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STATIONARY WAVES FORCED BY TOPOGRAPHY
IN A VERTICALLY SHEARED, STRATIFIED, ROTATING FLUID
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Abstract

The effect of an isolated topographic bump in a two-layer fluid on a B-plane is
investigated. An analytical solution is derived in terms of the appropriate Green’s
function for arbitrary topography of finite horizontal extent. It is found that the
disturbances generated by the bump are composed of two fundamental modes which may
be wave-like or evanescent. The wave-like modes are topographically induced Rossby
waves which occur only when there is eastward flow in at least one of the layers. These
waves are always confined to the downstream (eastward) side of the bump. Whereas
previous studies of this type have concentrated on eastward flow over topography, the
theory has been extended here to include a wide range of vertically sheared flows.
Particularly important is the case of low level westward flow combined with upper level
eastward flow, as it has direct application, for example, to the summertime atmospheric
circulation over the sub-tropical regions of the continental land.masses. In this case a
wave-like disturbance extends far downstream from the bump for sufficiently large shear,
and is of smaller amplitude in the upper layer than in the lower layer because of the
effects of the stratification. For small shears, the wave-like mode in the lower layer is
small and the character of the disturbance is evanescent, confining it to the immediate
neighbourhood of the bump. A stability analysis of the solutions shows that the dis-
turbances may be baroclinically unstable for sufficiently large mean shear.

1. Introduction

Since the early work on Taylor columns [15], the geophysical problem of ocean
currents flowing over bottom topography or atmospheric winds blowing over
orography has been the subject of numerous theoretical and experimental studies.
Most of these studies have concentrated on motions with large time scales
compared with the time scale associated with the earth’s rotation (f;'), space
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scales, L, much larger than the depth of the fluid, H, and velocity scale, U, such
that the Rossby number, ¢ = 17/ foL, is very small. In addition, the topographic
height scale, k, is much smaller than H, and the ratio 4 /H is similar in magnitude
to the Rossby number. Some studies have also taken into account the effects of
vertical density stratification. These have been incorporated by considering a
density structure which varies either continuously with depth or discretely in a
finite number of layers of known density and depth. On the basis of these scales
of motion the well known quasi-geostrophic potential vorticity equation was
formally derived by Pedlosky {11] for both a continuously stratified fluid and a
layered fluid. Many different oceanic and atmospheric phenomena, particularly
those associated with Rossby and topographic waves, have been explained within
the framework of quasi-geostrophic motion.

The particular problem of interest here is the influence of a finite ridge or
bump on a vertically stratified, rotating, sheared flow. This problem has been
treated by a number of authors, and some of the contributions have been
summarized by McCartney [8]. Using a two-layer model, McCartney [8] showed
that the B-effect limited the horizontal influence of the topography for westward
(retrograde) flow. For eastward (prograde) flow over a topographic ridge McCart-
ney [8], [9] showed that a pattern of stationary Rossby waves would form
downstream (to the east) of the ridge. In the case of an infinite ridge these waves
would extend to downstream infinity, whereas for a finite ridge they would
decrease as O(r~'/?%), where r is the horizontal distance from the ridge.

In the context of the two-layer model, the influence of a counter-flow situation,
with eastward flow in one layer and westward in the other, has received very little
attention. However, counter-flow situations of great interest do occur naturally in
the atmosphere; for example, flow in the subtropics over the Australian (and
other continental) land masses during the summer period where low level west-
ward flow is surmounted by upper level eastward flow. The interaction between
this counter-flow wind regime and the main topographic features, namely the
eastern highlands and the Western Australia plateau, is largely responsible for the
variety of low-level pressure trough formations that are observed [4].

In this paper a two-layer model is used to describe the finite-amplitude, steady
disturbances caused by finite topographic features to a horizontally uniform,
vertically sheared flow. Previous solutions have been restricted to those applying
to very simple topographic forms such as step functions ([14], [8], [9]) and other
symmetric forms (e.g.[2], [3]). In this work, we present a generalized solution of
the quasi-geostrophic potential vorticity equation in terms of the appropriate
Green’s function. Solutions for arbitrarily shaped topography are then de-
termined and illustrated for different basic flow configurations. The previously
neglected situation of upper and lower layer basic flows in opposite directions is
carefully examined, and some interesting features are found.
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In addition a stability analysis of the solutions reveals that for sufficiently large
vertical shear the basic flows may be baroclinically unstable to disturbances of
large enough scale. The various parameter ranges under which this occurs are
presented.

