003) for applica-
tions in insurance pricing; and Soprano et al. (2010), Chavez-Demoulin et al.
(2015) for applications in risk management.

Specifically, the probability law in Definition 2.2 is a generalization of
the classical multivariate Pareto distribution of Arnold (1983) with the d.d.f.
F

Arnold
1,...,n . Indeed, set ci, j = c•, j , i = 1, . . . , n, j = 1, . . . , n + 1 in (2.1) and

obtain, for γ ∗
c = ∑n+1

j=1 c•, jγ j , that

(2.1) =
(
1 +

n∑
i=1

xi
σi

)−γ ∗
c

= F
Arnold
1,...,n (x1, . . . , xn), where (x1, . . . , xn)′ ∈ Rn

+.

(2.2)
That being said, unlike the classical multivariate Pareto distribution of Arnold
(1983), the structure in Definition 2.2 incorporates stochastic independence —
set ci,i ≡ 1, i = 1, . . . , n and zero otherwise and obtain, for F




1,...,n denoting the
d.d.f. of a multivariate Pareto with independent margins, that

(2.1) =
n∏
i=1

(
1 + xi

σi

)−γi

= F



1,...,n(x1, . . . , xn), where (x1, . . . , xn)′ ∈ Rn
+.

Consequently, the new multivariate Pareto distribution meaningfully fills the
gap between the multivariate probability distributions with independent and
Arnold-dependent Pareto-distributed margins.

In addition, unlike (2.2), Pac1,...,n(σ , γ , γn+1) allows for distinctmarginal tail
indices (see, Proposition 2.2 below). Furthermore, the new multivariate Pareto
distribution unifies the probability models studied recently in Chiragiev and
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Landsman (2009). Namely, in order to obtain their “flexible Pareto type I and
II” we choose ci,i = ci,n+1 ≡ 1, i = 1, . . . , n and zero otherwise and ci, j ≡ 1
for 1 ≤ j ≤ i ≤ n and zero otherwise, respectively.

Lastly, but perhaps most importantly in actuarial applications, d.d.f. (2.1)
admits stochastic representations that mimic the multiplicative background risk
model (Franke et al., 2006) and the minima-based common shock model (Bow-
ers et al., 1997) (see, respectively, Theorems 2.2 and 4.1 in this paper). Stochastic
representations are a very welcome facet, since they endow probabilistic models
with an important feature of interpretability, and as a result contribute greatly
to the process of model selection and implementation.

We further document several simple properties of the multivariate Pareto
with d.d.f. (2.1). The proofs are straightforward and thus omitted.

Proposition 2.2. Let X � Pac1,...,n (σ , γ , γn+1) as in Definition 2.2, then, for
i = 1, . . . , n, the marginal d.d.f. of Xi is

Fi (xi ) =
(
1 + xi

σi

)−γ ∗
c,i

, xi ∈ R+,

that is Xi � Pa(I I)(σi , γ ∗
c,i ), where γ ∗

c,i = ∑n+1
j=1 ci, jγ j . Also, for i = 1, . . . , n

and setting γ ∗
c,i > 1, we have that

E[Xi ] = σi/
(
γ ∗
c,i − 1

)
, (2.3)

and furthermore setting γ ∗
c,i > 2, we obtain that

Var[Xi ] = σ 2
i γ ∗

c,i/
((

γ ∗
c,i − 1

)2 (
γ ∗
c,i − 2

))
. (2.4)

In Proposition 2.2, the substitution ci,i = ci,n+1 ≡ 1, i = 1, . . . , n and zero
otherwise yields Theorem 1 of Chiragiev and Landsman (2009), whereas the
substitution ci, j ≡ 1 for 1 ≤ j ≤ i ≤ n and zero otherwise results in their
Theorem 5.

In what follows, we develop an expression for the joint p.d.f. of the multi-
variate Pareto distribution of interest. To this end, let

n∏
i=1

n+1∑
j=1

ci, j yj =
∑
i j∈I

dc(i1, . . . , in+1)

n+1∏
j=1

yi jj , (2.5)

where I establishes a set of positive integer indices such that
∑n+1

j=1 i j = n, and
dc(i1, . . . , in) are appropriately chosen constants. Also, let

(γ )n = �(γ + n)
�(γ )

, where γ ∈ R+ and n ∈ N

denote the Pochhammer symbol.
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Theorem 2.1. Let X � Pac1,...,n(σ , γ , γn+1) as in Definition 2.2, then the corre-
sponding joint p.d.f. is formulated, for (x1, . . . , xn)′ ∈ Rn

+, as

f1,...,n(x1, . . . , xn) =
∑
∀i j∈I

dc(i1, . . . , in+1)

n+1∏
j=1

(γ j )i j∏n
l=1 σl

(
1 +

n∑
i=1

ci, j
xi
σi

)−(γ j+i j )
,

(2.6)

where dc(i1, . . . , in+1) are appropriately chosen constants and i j ∈ I.

In general, the constants dc(i1, . . . , in) can be rather involved. For an insight,
we show how (2.6) reduces to the p.d.f. of the classical multivariate Pareto dis-
tribution of Arnold (1983). To this end, set ci, j ≡ 1 for i = 1, . . . , n and
j = 1 . . . , n + 1. Then from (2.5), we have that

dc(i1, . . . , in+1) =
(

n
i1, . . . , in+1

)
,

with the right-hand side denoting the multinomial coefficient. On the other
hand, as (2.6) must integrate to one and since for Arnold’s multivariate Pareto
distribution, we have, for γ ∗ = γ1 + · · · + γn+1, that

n+1∏
j=1

(
1 +

n∑
i=1

ci, j
xi
σi

)−(γ j+i j )
=
(
1 +

n∑
i=1

xi
σi

)−(γ ∗+n)
,

we obtain

(2.6) = (γ ∗)n∏n
i=1 σi

(
1 +

n∑
i=1

xi
σi

)−(γ ∗+n)
, for (x1, . . . , xn)′ ∈ Rn

+,

as required.
The following theorem establishes a useful characteristic relation in the con-

text of the multivariate Pareto distribution of interest, and it also plays an im-
portant role when deriving the formula for the corresponding Pearson linear

correlation (see, Theorem 3.1 in Section 3). In the sequel “ d=” denotes equality
in distribution.

