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Abstract

Satellite imagery can detect temporary cloud trails or ship tracks formed from aerosols emitted from large ships
traversing our oceans, a phenomenon that global climatemodels cannot directly reproduce. Ship tracks are observable
examples of marine cloud brightening, a potential solar climate intervention that shows promise in helping combat
climate change. In this paper, we demonstrate a simulation-based approach in learning the behavior of ship tracks
based upon a novel stochastic emulation mechanism. Our method uses wind fields to determine the movement of
aerosol–cloud tracks and uses a stochastic partial differential equation (SPDE) to model their persistence behavior.
This SPDE incorporates both a drift and diffusion term which describes the movement of aerosol particles via wind
and their diffusivity through the atmosphere, respectively. We first present our proposed approach with examples
using simulated wind fields and ship paths. We then successfully demonstrate our tool by applying the approximate
Bayesian computation method-sequential Monte Carlo for data assimilation.

Impact Statement

The impact of aerosol injections as potential solar climate intervention strategies is poorly understood due to
largely unobserved aerosol–cloud interactions. One of few observable examples is temporary cloud trails
produced by ship-emitted aerosols. This work focuses on mathematically modeling satellite observations of
ship-induced aerosol injections and leveraging it to learn underlying parameters characterizing their behavior.

1. Introduction

For decades, satellite imagery has been able to detect ship tracks, temporary cloud trails created via cloud
seeding by emitted aerosols of large ships traversing our oceans. Ship tracks are of interest because they
are unintentional and observable examples of marine cloud brightening, a potential solar climate
intervention (e.g., Latham, 1990; Gunnar et al., 2013; Council, 2015). Ship tracks portray the ability of
anthropogenic aerosols to perturb boundary layer clouds enough to alter the albedo of the atmosphere,
usually brightening the surrounding clouds (Twomey Effect, Twomey et al., 1966; Diamond et al., 2020),
and thus contribute to indirect radiative forcing (Capaldo et al., 1999; Eyring et al., 2010). This
phenomenon has become more frequently observed as satellite technology has significantly improved
since ship tracks were first observed by Conover (1966) and Twomey et al. (1966). Using the recently

©TheAuthor(s), 2022. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Environmental Data Science (2022), 1: e31, 1–9
doi:10.1017/eds.2022.21

https://doi.org/10.1017/eds.2022.21 Published online by Cambridge University Press

https://orcid.org/0000-0003-3508-0672
https://orcid.org/0000-0002-1731-3834
mailto:lpatel@sandia.gov
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/eds.2022.21
https://doi.org/10.1017/eds.2022.21


deployed GOES-R geostationary satellite series,1 tracks have been observed in the atmosphere through-
out the year, sometimes persisting more than 24 hr before mixing back into the atmosphere.

Although ship tracks have been actively studied since the 1960s, indirect radiative forcing, amongst
other differences to cloud properties, contribute to the largest sources of uncertainty regarding overall
radiative forcing in climate models (Carslaw et al., 2013). Current understanding of the specific cloud
effects from aerosol injections comes from physical simulations under pristine conditions, not represent-
ing reality. In climate simulations of this phenomenon, aerosol injections are initiated by the user at a
known location in fully defined environments (Wang et al., 2011; Berner et al., 2015; Blossey et al., 2018;
Possner et al., 2018). Satellite-observed tracks, however, form in complex dynamic environments that are
challenging and expensive to replicate in physical simulations.

Inferring track behavior from observations comes with many challenges. Track visibility and persist-
ence are highly dependent on atmospheric conditions (Possner et al., 2018) and inconsistent data
availability can also cause tracks to be poorly observed. Due to complex atmosphere dynamics along
with variations in fuel types and concentrations, not all emission bursts will produce visible tracks (see
Figure 1). Interruptions in the visibility of an existing ship track can occur when ships pass under different
atmospheric conditions. Further, vertical transport of the aerosols between the ship’s smoke stack and the
boundary clouds is largely unknown and unobserved. The exact altitude of the boundary clouds in which
ship tracks are visible and the time lag between an aerosol burst released from a ship, largely depends on
complex weather and cloud dynamics. While the height can be approximated using satellite retrieval or
reanalysis products, the time lag is difficult to infer from satellite images whose spatial resolution is
greater than a kilometer. To the naked eye, new ship track observations appear in images directly above
known ship locations due to the imaging resolution. Hence, it is reasonable to assume that the vertical
transport path from ship to boundary layer occurs at the same latitude/longitude. We thus implicitly
impose a known time lag between ship emissions and their first detection.