2. Basic equations and boundary conditions

The model, illustrated in Figure 1 consists of two well mixed layers of constant
density (potential temperature in the atmosphere) p,, p, where the subscripts 1
and 2 refer to the upper and lower layers respectively. The upper surface is rigid
and the undisturbed depths of the upper and lower layers are D, and D, —
h’(x, y) > 0 respectively, where x and y are horizontal cartesian co-ordinates. For
topographic bumps of finite horizontal extent, &’ - 0 as x> + y? - oo, the flow
in each layer is taken to be uniform and zonal and equal to Uj, U; far upstream
and downstream of the bump.

U,

Figure 1. Zonal section of two-layer model: x is zonal, yis meridional.

The well known form of the quasi-geostrophic potential vorticity equations for
such a two-layer system may be written as

D, /D[, — F(¥, — ¥,) + By] =0, (2.1a)
Dp/D[ V2, — B¢, — ¥,) + By + K] = 0. (2.1b)
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These are the non-dimensional equations in which /%), is the substantial
derivative, y, the lowest order pressure perturbations, 8 = B,L?/ U where B, is the
(dimensional) northward gradient of the Coriolis parameter and V2 = 8%/9x% +
dy2. The non-dimensional topography h(x, y) is given by

h=H/eD,, (2.2)

where ¢ is the Rossby number previously defined. The constants F, and F, are
defined by

f2L2 2L2
= 0 F e "2)

gD, T 22

F,

where g’ is the reduced gravity defined by g’ = 2g(p, — p,)/(p, + p3)- In
physical terms these constants represent the square of the ratio of the geometric
Rossby height to the depths of the layers. Details of the derivation of equations
(2.1a,b) and of the associated non-dimensionalization may be found, for example,
in [12]. The most important assumptions are that the Rossby number, ¢, and the
aspect ratio (D, + D,)/L are small.

Perturbations of the upper layer flow are caused by vortex compression and
stretching produced by distortions of the interface. The dimensional amplitude of
the interface perturbation is given by

$ = eDyF(¥, — ), (2.4)

and {,, y, may be considered as streamfunctions for the upper and lower layers
respectively.
The topography is assumed to be horizontally finite, i.e.,

h-0 asx?+y?- o0, (2.5)
and uniform far upstream and downstream flows in each layer imply
¢~ Uy and ¢, > -Uy asx®+y*- o, (2.6)
where
U =U/U and U,= Uj/U.

Assuming steady flow, equations (2.1) may be integrated along streamlines with
constants of integration determined from the far field. For sufficiently large
values of 4 it may be anticipated ([5}, [6], [7]) that closed streamlines will occur in
the vicinity of the topographic feature, in which case the far field flow can no
longer be used to determine the constants along these streamlines. This situation

will be avoided in this study.
In terms of the perturbation streamfunctions,

¢, =y, + Uy fori=1,2, (2.7)
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equations (2.1) then become

Vv, + Fié, + By = 119, — (FU, — v}y, (2.8a)
Vi, + Eé) + By + h = 1,9, — (KU, — v,U,)y, (2.8b)
where
v, = (FU, — B)/U, and v,= (KU, — B)/U;, (2.9)
and ¢, satisfy the conditions
¢, bounded and ¢, = 0 as x? + y? = 0. (2.10)

These equations are equivalent to equations (2.16) of McCartney [9], who
eliminated ¢, to form a fourth order partial differential equation for ¢,. Realizing
that the flow in each layer must be comprised of a barotropic and a baroclinic
mode, it is mathematically simpler to combine equations (2.8a, b) into the second
order normal mode equation

v2® — A® = -b(x, y) (2.11)
where b = ah, and
A=-aF, +y,. (2.12)
The normal modes are given by
0 = ¢, + o, i=1,2, (2.13)
where o, i = 1, 2 satisfy the quadratic equation
o —a(y, —v,)/F,— F,/F, =0, (2.14)
with roots

PO = (v, — 1) /26 =[((v, — .)/25)’ + F/F,

Expressions for the perturbation streamfunctions in terms of the two normal
modes are easily found from (2.13) to be

172 (215)

¢, = (aP®D — a@dM)/ (o — a?), (2.16a)
¢, = (@M — ©?)/(aV) — a?). (2.16b)
We shall later identify ¢ with the barotrophic mode and ¢V with the baroclinic

mode.