Theorem 2.2. Let � = (�1, . . . , �n)
′ be an r.v. with independent and exponen-

tially distributed univariate margins �i � Exp(1), i = 1, . . . , n, and denote by
� = (�1, . . . , �n)

′ � Ga1,...,n(γ ∗
c , σ ) the n-variate gamma distribution intro-

duced in Definition 2.1; here γ ∗
c = (γ ∗

c,1, . . . , γ
∗
c,n)

′ ∈ Rn
+ with γ ∗

c,i = ∑n+1
j=1 ci, jγ j ,

and σ = (σ1, . . . , σn)
′ ∈ Rn

+ are vectors of parameters. Assume that � and �

are stochastically independent, then X = (X1, . . . , Xn)
′ has d.d.f. (2.1), and it is

thus the n-variate Pareto distribution introduced in Definition 2.2 if and only if

(X1, . . . , Xn)
′ d= (�1/�1, . . . , �n/�n)

′.
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Theorem 2.2 establishes the multiplicative background risk representation
of the multivariate probabilistic structure of main interest herein (see, Franke et
al., 2006; Meyers, 2007, Asimit et al., 2013, 2016 for applications of the multi-
plicative background risk models in economics and actuarial science).

We conclude this section with yet another characterization of the multi-
variate Pareto distribution of interest and its two implications. Namely, let
∧n
i=1Xi =: X− � F− and ∨n

i=1Xi =: X+ ∼ F+ denote, respectively, the minima
and the maxima r.v.’s, and let Xi ∼ Fi , i = 1, . . . , n be univariate coordinates
of the multivariate Pareto r.v. of interest in this paper.

Theorem 2.3. Let X = (X1, . . . , Xn)
′ be distributed Pac1,...,n(σ , γ , γn+1) as per

Definition 2.2, then X− admits the mixture representation as X−|� = λ �
Exp(λ) and �

d= Z1 + · · · + Zn+1, where Zj , j = 1, . . . , n + 1 are univariate
mutually independent r.v.’s distributed gamma.

An important corollary of Theorem 2.3 is a random parameter representa-
tion (see, e.g., Feller, 1966) of the d.d.f.’s of X− and X+. The following lemma is
crucial in studying the distribution of X− in Theorem 2.4.

Lemma 2.1 (Moschopoulos, 1985; Furman and Landsman, 2005). For i = 1,
. . . , n, let Zi ∼ Ga(γi (∈ R+). αi (∈ R+)) denote independent gamma-distributed
r.v.’s. Then the distribution of Z = Z1 + · · · + Zn is gamma with a random shape
parameter. More specifically, Z ∼ Ga(γ ∗ + K, α+), where γ ∗ = γ1 + · · · + γn,
α+ = ∨n

i=1αi and K is an integer-valued non-negative r.v. with the probability mass
function (p.m.f.) given by

pk = P[K = k] = c+δk, k = 0, 1, . . . , (2.7)

where

c+ =
n∏
i=1

(
αi

α+

)γi

, δ0 = 1

and

δk = k−1
k∑
l=1

n∑
i=1

γi

(
1 − αi

α+

)l
δk−l for k > 0.

Theorem 2.4. Let X � Pac1,...,n(σ , γ , γn+1) as in Definition 2.2, then X− �
Pa(I I)(α+(σ ), γ ∗ + K), where α+(σ ) = ∨n+1

j=1

(∑n
i=1

ci, j
σi

)−1
, K is an integer-

valued r.v. with p.m.f. (2.7) and γ ∗ = γ1 + · · · + γn+1 > 1.

Although Theorem 2.4 demonstrates that the minima r.v. X− is distributed
mixed Pareto with random tail index parameter, the next theorem asserts that
the maxima r.v. X+ has a d.d.f. that is a linear combination of the d.d.f.’s of such
mixed Pareto-distributed r.v.’s. The proof is similar to the one of Proposition 2
in Vernic (2011) and is thus omitted.
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Theorem 2.5. Assume that X � Pac1,...,n(σ , γ , γn+1) as in Definition 2.2, then
the d.d.f. of the maxima r.v. is given by

F+(x) =
∑

S⊆{1,...,n}
(−1)|S|−1FS−(x), x ∈ R+, (2.8)

where XS− = ∧s∈S⊆{1,...,n}Xs and XS− ∼ FS−.

3. BIVARIATE QUANTITIES OF INTEREST

It is worthwhile tomake an additional observation before stating themain result
of this section. Namely, we note in passing that for 1 ≤ k 
= l ≤ n, an r.v.
(�k, �l)

′ distributed the bivariate gamma per Definition 2.1 and an (n + 1)-
variate r.v. Y = (Y1, . . . ,Yn+1)

′ having mutually independent coordinates Yj �
Ga(γ j , 1), γ j ∈ R+, the following stochastic representation holds

(σk�k, σl�l)
′ d= (Yc,(k,l) + Yc,k, Yc,(k,l) + Yc,l)′, (3.1)

where Yc,(k,l) = ∑n+1
j=1 ck, j cl, jYj , Yc,k = ∑n+1

j=1 ck, j (1 − cl, j )Yj and Yc,l =∑n+1
j=1 cl, j (1 − ck, j )Yj are mutually independent gamma-distributed r.v.’s with

the shape parameters γc,(k,l) = ∑n+1
j=1 ck, j cl, jγ j , γc,k = ∑n+1

j=1 ck, j (1 − cl, j )γ j and

γc,l = ∑n+1
j=1 cl, j (1 − ck, j )γ j , respectively.

We next show that the covariance of a random couple within themultivariate
Pareto of interest in this paper can be formulated using the (q + 1) × q hyper-
geometric function (see, Gradshteyn and Ryzhik, 2007), which is formulated as

q+1Fq(a1, . . . , aq+1; b1, . . . , bq; z) :=
∞∑
k=0

(a1)k, . . . , (aq+1)k

(b1)k, . . . , (bq)k

zk

k!
, (3.2)

where q ∈ Z+. For a1, . . . , aq+1 all positive, and these are the cases of interest in
the present paper, the radius of convergence of the series is the open disk |z| < 1.
On the boundary |z| = 1, the series converges absolutely if h := b1 + · · · + bq −
a1 − · · · − aq+1 > 0, and it converges except at z = 1 if 0 ≥ h > −1.