In this work, we present a computationally efficient, statistical approach to emulating and learning the
observed formation and behavior of ship tracks, based upon an advection–diffusion model. Aerosol
diffusion models are either driven by the chemical evolution of aerosol composition (e.g., Riemer et al.,
2008; Sofiev et al., 2009) or rely upon physical intuition and/or numerical discretization for evaluating a
diffusion coefficient (e.g., Stein et al., 2015; Wang et al., 2020). These methods, however, are validated
using limited data collected by targeted campaigns leading to high model sensitivity to cloud and aerosol
properties. To the best of our knowledge, few attempts have been made to simulate direct aerosol
injections in nonpristine modeling environments, limiting our ability to drive down the known model
uncertainties. Importantly, our approach’s ability to learn underlying parameters from observations

Figure 1. Visible ship tracks (left) on April 12, 2019, compared with no visible tracks (right) on April
7, 2019, with 3 hr of known ship locations (shown in red). Images (5,000 km� 3,000 km) taken at 12:00
GMTwith ABI spectral band C06 off the coast of California.

1 GOES-R is operated by the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and
Space Administration (NASA).
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highlights the power of passively observed data. Specifically, applying our approach to simulated data
under controlled settings will enable studying cloud changes from track formation in imagery.

For a given ship, we consider modeling each aerosol emission burst as a single target and assume the
ship is continuously emitting bursts. Each target is transported vertically from the ship through the
atmosphere until it reaches a specific altitude near the cloud top height at which the target can become
visible to orbital satellites and form linear tracks in a cloud. Ship track formations will then move with
wind dynamics, a variable that is straightforward to simulate and is independent of ship movement. The
visible tracks then persist in the clouds for an unknown time as ship tracks, until the aerosols are fully
diffused into the atmosphere and are no longer distinguishable from the surrounding clouds. Figure 2
outlines the general behaviors of the aerosols that are (un)observed via satellite. In this figure, the green
box represents the portion of the track formation process that is visible via satellite.

The remainder of this paper is organized as follows. Section 2 outlines our emulation approach.
Section 3 discusses parameter learning. Section 4 provides simulated examples. Lastly, Section 5
considers the potential impacts of this research and directions for future work.

2. Modeling Aerosols Using a Hidden Markov Model

Tomodel the formation and behavior of the aerosol tracks, we construct a state-space point process model
relating imaging observations of ship tracks to true aerosol emission bursts.

2.1. State-space representation

The true emission path is generated by continuously emitted aerosol emission bursts or particles by a
single ship over the spatial window X ⊂ℝ2 up to time t∈ 0, NΔ½ � where N is the number of frames and
Δ> 0 is the time between frames n and nþ1 (typically between 5 and 15 min). A (Lagrangian)
particle here is a mathematical object that carries mass in space at a specific time; it models a group
of aerosol molecules with distinct mass. The unobserved spatio-temporal point process denoted
Xtn : x, y, tnð Þ∈ℝ2�ℝ

� �
characterizes the set of unknown cardinality and true positions of aerosol

emission particles, continuously released prior to (and still visible at) time tn. The observed point process
Ytn : x, y, tnð Þ∈ℝ2�ℝ

� �
characterizes positions in satellite imagery containing observed ship tracks in

image frame n generated by Xtn. For ship k¼ 1…K which produces a track, we assume that its entire
emission path is comprised of Pk > 0 aerosol particles, all of which reach the boundary layer clouds.
Assuming that only ktn of K ships have entered the windowX by time tn < T , for an arbitrary single track

Figure 2. Observable and unobservable behaviors of aerosol emissions from satellite sensors (image
available at https://ral.ucar.edu/staff/jwolff/aerosols.html/intro.html).
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k≤ ktn , only pk ≤Pk particles are expected to become visible. We denote the unobserved point process of

true particle positions at time tn as Xtn ¼ xi,tnf gpki¼1

� �ktn
k¼1:

Existing ship tracks are modified at the next time step tnþ1 in three possible ways: The oldest aerosol
emissions at the end of the track diffuse completely and mix back into the atmosphere (leaving no
detectable trace), surviving particles diffuse and become less distinguishable as part of the track, and new
particles appear at the front of the track in the direction of ship movement. These situations result in pktnþ1

new locations xi,tnþ1

� �pktnþ1
i¼1 in each of the new and existing emission tracks at tnþ1. In practice, the full

lifespan (from the first appearance to permanent disappearance) of each emission particle is unknown.
Instead, at each observed image frame n, a partial observation of the track within surrounding clouds is
captured by the satellite sensor without information on the age of its particles. For track ktn , therefore, a set

of oktn ≤ pktn observations Ytn ¼ yi,tn
� �ok

i¼1

n oktn

k¼1
is recorded, where yi,tn ∈X .

At time tn, a newly observed track can be generated from newly released emission particles from a new
ship. Due to complex atmospheric dynamics, it is not often possible to link new observations to a source;
an observed track is not always visible directly above a ship. Thus, we assume that there is no information
about which emission particle generates which observation. We now specify a simulation model Mθ

relating states Xtif gNi¼1 from their observation sets Ytif gNi¼1 generated by parameters θ.

2.1.1. Multitarget state model
First, we define the three cycles of an aerosol particle: survival ensuing motion and diffusion through the
atmosphere, birth of new particles and death, a particle’s permanent disappearance.