Solutions of the non-homogeneous Helmholtz equation (2.11) are evanescent if
A > 0 and wave-like if A < 0. The wave-like solutions of equation (2.11) have
been discussed in other geophysical contexts such as lee waves in a stratified fluid
[10] and stationary Rossby waves [9]. '

If A > 0, the conditions (2.10) are sufficient to determine uniquely the evanes-
cent solution of equation (2.11). But if A <0, the wave-like solutions are not
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uniquely determined by condition (2.10) alone, and a radiation condition prevent-
ing “upstream” waves must be added. This is of the form

(x2+y?)"*® > 0, far “upstream”. (2.17)

The relevant quantity determining “far upstream” is the east-west group
velocity for each stationary mode of wave number k, dw'”) /dk | »—q, Where

k= Uy +[Uk*(k? + 2F,) — B(2k* + F, + E) /2k*(k* + F, + F,)]
i[Bz(Fl + F2)2 + 2BUk*(F, — F)

—K*UX4RF, - k%)) " 2k (k2 + F+ B),  i=1,2,

where U, = U, — U,. This expression is easily found by looking for the plane
wave solutions of the time dependent linearized equations equivalent to (2.1).
McCartney [8] states that the group velocity may be eastward or westward, in
which case “upstream” will mean x - -0 or x — +oo respectively. When the
flow in both layers is eastward (U, > 0, U, > 0), it can be shown analytically that
the group velocity for each mode is always eastward and condition (2.17) is
applied as x —» -o0.

The group velocity for each mode in the counter-flow situation is not easily
determined and must be evaluated numerically in each individual case. Without
loss of generality, the specific cases considered here were chosen so that the group
velocities of the stationary waves are always eastward, and hence condition (2.17)
will always apply as x - —c0.

The two-dimensional boundary value problem in the region —oo < x < o0,
—00 < y < oo represented by equations (2.10), (2.11) and (2.17) for an arbitrarily
shaped topography A(x, y) may be formulated in terms of the appropriate
Green’s function satisfying

VIG-AG=-8(x—¢& y— 1), (2.18a)
with G bounded except at the point (£, n) (2.18b)

and G —» 0as x2 + y? > oo0.
ForA<0, r/?2G->0 asx— -co, (2.18¢)

where r2 = (x — £)>+ (y —1)* and 8 is the Dirac delta function. Since G
satisfies the same equation and boundary conditions as ®, the solution may be
written as

o(x,y) = af d¢[ " h(&,m)G(x, y; &, m) d. (2.19)

For A > 0, it is easily shown that the Green’s function satisfying equations (2.18)
is radially symmetric and given by

G(x,y;€,m) = 517—71(0(7\'/21'), (2.20)
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where K|, is the zeroth order modified Bessel function of the second kind whose
properties may be found in Abramowitz and Stegun [1]. In particular, Ky(z) has a
logarithmic singularity at the origin,

Ky(z)~-nz asz-0,

and is exponentially decaying for large z,

Ky(z) ~ ‘/% e’ as|z|- o0.

For A < 0, a particular solution of (2.18a) is, from [10],

—$%((-0)%r).
This solution does not satisfy the radiation condition (2.18c) and must be

augmented by the complementary solution

oo

> ame((—}\)l/zr) cos mé,

m=1

where 8 = tan"!(y — n/x — £). This is achieved by considering the asymptotic
expressions of these Bessel functions for large r, and choosing constants a,, so
that the infinite sum cancels the Y, term on the upstream half plane (x —» —o0).
We thus arrive at the solution for A < 0,

G(x, y; ¢, 1)

—% Y ((-2)"%r) +—:; glJz,,_,((—}\)l/zr)cos[(Zn —1)8]/@2n-1)].