Theorem 3.1. Let X � Pac1,...,n(σ , γ , γn+1) as in Definition 2.2 and assume that
both γ ∗

c,k and γ ∗
c,l exceed 2, then, for 0 ≤ k 
= l ≤ n,

Cov[Xk, Xl ] = σkσl
1

(γ ∗
c,k − 1)(γ ∗

c,l − 1)

(
3F2

(
γc,(k,l), 1, 1; γ ∗

c,k, γ
∗
c,l; 1

)− 1
)
.

An immediate consequence of Theorem 3.1 is that the maximal attainable
Pearson correlation in the context of the multivariate Pareto distribution intro-
duced in the present paper is not one. This consequence is however solely a result
of the fact that the Pearson index of correlation exists only if the involved second
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moments are finite, a pitfall that is well-known to non-life actuaries, which often
deal with heavy-tailed losses (see, Embrechts et al., 2002).

Corollary 3.1. Let X � Pac1,...,n(σ , γ , γn+1) and assume that both γ ∗
c,k and γ ∗

c,l
exceed 2 for 0 ≤ k 
= l ≤ n, then, for the Pearson correlation, it holds that
Corr[Xk, Xl ] ∈ [0, 1/2).

Another consequence of Theorem 3.1 pertains to two special cases of the
multivariate Pareto introduced in this paper, and it is formulated as the following
corollary.

Corollary 3.2. Let X1 = (X1,1, . . . , X1,n)
′ ∼ Pa(I)

1,...,n and X2 = (X2,1, . . . ,

X2,n)
′ ∼ Pa(I I)

1,...,n be distributed, respectively, the multivariate flexible Pareto of
type I and I I of Chiragiev and Landsman (2009). Then the corresponding co-
variances are readily obtained, for 0 ≤ k 
= l ≤ n, as

Cov[X1,k, X1,l ] = σkσl

(γk + γn+1 − 1)(γl + γn+1 − 1)

× (3F2 (γn+1, 1, 1; γk + γn+1, γl + γn+1; 1) − 1) , (3.3)

for γk + γn+1 > 2 and γl + γn+1 > 2, and as

Cov[X2,k, X2,l ] = σkσl

(γ ∗
c,k − 1)(γ ∗

c,l − 1)(γ ∗
c,l − 2)

, (3.4)

for γ ∗
c,k = ∑k

j=1 γ j > 2 and γ ∗
c,l = ∑l

j=1 γ j > 2.

We note in passing that expression (3.4) confirms the one derived in Chi-
ragiev andLandsman (2009), whereas formula (3.3) complements the discussion
therein. Also, the covariance of two r.v.’s coming from Arnold’s multivariate
Pareto distribution (see, Arnold, 1983) is readily obtained from both (3.3) and
(3.4). More specifically, we set γk = γl ≡ 0 for all 0 ≤ k 
= l ≤ n and verify that
(3.3) reduces to

σkσl

(γn+1 − 1)(γn+1 − 1)
(2F1 (1, 1; γn+1; 1) − 1) = σkσl

(γn+1 − 1)2(γn+1 − 2)
,

for γn+1 > 2. The verification is straightforward in the case of (3.4).
Generalized hypergeometric function (3.2) plays an important role when

deriving the centered regression function r(y) = E[X − E[X]| Y = y], where
y ∈ R+ (see, Furman and Zitikis, 2008b, 2010, for applications of the function
in insurance and finance). We next present the conditional d.d.f., followed by
the centered regression function for a pair of r.v.’s having the probability law as
in Definition 2.2. To this end, let

m(x) = σk

γc,(k,l)

(
1 + x

σl

)
, x ∈ R+.
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Theorem 3.2. Let X � Pac1,...,n(σ , γ , γn+1) as in Definition 2.2, then the d.d.f.
of Xk given Xl = xl , 0 ≤ k 
= l ≤ n, is formulated as

P[Xk > xk|Xl = xl ] =
(

γc,(k,l)

γ ∗
c,l

+ γc,l

γ ∗
c,l

(
1 + xk

γc,(k,l)m(xl)

))(
1 + xk

σk

)−γc,k

×
(
1 + xk

γc,(k,l)m(xl)

)−γc,(l,k)−1

, (3.5)

where xk, xl ∈ R+.

Theorem 3.3. Let X � Pac1,...,n(σ , γ , γn+1) as in Definition 2.2, then the centred
regression function of Xk on Xl , 0 ≤ k 
= l ≤ n, is given, for γ ∗

c,k > 1, by

rk(xl) = m(xl)
2∑
i=1

ai 2F1

(
γc,k, 1; γ ∗

c,k + 2 − i; −xl
σl

)
− σk/(γ

∗
c,k − 1), (3.6)

where

a1 = γ 2
c,(k,l)

γ ∗
c,k γ ∗

c,l
, a2 = γc,l γc,(k,l)

γ ∗
c,l(γ

∗
c,k − 1)

and xl ∈ R+.

The centred regression function is monotonically-increasing and concave.

We reiterate that our results readily recover the ones derived in Landsman and
Chiragiev (2009). More specifically, by a simple alignment of notation in Theo-
rem 3.3 above, we obtain Theorem 3 in loc. cit., whereas by choosing γc,k = 0
in Theorem 3.3 and hence for

2F1

(
0, 1; γ ∗

c,k + 2 − i; −xl
σl

)
= 1, a1 = γ ∗

c,k

γ ∗
c,l

and a2 = (γ ∗
c,l − γ ∗

c,k)γ
∗
c,k

γ ∗
c,l(γ

∗
c,k − 1)

,

we end up with Theorem 7 therein.
Clearly, the centred regression function of the new multivariate Pareto dis-

tribution is not linear, whereas it is well-known that the classical multivariate
Pareto has linear regression (see, Arnold, 1983). Theorem 3.3 confirms the lat-
ter fact by setting γc,(k,l) = γ ∗

c,k = γ ∗
c,l ≡ γn+1 and γc,l = γc,k ≡ 0 in (3.6), which

then reduces to the following linear form:

rk(xl) = σk

σl

(
xl − σl

γn+1(γn+1 − 1)

)
,

for γn+1 > 1, 0 ≤ k 
= l ≤ n and xl ∈ R+.
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4. APPLICATIONS TO INSURANCE

In what follows, we assume that X = (X1, . . . , Xn)
′ denotes a risk portfolio

(r.p.) with Xi , i = 1, . . . , n representing its risk components (r.c.’s). According
to Theorem 2.2, if X ∼ Pac1,...,n(σ , γ , γn+1), then it admits the multiplicative
background risk representation (see, Franke et al., 2006; Meyers, 2007; Asimit
et al., 2013, 2016).

We next show that the new multivariate Pareto distribution can also be in-
terpreted as a variant of the classical minima-based common shock model (see,
e.g., Bowers et al, 1997). To this end, assume that the i th r.c of the r.p. is exposed
to the set Ri = {r ∈ N : r ≤ (n + 1)}, i = 1, . . . , n of risk factors (r.f.’s) and
let the r.v. Y = (Y1, . . . ,Yn+1)

′ stipulate the randomness of actuarial interest
associated with the r.f.’s. The following theorem establishes the minima-based
multiple risk factor representation of the multivariate Pareto proposed in the
present paper. We note in passing that “∗” stands for the mixture operator, i.e.,
given two appropriately jointly measurable r.v.’s Xλ ∼ C(·; λ) and � ∼ H, it

holds that Xλ ∗ �
d= X�.

Theorem 4.1. Let Wi = (Wi,1, . . . ,Wi.n+1)
′ be r.v.’s with independent expo-

nentially distributed margins Wi, j ∼ Exp(λi, j (∈ R+)), i = 1, . . . , n, j =
1, . . . , n + 1, and let Ac be a deterministic matrix of zero-one coefficients. Also,
let � = (�1, . . . , �n+1)

′ be an r.v. having independent gamma-distributed mar-
gins with arbitrary shape parameters γ j (∈ R+) and rate parameters equal to 1,
j = 1, . . . , n + 1. Set, for σi ∈ R+ and i = 1, . . . , n,

Xi = σi

n+1∧
j=1, ci, j 
=0

(Wi, j ∗ � j ), (4.1)

then X = (X1, . . . , Xn)
′ ∼ Pac1,...,n(σ , γ , γn+1).

Theorem 4.1 suggests that the multivariate Pareto distribution proposed in
the present paper might be an appropriate formal framework for modeling-
dependent default, survival or failure times when these times are exponen-
tially distributed with random parameters. We elaborate on this observation in
Section 5.

4.1. Actuarial risk measurement

Regulatory accords around the globe require that insurance companies carry
out a careful assessment of their future losses. From now on, the r.v. X : � →
R+ is interpreted as an insurance loss r.v., and X denotes the collection of such
r.v.’s.

Definition 4.1. A risk measure is a functional map H : X → [0, ∞].

https://doi.org/10.1017/asb.2016.22 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.22


A FORM OFMULTIVARIATE PARETO DISTRIBUTION 343

The literature on risk measures is vast and growing quickly. The following
two indices are arguably the most popular amongst practitioners.

Definition 4.2. Let X ∈ X and fix q ∈ [0, 1), then the Value-at-Risk (VaR)
and the Conditional Tail Expectation (CTE) risk measures are, respectively,
given by

VaRq [X] = inf{x ∈ R : P[X ≤ x] ≥ q}, (4.2)

and

CTEq [X] = E[X| X > VaRq [X]]. (4.3)

We note in passing that both VaR and CTE are distorted as well as weighted
risk measures (see, respectively, Wang, 1996; and Furman and Zitikis, 2008a).

Definition 4.3. (Furman and Zitikis (2008a), see also Choo and de Jong (2009,
2010.) Let w : R → R+ be a non-decreasing Borel (weight) function such that
0 < E[w(X)] < ∞, then the class of weighted risk measures is defined as

πw[X] = E[Xw(X)]
E[w(X)]

for X ∈ X . (4.4)

Let v1, w1 : Rn → R+ be two legitimate weight functions such that all expecta-
tions in (4.5) are finite and consider a generalized variant of (4.4)

πv1, w1 [�] = E[v1(�)w1(�)]
E[w1(�)]

for � : � → R ⊆ Rn. (4.5)

Proposition 4.1. Let X|� = λ � C(·; λ(∈ R ⊆ Rn)) and assume that � �
H1,...,n, then for any legitimate weight function, the functional πw[X] admits rep-
resentation (4.5).

Corollary 4.1. Let X � Pac1,...,n(σ , γ , γn+1) as in Definition 2.2, then, for i =
1, . . . , n and q ∈ [0, 1), we have that

VaRq [Xi ] = σi
(
(1 − q)−1/γ ∗

c,i − 1
)
.

Corollary 4.2. Let X|� = λ � C(·; λ(∈ R ⊆ Rn)) and assume that� � H1,...,n,
then the CTE risk measure of X � F is, if exists and for q ∈ [0, 1), given by

CTEq [X] = E[C(VaRq [X]; �)CTEq∗ [X|�]]

F(VaRq [X])
for X ∈ X ,

where q∗ = C(VaRq [X]; λ).

Corollary 4.3. Let X � Pac1,...,n(σ , γ , γn+1) as in Definition 2.2, then we
have that the CTE risk measure is, if exists and for i = 1, . . . , n and q ∈ [0, 1),
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given by

CTEq [Xi ] = E[Xi ]
FX∗

i
(VaRq [Xi ])

1 − q
+ VaRq [Xi ],

= E[Xi ] + VaRq [Xi ]
γ ∗
c,i

γ ∗
c,i − 1

, (4.6)

where X∗
i ∼ Pa(I I)(σi , γ ∗

c,i − 1).

The minima r.v. X− = ∧n
i=1Xi plays an important role in insurance mathe-

matics (recall, e.g., the joint life policies in life insurance), as well as in general
finance (think of, e.g., the first-to-default baskets).

Recall that the r.v. K has been defined as an integer-valued non-negative r.v.
with the following p.m.f.

pk = P[K = k] = c+δk, k = 0, 1, . . . , (4.7)

where

c+ =
n∏
i=1

(
αi

α+

)γi

, δ0 = 1,

and

δk = k−1
k∑
l=1

n∑
i=1

γi

(
1 − αi

α+

)l
δk−l for k > 0.