(2.21)
The infinite sum in this equation may also be written [1]

S()= _lfa sin( zsin 8’) d6’, (2.22)
n=1 2 /2

where z = (-A)"/?r, and which is evaluated numerically. Far upstream, § — =,
z — oo; this expression behaves like (7/2)Y,(z), thus verifying the cancellation of
upstream waves. Far downstream, § — 0, z —» oo, this expression behaves like
(7/2)Yy(2), and the Green’s function in equation (2.21) becomes

G(x, i £,m) ~ 3 Ho((-N)*r) as6-0 and r- co.

At the origin this solution has the same logarithmic singularity as equation
(2.20), and the final solution in equation (2.19) must therefore be treated as an
improper integral. This is a generalized solution for the two-layer flow over
arbitrary topography, A(x, y). In the solutions that follow, the infinite sum in
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(2.21) was evaluated by means of a Simpson rule estimation of the integral in
(2.22), and the integral in (2.19) using a four-point numerical quadrature
(Abramowitz and Stegun [1], page 892).

In each layer the flow is determined by a linear combination of the two
fundamental modes (equations (2.16)), whose properties are dependent on the
sign of A. Thus the flow may consist of the sum of two evanescent modes
(equation (2.20)), two wavelike modes (equation (2.21)) or a combination of an
evanescent and a wave-like mode. Conditions on which of these combinations
occurs are described by McCartney [8], and are largely dependent on the signs of
U, and U,. More general conditions are derived here.

Physical arguments suggest that if the flow in both layers is westward (U, < 0,
U, < 0), westward travelling Rossby waves which are generated will be swept
downstream and the steady state will consist of an exponentially decaying
disturbance which corresponds to the first case above. However, if eastward flow
exists in at least one of the layers, westward propagating Rossby waves are
retarded and the ultimate steady state will involve some stationary wave-like
character.

In order to examine the individual modes more closely it is convenient to write
equation (2.14) in terms of A (from equation 2.12). Thus:

A - ('Yl +Y2)}‘+ (Yl'Yz_Fle) =0, (3~1)

with roots

XDD = (y, +v,)/2 t[('yl —v,) /4 + F,FZ]VZ. (32)

Since the term in the square bracket is positive definite, two real roots of equation
(3.2) always exist. Graphs of

G'(A) =N~ (v + A+ (v1, — AF), (33)

for vy, — Fi\F, = -B(F\U, + KU, — B)/UU, <0 are drawn in Figure 2. The
two cases depicted correspond to v, + v, >0 and v, + vy, <0, implying that
AD >0 and X? < 0. Disturbances in each layer therefore comprise a combination
of an evanescent mode and a stationary wave-like mode.
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G!

Figure 2. Graph of G’ (equation (3.3)) with B =2, F, = 0.52, F, = 1.22 and y, + v, < 0 (solid
curve), v, + y, > 0 (broken curve).

For fixed B, F, and F, the straight line
S(U,U,)=FU,+ KU —B=0 (3.4)

divides the (U, ;) plane into physically distinct regimes.This is shown in Figure
3 for § =29, F, = 0.52 and F, = 1.22 which are typical oceanic and atmospheric
values.

In region A, where v,y, — F;F, >0, both X and X® are negative and two
wave-like modes exist. In region B, where y,y, — F;F, <0, at least one of the
basic flows is eastward, and X >0, X® < 0 implying a combination of an
evanescent and a wave-like mode. From equations (2.16) and (2.19) it follows that
the contribution to the upper layer flow from each of these modes is the same and
equal to aPa®/(a" — a?), whereas in the lower layer the amplitude of
the evanescent mode is a"/(a” — a®) and that of the wave-like mode is
a@ /(aM — a®). Thus the relative amplitudes of these modes in each layer over
the bump is controlled by the values of a{” and a'® which are shown as functions
of U, and U, in Figure 4.

In the counter-flow situation it can be seen, for example, if the lower layer flow
is eastward and small (U, < B/F,), |a®|>|a"| and the lower layer flow is
dominated by the wave-like mode. On the other hand if the upper layer flow is
eastward and small (U, < 8/F), |aV|>|a®| and the lower layer flow is
dominated by the evanescent mode.

https://doi.org/10.1017/50334270000003957 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000003957

136 C. B. Fandry, R. L. Hughes and L. M. Leslie [10]

Figure 3. Solution regimes in the (U, U;) plane for parameter values given in Figure 2.
Regions marked are A: two wave-like modes; B: one wave-like and one evanescent mode;
C: two evanescent modes.

Far downstream of the topographic bump, where the evanescent mode has
decayed, the flow in each layer is wave-like and the ratio of the upper layer
disturbance to the lower layer disturbance is —a!". Thus areas of region B where
| P |> 1 correspond to situations where the topographic influence far down-
stream of the bump is confined to the upper layer only.

In region C, the flow in both layers is westward (U, < 0, U, < 0) and both A"
and X® are positive, which implies two evanescent modes verifying the previous
physical argument.
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3
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Figure 4. Contours of (a) a'V and (b) a'® in (U,, U,) space for same parameter values
given in previous figures.

3.1 Equal upper and lower layer flows

In the special case U, = U, = U, it is easily found from equations (2.12) and
(2.15) that

aV=-1,  o®=F/F, (3.5)
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and

XV=F +F—-B/U  XY=_-B/U. (3.6)
Equations (2.16) then reduce to

¢, = (2P + F/F,0V)/ (1 + F/F),

¢, = (0@ — (I)(f))/(l + F/F),

indicating that the disturbance fields in each layer are composed of a barotropic
mode ®® of wavenumber (-8/U)'/?, and a baroclinic mode ®V, whose ampli-
tude ratio between the upper and lower layer is —F, /F, = -D,/D,.

A barotropic westward flow, U < 0, is responsible for two evanescent modes;
the barotropic one decaying exponentially on a scale of (-8/U)™'/2, and the
baroclinic one decaying on a scale of (F, + F, — B/U)!/2. For relatively large
stratification, or small westward flow, -8/U > F, + F,, and both modes are
reminiscent of inertial boundary layer flow in which strict geostrophy breaks
down and significant motions occur in a region of width (-8/U)™'/? along the
boundary.

In the case U > 0, X® is negative and A"’ may be positive or negative. Thus the
barotropic mode is always wave-like. The baroclinic mode however is only
wave-like if 0 < U< B(F, + F). If U> B(F, + F,) the baroclinic mode is
evanescent, in which case the disturbance fields far downstream of the topogra-

phy are dominated by the wave-like barotropic mode with the consequence that
the upper and lower layer flows are nearly equal.

3.2 Stability analysis

A stability analysis of this two-layer system was first carried out by Phillips
[13], and some of the results are used here to show that if the magnitude of the
shear speed U, = U, — U, exceeds some critical value, there exists a range of
wavelengths for which the disturbance modes are baroclinically unstable.

Phillips showed that for disturbances of total wavenumber K, stability depended
on the sign of the term

Q = BX(F, + F,)* + 2BU,K*(F, — ) — K*UX(4F,F, — K*). (3.7)

The system is stable if Q = 0 and unstable if Q < 0.
The equation Q = 0 is a quadratic equation for K* with roots

K* = (2BU(F, — F) + 4U?FF, =[16UF F,(U,F, + B)(U,F, — 8)]"*) /2U2.
(3.8)

It follows that if the shear occupies the range
. B/E< U <B/F (3.9)
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no real roots exist, Q is always positive, and the system is stable at all wavenum-
bers. The region in (U, U},) space in which (U}, U;) satisfy condition (3.9) is
shown in Figure 3.

Outside this region two distinct roots exist, Q changes sign, and the basic flow
will be unstable to disturbances of sufficiently small wavenumber. Equations (3.8)
and (3.9) give the wavenumbers at minimum and maximum critical shear to be

Kr%lin:[Fl(Fl_*-FZ)]l/z’ U, = -B/F,
K, =[E(F + E)]"* U=8/F.

Thus when the shear exceeds the critical limits defined in (3.9), disturbance modes
are stable at all wavenumbers exceeding the respective critical limits defined in
equation (3.10). If, for example, F, = F, = F then for shears | U, |> B/F, dis-
turbance modes of wavenumbers K2 > /2 F are all stable.