Proposition 4.2. In the context of the multivariate Pareto of interest, the CTE
risk measure of the minima can be written, if finite and for q ∈ [0, 1), as

CTE q [X−] = E[X−]
FX∗−(VaRq [X−])

1 − q
+ VaRq [X−],

where X∗
− ∼ Pa(α+(σ ), γ ∗ + Q − 1), where α+(σ ) = ∨n+1

j=1(
∑n

i=1
ci, j
σi

)−1, γ ∗ =
γ1 + · · · + γn+1 and Q is an integer-valued r.v. with the p.m.f. obtained from the
p.m.f. of K with the help of the following change of measure

qk = 1
E[X−]

α+(σ )

γ ∗ + k− 1
pk, k = 0, 1, . . . . (4.8)

Proposition 4.3. In the context of themultivariate Pareto of interest, the CTE risk
measure of the maxima can be written, if finite and for q ∈ [0, 1), as the following
linear combination:

CTEq [X+] = 1
1 − q

∑
S⊆{1,...,n}

(−1)|S|−1E[XS−|XS−>VaRq(X+)]FS−(VaRq(X+)),

where XS− = ∧s∈S⊆{1,...,n}Xs and XS− ∼ FS−.
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Definition 4.4 (Furman and Zitikis, 2008b). Let w : R → R+ be a non-
decreasing Borel function such that 0 < E[w(Y)] < ∞, then the functional

 : X × X → [0, ∞] is referred to as the economic risk measure. Moreover,
the special form of 
, given by


w[X, Y] = E[Xw(Y)]
E[w(Y)]

for X ∈ X and Y ∈ X , (4.9)

is called a weighted economic risk measure.

We further derive an expression for the economic CTE riskmeasure, which is
a particular case of (4.9) with w(y) = 1{y > VaRq [Y]}, q ∈ [0, 1) and y ∈ R+.
To this end, we find the next proposition useful. The proof is plain and thus
omitted.

Proposition 4.4. Let X � Pac1,...,n(σ , γ , γn+1) as in Definition 2.2, the d.d.f. of
Xk given Xl > xl , 0 ≤ k 
= l ≤ n, is formulated as

P[Xk > xk|Xl > xl ] =
(
1 + xk

σk

)−γc,k
(
1 + xk

γc,(k,l)m(xl)

)−γc,(l,k)

,

where

m(xl) = σk

γc,(k,l)

(
1 + xl

σl

)
,

and xk, xl are both in R+.

Proposition 4.5. In the context of themultivariate Pareto of interest, the economic
CTE risk measure is given, for γ ∗

c,k > 1, q ∈ [0, 1) and 1 ≤ k 
= l ≤ n, by

E[Xk|Xl > VaRq [Xl ]] = σk

γ ∗
c,k − 12F1

(
γc,(k,l), 1; γ ∗

c,k;
VaRq [Xl ]

σl + VaRq [Xl ]

)
.

To summarize, so far we have introduced and studied a new multivariate
probability distribution with the univariate margins distributed Pareto of the
second kind. The dependence structure of the new distribution is driven by
a number of stochastic representations that are variants of the multiplicative
background risk and theminima-based common shockmodels.We next employ
the latter interpretation of the proposed multivariate probability distribution to
exemplify its possible application to modeling and measuring default risk.

5. NUMERICAL ILLUSTRATION

For the sake of the discussion in this section, we adopt the view of the Finan-
cial Stability Board and the International Monetary Fund that the systemic
risk can be caused by impairment of all or parts of the financial system, and
more formally, we call the risk factor j ∈ {1, . . . , n + 1} “systemic,” if ci, j = 1
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for at least two distinct r.c.’s i ∈ {1, . . . , n}. Similarly, we call the risk factor
j ∈ {1, . . . , n + 1} “idiosyncratic,” if ci, j = 1 for only one risk component
i ∈ {1, . . . , n}.

Consider obligors in a default risk portfolio, each of which is exposed to
exactly two distinct categories of fatal risk factors, e.g., systemic (category A)
and idiosyncratic (category B).We assume that the risk factors from distinct risk
categories are independent and that the hitting times (or occurrences) of defaults
of the r.c.’s are exponentially distributed with random parameters distributed
gamma. In fact, the future lifetime r.v. of the i th r.c. has exponential distribution
with the random parameter σ−1

i

∑n+1
j=1 ci, j� j , where � j are distributed gamma

with unit rate parameters, and i is 1, 2 or 3. Then Theorem 4.1 readily implies
that the joint default times of the aforementioned r.c.’s has d.d.f. (2.1).

To illustrate the effect of the dependence structure on the joint default prob-
ability, we further set the dimension to n = 3 and specialize the setup above
along the lines in Section 16.8 of Engelmann and Rauhmeier (2011) as well
as employing the 2014’s Annual Global Corporate Default Study and Rating
Transitions of Standard & Poor’s. (Standard & Poor’s, 2015). More specifically,
we set μ := E[� j ] ≡ 1.67, fix the time horizon to 15 years and choose the
corresponding default probability, p say, to be equal to 0.3198 (on par with the
“B” credit rating of speculative entities). This yields the multivariate probabil-
ity structure of Definition 2.2 with identically distributed margins having the
parameters σi ≡ σ = 122.39 and γ ∗

c,i ≡ 3.33, for i = 1, 2 and 3.
Then we explore three different exposures of the obligors to the systemic and

idiosyncratic r.f.’s. The distinct exposures are stipulated by appropriate choices
of the c parameters gathered by matrices A(k)

c , k = 1, 2, 3. We compare the
aforementioned three exposures with the reference case in which no systemic
risk is presented that is the joint d.d.f. of default times is a trivariate Pareto with
independent margins. We note in passing that the expressions for the d.d.f.’s
below readily follow from Theorem 4.1, whereas the values of the Pearson cor-
relation coefficient are in non-trivial cases obtained with the help of Theorem
3.1.

Case (1). Only the systemic risk is presented, and all risk components are ex-
posed to it. The exposure is represented schematically with the use
of the following matrix, in which the rows and the columns represent
r.c.’s and r.f.’s, respectively

A(1)
c =

⎛
⎝1 1 0 0
1 1 0 0
1 1 0 0

⎞
⎠ .

The joint d.d.f. of the risk components is given by

F
(1)

(x1, x2, x3) =
(
1 + x1 + x2 + x3

σ

)−2μ

,
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where x1, x2, x3 are all in R+. This is obviously the d.d.f. of the classi-
cal trivariate Pareto distribution (Arnold, 1983). In this r.p., the Pear-
son correlation coefficient between any two of the r.c.’s is 0.3.

In the following two cases, both the systemic and idiosyncratic risks are pre-
sented.

Case (2). There are overall three uncorrelated idiosyncratic risk factors and one
systemic risk factor. The exposure is gathered by the following block
matrix:

A(2)
c =

⎛
⎝1 1 0 0
1 0 1 0
1 0 0 1

⎞
⎠ .