(3.10)

4. Specific examples

Large scale atmospheric motions are characterized by the following scales:
L=10X10°n, D, = 7000m, D, =3000m, U= 10ms™',
fo=06X 107", B,=2X10""ms7!, g = 1ms2?,

for which the non-dimensional parameters are given by

e=0.16, =20, F, =052, F,=122.
Large scale oceanic motions are represented by considerably smaller values of e,
F, and F,, but the general solutions presented in the previous section are still
applicable.

In order to illustrate the characteristics of the flow field the simple topographic
feature given by

h(x, y) = 5e~8*+r" (4.1)
is chosen. Similar studies previously mentioned derived solutions which were
restricted to such simple topographic forms. However, in order to study realistic

atmospheric or oceanic situations, more complicated topography is required, and
this is easily incorporated using the general solution given by equation (2.19).

4.1 Westward flow in both layers, U, = -1, U, = -1
This case has already been discussed in Section 3.1, where it was shown that the

motion consisted of a sum of an evanescent barotropic mode and an evanescent
baroclinic mode.
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M

Figure 5. Lower layer streamlines for westward flow in both layers, U, = -1, U, = -1.
Contour interval is 0.2, and the nondimensional diameter of the circle is 1.0.

The lower layer flow is shown in Figure 5. Topographic effects are confined to
the immediate vicinity of the bump, with the flow deflecting equatorwards (due to
the B-effect) as the bump is approached. In the upper layer, effects of stratifica-
tion cause the flow due to the baroclinic mode to oppose that due to the
barotropic mode with the result that very little topographic influence exists. In the
limit F,, F, —» 0, X" = X® = B and the barotropic and baroclinic modes are equal
and opposite in the upper layer. In this case topographic effects are confined to
the lower layer and the interface acts as a rigid lid.

4.2 Eastward flow in both layers, U, = 1, U, = 1

In this particular case, reference to Figure 3 shows that both fundamental
modes are wavelike, with AV = -0.26, A® = -2 and a” = -1, a® = 0.43. The
non-dimensional wavelength of the baroclinic mode 27 /(-A")!/2 = 12.3, and
that of the barotropic mode 27/(-A?)!/2 = 4.4. From equations (2.12) and
(2.16), it may be seen that the upper layer consists of equal, but opposite,
combinations of these two modes, while in the lower layer the amplitude of the
baroclinic mode is more than double that of the barotropic mode. The result is
that the lower layer downstream wake is of larger amplitude than that of the
upper layer and of much larger wavelength. Furthermore, the flow in the lower
layer is deflected equatorwards over the topography (Figure 6), reflecting the
dominance of the B-effect in the potential vorticity balance. If larger eastward
flows persisted such that F,U, + F,U, > f, the upward deflection of the interface
would overcome the B-effect with the consequence that the lower layer flow
would deflect polewards as the topography is approached. Of special interest are
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the disturbances which occur if U, » B/F, and U, < B/F, or if U, < B/F, and
U, » B/F,. In these situations |a”|>|a®| and the flow over the bump is
dominated by the evanescent mode, and topographic effects are confined to the
lower layer. Evidence of stationary Rossby waves vanishes in the neighbourhood
of the bump and the disturbance is similar to that which occurs when westward
flow exists in both layers.

Figure 6. Lower layer streamlines for eastward flow in both layers, U, = 1, U, = I.
Contour interval is 0.2.

4.3 Counter flow cases

Most previous workers have neglected this situation as they have applied the
theory to the ocean, where a total reversal in the direction of flow with height is
rather rare. In the atmosphere, however, vertically sheared flows are common and
the counter flow situation considered here has immediate application.