The joint d.d.f. of the risk components is given by

F
(2)

(x1, x2, x3)

=
(
1 + x1 + x2 + x3

σ

)−μ (
1 + x1

σ

)−μ (
1 + x2

σ

)−μ (
1 + x3

σ

)−μ

,

where x1, x2, x3 are all in R+. This case corresponds to the “flexible
Pareto type I” of Landsman and Chiragiev (2009). In this r.p., the
Pearson correlation coefficient between any two of the r.c.’s is 0.09.

Case (3). The systemic risk is represented by two distinct risk factors of which
one targets the entire risk portfolio and the other only hits r.c.’s #1 and
#2. There is one idiosyncratic risk factor, and only r.c. #3 is exposed
to it. The exposure block matrix is given by

A(3)
c =

⎛
⎝1 1 0 0
1 1 0 0
1 0 1 0

⎞
⎠ .

The joint d.d.f. of the risk components is

F
(3)

(x1, x2, x3)

=
(
1 + x1 + x2 + x3

σ

)−μ (
1 + x1 + x2

σ

)−μ (
1 + x3

σ

)−μ

,

where x1, x2, x3 are all inR+. In this r.p., the Pearson correlation coef-
ficient between r.c. #1 and #2 is 0.3, and it is equal to 0.09 otherwise.

5.1. Expected times of the first default

The left panel of Figure 1 depicts the values ofCTEq [X−] for q ∈ [0, 1), X− ∈ X
and portfolios (1) to (3) as well as the reference portfolio, denoted by (⊥). As
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FIGURE 1: Conditional expected times of first (left panel) and last (right panel) default for portfolios (1)–(3)
and the reference portfolio (⊥) for “B” rating r.p.’s with the probability of default p = 0.3198 and μ = 1.67.

Proposition 4.2 is employed to compute the values of CTEq for q ∈ [0, 1). (Color online)

the risk components are identically distributed, it is not difficult to see that the
following ordering holds:

F
(1)
− ≥st F

(3)
− ≥st F

(2)
− ≥st F

(⊥)

− , (5.1)

where “≥st” denotes first-order stochastic dominance (FSD). Furthermore,
since the CTE risk measure is known to preserve the FSD ordering, we also
have that

CTE(1)
q [X−] ≥ CTE(3)

q [X−] ≥ CTE(2)
q [X−] ≥ CTE(⊥)

q [X−],

for all q ∈ [0, 1) and X− ∈ X . This conforms with Figure 1 (left panel), which
hints that the r.p.’s withmore significantly correlated r.c.’s enjoy higher, and thus
more favorable, occurrence times of the first default.

The downside of high correlations is elucidated in Figure 2, in which we leave
the probability of default p to be equal to 0.3198 (“B” rating) but vary the μ

parameter that stipulates the effect of the risk factors. In this respect, we observe
that the r.p.’s with stronger correlations between r.c.’s are more sensitive to the
changes in the μ parameter, and therefore such r.p.’s must be monitored and
stress tested more frequently.

5.2. Expected times of the last default

Figure 1 (right panel) depicts the values of CTEq [X+] for q ∈ [0, 1), X+ ∈ X
and portfolios (1) to (3) as well as the reference portfolio (⊥). Evoking Theorem
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FIGURE 2: Conditional expected times of first default for portfolios (1) (top left panel), (2) (top right panel),
(3) (bottom left panel) and reference (⊥) (bottom right panel) with the parameter μ varying from

1.67 to 1.15 and the default probability p = 0.3198. Proposition 4.2 is employed to compute the values of
CTEq for q ∈ [0, 1). (Color online)

2.5 along with (5.1) results in

F
(⊥)

+ ≥st F
(2)
+ ≥st F

(3)
+ ≥st F

(1)
+ ,

and hence

CTE(⊥)
q [X+] ≥ CTE(2)

q [X+] ≥ CTE(3)
q [X+] ≥ CTE(1)

q [X+],

for all q ∈ [0, 1) and X+ ∈ X . This conforms with the right panel of Figure 1.
Unlike in the case of the first default, we observe that if the time of the last

default is of interest and the distributions of the r.c.’s are fixed, then assuming
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stronger correlations between r.c.’s yields a more conservative assessment of the
expected time of the last default.

6. CONCLUSIONS

We have introduced and studied a new form of an absolutely continuous with
respect to the Lebesguemeasure multivariate probability lawwith the univariate
margins distributed Pareto of the second kind. The genesis of our distribution
is threefold, i.e., it originates as the Laplace transform of a multivariate gamma
distribution with the dependence structure based on the additive form of the
multivariate reduction method, and it also admits variants of the multiplicative
background risk model as well as the minima-based common shock model. We
have meaningfully positioned the proposed multivariate Pareto distribution in
the general context of the current state of the art. We have proved and employed
certain characteristic results to derive, e.g., the (conditional/product) moments
of the new multivariate Pareto as well as the distributions of minima and max-
ima. Last but not least, we have developed expressions for some tail-based risk
measures of actuarial interest and elucidated our findings with the help of a
numerical example.
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PFEIFER, D. and NEŠLEHOVÁ, J. (2004) Modeling and generating dependent risk processes for

IRM and DFA. ASTIN Bulletin, 34(2), 333–360.
PICKANDS, J. (1975) Statistical inference using extreme order statistics. The Annals of Statistics,

3(1), 119–131.
RAMABHADRAN, V. (1951) A multivariate gamma-type distribution. Journal of Multivariate Anal-

ysis 38, 213–232.
SOPRANO, A., CRIELAARD, B., PIACENZA, F. and RUSPANTINI, D. (2009)Measuring Operational

and Reputational Risk: A Practitioner’s Approach. Chichester: Wiley.
STANDARD & POOR’S (2015) Default, transition and recovery: 2014 annual global corporate de-

fault study and rating transitions. Technical report, Standard and Poor’s, New York.
TSANAKAS, A. (2008) Risk measurement in the presence of background risk. Insurance: Mathe-

matics and Economics, 42(2), 520–528.
VERNIC, R. (1997) On the bivariate generalized Poisson distribution.ASTINBulletin, 27(1), 23–32.
VERNIC, R. (2000) A multivariate generalization of the generalized Poisson distribution. ASTIN

Bulletin, 30(1), 57–67.
VERNIC, R. (2011) Tail conditional expectation for the multivariate Pareto distribution of the sec-

ond kind: Another approach.Methodology and Computing in Applied Probability, 13(1), 121–
137.