In the first example U, = —1 and U, = 1, in which case AV = 1.6, \¥ = _3.3
and a¥ = —0.11, a® = 4.01. Thus the flow in both layers consists of an evanes-
cent mode and a wave-like mode, and in the near downstream field the lower
layer is dominated by the wave-like mode (Figure 7) with very little disturbance in
the upper layer. In the general case of upper layer westward flow and lower layer
eastward flow, reference to Figure 4 shows that in region B the wave-like mode
will always dominate the near downstream flow (| a® |>| /" |) and the amplitude
of disturbance will be greater in the lower layer. This case is further illustrated in
Figure 8 which shows the lower layer flow when U, = -2, U, = 0.3. The wave-like
mode completely dominates the near downstream wake (| a®|>|a™|) and the
disturbance in the upper layer is negligibly small. Special features of the down-
stream flow in the lower layer are the strong south-eastward directed jet, with
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speed about 3U, along the north-eastern edge of the bump and a strong reversed
flow to the south. The extensive meandering wake downstream of the bump is
dynamically equivalent to the lee-wave field induced by an obstacle in a stratified
fluid [10].

Figure 1. Lower layer streamlines for westward flow in the upper layer and
eastward flow in the lower layer, U, = -1, U, = |. Contour interval is 0.2.

Figure 8. As in Figure 7 with U, = -2, U, = 0.3. Contour interval is 0.1.

If the lower layer eastward flow is large, U, > 8/F, and the upper layer
westward flow small enough, (-U,) < (F,U, — B)/F, disturbances in each layer
comprise of two wave-like modes, but are dominated by the one of much greater
wavelength.

In the third example we consider U; = 1, U, = -1 in which case X = 0.98,
A? = _27 and &V = 2.9, a® = 0.15. Again the flow consists of an evanescent
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mode and a wave-like mode, with the near downstream disturbance much
stronger in the lower layer. However, in this case the lower layer is dominated by
the evanescent mode (| 'V |>|a®|) and the disturbance in this layer is nearly
identical to that which occurs when the basic flow is westward in both layers
(Figure 5). Thus, although a wave-like mode exists, its amplitude in the lower
layer is negligible compared to that of the evanescent mode. This will always be
the case provided the eastward flow in the upper layer is small enough, U, < 8/F,
and the lower layer westward flow large enough (-U,) > (FU, — B)/F),.

In each of these examples the upper layer disturbance in the vicinity of the
bump is negligibly small, thus the absence of figures depicting the upper layer
flow. Situations will occur, however, where the upper layer disturbance is of
similar amplitude to the lower layer one, and these may be 1dent1f1ed from Figure
4 when a(” and a® are of similar orders of magnitude.

Although the case is of great interest, care is needed in the application of the
counter-flow study to practical situations. For the baroclinic mode, the vertical
wavelength of the standing waves is comparable with twice the total depth of the
two layers. Thus in a practical situation where the interface between the two flows
contains a critical layer (assumed viscous) and the interface thickness is compara-
ble in height with the total depth of the flow, substantial dampening of the
baroclinic mode may occur. For thinner interfaces such as that modelled here,
tunnelling of wave energy occurs across the critical layer with little loss of energy
as required by the present formulation.

5. Conclusions

A general solution for the vertically sheared, two-layer flow over an arbitrarily
shaped bump on a B-plane has been found. Characteristics of the disturbances
induced are determined principally by the configuration of the basic mean flows,
the stratification parameters and the B-effect, and largely independent of the
shape of the bump which only appears as a multiplying factor in the integral of
equation (2.19). The amplitudes of the disturbances are directly proportional to
the height of the obstacle for a given basic state.

Stationary waves forced by topography occur when there is eastward flow in at
least one of the layers. In the case of eastward flow in both layers these are
classical Rossby waves, and in the counter-flow situation are topographically
modified Rossby waves. These waves occur on the downstream (eastward) side of
the bump. A radiation condition prevents wave energy travelling from upstream.
The wake associated with these waves extends many obstacle widths downstream
and decays like O(r~'/2), where r is the radial distance from the obstacle.
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When the basic flow in both layers is westward, disturbances are evanescent
and confined to the neighbourhood of the obstacle. For obstacles which are
symmetric, the disturbances are symmetric in the upstream-downstream direction,
and the flow is deflected equatorwards.

The theoretical model presented has applications to the flow over topographic

ridges in both the atmosphere and ocean. Special emphasis has been given to the
counter-flow sitnation which has relevance to atmospheric flows in the sub-trop-

aAlo A0S0 Sl

ics.
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