WANG, S. (1996) Premium calculation by transforming the layer premium density.ASTINBulletin,
26(1), 71–92.

JIANXI SU
Department of Mathematics and Statistics
York University
Toronto, Ontario M3J 1P3
Canada

EDWARD FURMAN (Corresponding author)
Department of Mathematics and Statistics
York University, Toronto
Ontario M3J 1P3
Canada
E-Mail: efurman@mathstat.yorku.ca

APPENDIX A. PROOFS

Proof of Proposition 2.1. By construction, we readily have that

Ĝ1,...,n(t) = E
[
e−X′t

]
= E

⎡
⎣exp

⎧⎨
⎩−

n∑
i=1

n+1∑
j=1

ci, j
σi
Yj ti

⎫⎬
⎭
⎤
⎦ =

n+1∏
j=1

Ĝ j

(
n∑
i=1

ci, j
σi
ti

)
,

which along with (1.2) completes the proof.
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Proof of Theorem 2.1. Let G
∏

denote a multivariate c.d.f. with mutually independent
gamma-distributed univariate margins. We have the following string of equations:

(
n∏
i=1

σi

)
f1,...,n(x1, . . . , xn) =

(
n∏
i=1

σi

)
(−1)n

∂n

∂x1 · · · ∂xn F1,...,n(x1, . . . , xn)

= E

⎡
⎣
(

n∏
i=1

σi

)
(−1)n

∂n

∂x1 · · · ∂xn exp
⎧⎨
⎩−

n∑
i=1

n+1∑
j=1

ci, j
σi
Yj xi

⎫⎬
⎭
⎤
⎦

= E

⎡
⎣
⎛
⎝ n∏

i=1

n+1∑
j=1

ci, jYj

⎞
⎠ exp

⎧⎨
⎩−

n∑
i=1

n+1∑
j=1

ci, j
σi
Yj xi

⎫⎬
⎭
⎤
⎦

=
∑
∀i j∈I

dc(i1, . . . , in+1)

∫
Rn+1

+

n+1∏
j=1

exp

{
−yj

(
n∑
i=1

ci, j
xi
σi

)}

× �(γ j + i j )
�(γ j )

dG

1,...,n+1(y; γ̃ , 1),

where γ̃ = (γ1+i1, . . . , γn+1+in+1)
′ is a vector of positive parameters. The proof is completed

by computing the iterated integral.

Proof of Theorem 2.2. Let F� denote the c.d.f. of the r.v. � = (�1, . . . , �n)
′. The “if”

part is immediate from the following obvious relations:

F1,...,n(x1, . . . , xn) = P[�1 > �1x1, . . . , �n > �nxn ]

=
∫
Rn+

P[�1 > ξ1x1, . . . , �n > ξnxn ]dF�(ξ1, . . . , ξn)

=
∫
Rn+

exp

{
−

n∑
i=1

ξi xi

}
dF�(ξ1, . . . , ξn), (A.1)

and by Proposition 2.1. The “only if” part follows because (A.1) is the n-variate Laplace
transform of Ga1,...,n(γ ∗

c , σ ), and it is thus unique. This completes the proof.

Proof of Theorem 2.3. For the proof, we readily have that

F−(x) = F1,...,n(x, . . . , x) =
n+1∏
j=1

(
1 +

n∑
i=1

ci, j
σi

x

)−γ j

=
∫ ∞

0
e−λxdFZ1+···+Zn+1(λ), where x ∈ R+,

which establishes the mixture representation.

Proof of Theorem 2.4. Employing Theorem 2.3 with Zj � Ga(γ j , (
∑n

i=1
ci, j
σ j

)−1),

j = 1, . . . , n + 1, Lemma 2.1, changing the order of summation and integration and using
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equation (1.2), we have that

F−(x) =
∫ ∞

0

∞∑
k=0

e−λx pk
e−λσ+λγ ∗+k−1α+(σ )γ ∗+k

�(γ ∗ + k)
dλ

=
∞∑
k=0

(
1 + x

α+(σ )

)−(γ ∗+k)
pk.

This completes the proof.

Proof of Theorem 3.1. Let G
∏

denote a multivariate c.d.f. with mutually independent
gamma-distributed univariate margins. We start by employing Lemma 2.2 and observation
(3.1), and then do change of variables and obtain that

(σkσl)
−1E[XkXl ] = (σkσl)

−1E
[

1
�k

· 1
�l

]

=
∫
R3+

1
(y3 + y1)(y3 + y2)

dG

1,...,3(y; γ, 1)

=
∫ ∞

0

∫ ∞

0
(1 + v)−γc,l (1 + u)−γc,k(1 + u + v)−γc,(k,l)dudv

=
∫ ∞

0
(1 + v)−γ ∗

c,l

(∫ ∞

0
(1 + u)−γc,k

(
1 + u

1 + v

)−γc,(k,l)

du
)
dv

(1)=
∫ ∞

0
(1 + v)−γ ∗

c,l
1

γ ∗
c,k − 1 2F1

(
γc,(k,l), 1; γ ∗

c,k;
v

1 + v

)
dv

=
∫ 1

0
(1 − u)(γ ∗

c,l−1)−1 1
γ ∗
c,k − 1 2F1

(
γc,(k,l), 1; γ ∗

c,k; u
)
du

(2)= 1
(γ ∗

c,k − 1)(γ ∗
c,l − 1) 3F2

(
γc,(k,l), 1, 1; γ ∗

c,k, γ
∗
c,l ; 1

)
,

where “
(1)=” holds because of the following integral representation of the Gauss hypergeomet-

ric function (Equation 3.197(5) in Gradshtein and Ryzhik, 2007)

2F1(α, β; γ ; z) = �(γ )

�(β)�(γ − β)

∫ ∞

0
tβ−1(1 + t)α−γ (1 + zt)−αdt,

for γ > β > 0 and all z such that the integral above converges, and “
(2)=” follows from Equa-

tion 7.512(5) in loc. cit. This completes the proof.

Proof of Corollary 3.1. The lower bound follows by setting γc,(k,l) ≡ 0 and both of γ ∗
c,l

and γ ∗
c,k to exceed 2. To establish the upper bound, let γc,k → 0 and γc,l → 0 and assume that
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γc,(k,l) exceeds 2, and then we have that

lim
γc,k,γc,l→0

3F2
(
γc,(k,l), 1, 1; γc,k + γc,(k,l), γc,l + γc,(k,l); 1

)
= 3F2

(
γc,(k,l), 1, 1; γc,(k,l), γc,(k,l); 1

)
= 2F1

(
1, 1; γc,(k,l); 1

)
= γc,(k,l) − 1

γc,(k,l) − 2
,

where the last equality holds due to Equation 9.122(1) in Gradshteyn and Ryzhik (2007), and
the covariance of interest reduces to

Cov[Xk, Xl ] → σlσk

(γc,(k,l) − 1)2(γc,(k,l) − 2)
, where 1 ≤ k 
= l ≤ n.

This, along with Proposition 2.2, completes the proof.

Proof of Corollary 3.2. To obtain (3.3), we set ci,i = ci,n+1 ≡ 1 and zero otherwise. This
implies γ ∗

c,k = γk +γn+1, γ ∗
c,l = γl +γn+1 and γc,(k,l) = γn+1 (see, Example 1.1). Then the result

directly follows from Theorem 3.1. To establish (3.4), let ci, j ≡ 1 for 1 ≤ j ≤ i ≤ n and zero
otherwise. Then the desired assertion follows because

Cov[X2,k, X2,l ] = σkσl

(γ ∗
c,k − 1)(γ ∗

c,l − 1)
(3F2(γc,(k,l), 1, 1; γc,(k,l), γ

∗
c,l ; 1) − 1)

= σkσl

(γ ∗
c,k − 1)(γ ∗

c,l − 1)
(2F1(1, 1; γ ∗

c,l ; 1) − 1)

= σkσl

(γ ∗
c,k − 1)(γ ∗

c,l − 1)(γ ∗
c,l − 2)

,

where the latter equality holds for γ ∗
k > 2. This completes the proof of the corollary.

Proof of Theorem 3.2. We first note that

P[Xk > xk|Xl = xl ] =
− ∂

∂xl
F Xk,Xl (xk, xl)

fXl (xl)
for xk and xl both in R+,

and then write

− ∂

∂xl
F Xk,Xl (xk, xl) =

(
1 + xk

σk

)−γc,k
[
γc,(k,l)

σl

(
1 + xk

σk
+ xl

σl

)−γc,(k,l)−1(
1 + xl

σl

)−γc,l

+ γc,l

σl

(
1 + xk

σk
+ xl

σl

)−γc,(k,l)
(
1 + xl

σl

)−γc,l−1
]

. (A.2)

Plain simplifications complete the proof.

Proof of Theorem 3.3. Note that for the pair (Xk, Xl)
′, 0 ≤ k 
= l ≤ n, stochastic repre-

sentation (3.1) is of utmost generality, i.e., conditional distribution function (4.10) coincides
with one of the type I multivariate flexible Pareto model. Hence, the proof is completed by
evoking Theorem 3 of Chiragiev and Landsman (2009) as well as Proposition 2.2.

https://doi.org/10.1017/asb.2016.22 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.22


356 JIANXI SU AND EDWARD FURMAN

Proof of Theorem 4.1. Note that

∧n+1
j=1

(
Xλ j ∗ � j

) d=
(
∧n+1
j=1Xλ j

)
∗ �,

and hence, for F� denoting the c.d.f. of the r.v. � = (�1, . . . , �n+1)
′,

F1,...,n(x1, . . . , xn) =
∫
Rn+1

+

n∏
i=1

exp

⎧⎨
⎩−

n+1∑
j=1

ci, j xiλ j

σi

⎫⎬
⎭ dF�(λ1, . . . , λn+1),

which, along with (1.2), completes the proof.

Proof of Proposition 4.1. Notice that

πw[X] = E [E[w(X)| �]πw[X| �]]
E[E[w(X)| �]]

for X ∈ X ,

and set w1(λ) = E[w(X)| λ] and v1(λ) = πw[X| λ]. This concludes the proof.

Proof of Corollary 4.1. Use Proposition 4.1 setting the weight function equal to the
Dirac delta function, or alternatively evoke Proposition 2.2. This concludes the proof.

Proof of Corollary 4.2. Fix w(x) = 1{x > VaRq [X]} for q ∈ [0, 1), the result follows
from Proposition 4.1.

Proof of Corollary 4.3. As Xi |� = λ � Exp(λ), λ > 0, i = 1, . . . , n, we readily have
that

CTEq∗ [Xi | � = λ] = 1
λ

+ VaRq [Xi ],

and
C[VaRq [Xi ]; λ] = e−λVaRq [Xi ],

and the assertion holds by Proposition 4.1. This completes the proof.

Proof of Proposition 4.2. We readily have that

CTEq [X−] = VaRq [X−] + 1
1 − q

∫ ∞

VaRq [X− ]
F−(x)dx

(1)= VaRq [X−] + 1
1 − q

∫ ∞

VaRq [X− ]

( ∞∑
k=0

(
1 + x

α+(σ )

)−(γ ∗+k)
pk

)
dx

(2)= VaRq [X−] + E[X−]
1 − q

∫ ∞

VaRq [X− ]

×
( ∞∑
k=0

γ ∗ + k− 1
α+(σ )

(
1 + x

α+(σ )

)−(γ ∗+k−1)−1

qk

)
dx,

where “
(1)=” follows because of Corollary 2.4 and “

(2)=” holds since

E[X−] =
∞∑
k=0

α+(σ )

γ ∗ + k− 1
pk.

This completes the proof.
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Proof of Proposition 4.3. We observe that∫ ∞

x
F(t)dt = E[X− x| X > x]F(x),

for all x in the range of the r.v. X. Then the assertion follows by Proposition 2.5 and changing
the order of summation and integration in

CTEq [X+] =
∫∞
VaRq [X+ ]

∑
S⊆{1,...,n}(−1)|S|−1FS−(x)dx

1 − q
+ VaRq [X+].

This completes the proof.

Proof of Proposition 4.5. Note that, for 1 ≤ k 
= l ≤ n,

E[Xk| Xl > VaRq [Xl ]] =
∫ ∞

0
P[Xk > x| Xl > VaRq [Xl ]]dx

(1)= σk

∫ ∞

0
(1 + u)−γc,k

(
1 + u

1 + VaRq [Xl ]/σl

)−γc,(k,l)

du,

where “
(1)=” holds because of observation (3.1) and techniques similar to the ones used in

Theorem 3.1. The Proposition then follows by evoking Equation 3.197(5) in Gradshteyn and
Ryzhik (2007). This completes the proof.
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