After an aerosol track has already formed at time tn�1, if an arbitrary associated emission particle
xtn�1 ∈Xtn�1 survives to time tn > tn�1, its subsequent state is determined by a drift function which is
described by the wind velocity μ xtn�1ð Þ at xtn�1 , and a diffusion term σ xtð Þwhich describes the diffusion of
the emission particle within the clouds it is situated in. This evolution describes a Markov diffusion
process and is described by the (continuous time) stochastic partial differential equation (SPDE):

dxt ¼ μ xt, tð Þdtþσ xtð ÞdBt, (1)

where Bt �N 2 0, tI2ð Þ denotes a standard Brownian motion in two dimensions, with I2 denoting the
2-dimensional identity matrix. While the drift (wind velocity) is generally known, the diffusion
function σ xtð Þ� σx is set to be an unknown constant that describes the diffusivity of an aerosol parcel
within the atmospheric boundary layer, and is to be learned from data. To avoid solving (1) with
computationally expensive numerical methods, we assume that Δ is taken small enough so that the
wind velocity within each interval In≔ nΔ, nþ1ð ÞΔð �n∈ℤþ is approximately constant. With this and
given state xs at s∈ In, the SPDE dxt ¼ μ xtð ÞdtþσxdBt for s< t∈ In, can be solved via
xt�xs ¼

R t
sμ xtð Þdwþσx Bt�Bsð Þ,

xt�xs ¼ μ xtð Þ t� sð ÞþσxBt�s Bt�s �N 2 0, t� sð ÞI2ð Þ: (2)

In particular, the particle’s transition density from xtn�1 to xtn is given by f Mtn∣tn�1
xtn jxtn�1ð Þ¼

N 2 xtn�1 þμ xtn�1ð ÞΔ, σ2xΔI2
� �

, modeled by the point process Stn∣tn�1 xtn�1ð Þ,

Stn∣tn�1 xtn�1ð Þ¼ xtn wherextn � f Mtn∣tn�1
�jxtn�1ð Þwith probabilitypS,tn bxtn�1

� �
∅ otherwise,

(
(3)

where pS,tn bxtn�1

� �
denotes the probability that particle xtn�1 will survive (be visually trackable) at tn.

A new emission particle at time tn∈ℝ can arise either as a spontaneous birth (of a newly risen
emission) independent of any existing tracks, or via spawning from an existing emission source (e.g., at
the head of an existing track), resulting in a newly visible emission particle. The birth time of particle xtn
observed at time tn is denoted bx. Spontaneous births at time t are denoted by the finite point process Γt,
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modeled as a Poisson point process (Maher, 2007) with intensity function γt xð Þ¼ λγt f b,t xð Þ, where for
x∈X , Γt � Poisson λγt f b, t xð Þ� �

. Here, Nb, t � Poisson
R
X λγt f b, t xð Þdx� �

denotes the number of births
occurring in X at time t and f bt xð Þ denotes their spatial distribution. We may assume that if xb,tn is the

position of a new ship at time tn, then f btnþεb
xð Þ¼N 2 xb,tn , σ

2
bI2

� �
where εb denotes the time lag between

ship emission and aerosol observation at the boundary layer. On the other hand, spawned births occurring
within In�1 denote newly visible particles from existing tracks that reach the cloud top layer at time tn.
These can only be spawned by particles birthed in tn� εb, tn½ �, as this models the continuous emission of
aerosol particles in a single stream. In this paper, wemodel the set of spawned birthsBtn∣tn�1 xtn�1ð Þ at time tn
from a particle xtn�1 as a Bernoulli point process (Mahler, 2007):

Btn∣tn�1 xtn�1ð Þ= xf g;x� f βtn∣tn�1
xjxtn�1ð Þwith probability pβ,tn tn�2 < bxtn�1

≤ tn�1

otherwise:

(

Knowledge of ship positions (e.g., via SeaVision2) when observing tracks being formed, motivates using

the spawning density f βtn∣tn�1
xjxtn�1ð Þ¼N 2 xb,tn�εb , σ

2
βI2

� �
. Since the spawning probability pβ,tn is directly

related to the number of aerosol particles emitted, for simulation purposes, we assume that each ship
continuously emits aerosols in X up to time T ¼NΔ, enabling pβ,tn ¼1 tn ≤Tð Þ.

Given Xtn�1 at time tn�1, each particle x∈Xtn�1 with birth time bx, either continues to be visually
trackable to tn with probability pS,tn bxð Þ, or “dies” with probability 1�pS,tn bxð Þ. Here, a “death” of an
emission particle occurs when it sinks back through the atmosphere and ceases to be visible. Further, its
survival probability is solely a function of its persistence time, since the effects of up and downward drafts
in the atmosphere on each particle render spatial effects negligible. We assume that each ship produces a
cloud–aeorosol track that has an average lifetime Td �Exp λTð Þ from birth. Given Td, individual aerosol
particles contained in its emission then each have an independently and identically distributed (i.i.d.)

death time d�Log�normal μd ¼ logTd σ2pd þT2
d

� ��1=2
, σ2d ¼ log σ2pd þT2

d

� �
=T2

d,

�
where σ2pd is the

variance of particle death time, a fixed simulation input requiring estimation from data.

Altogether, we have Xtn ¼
S

x∈Xtn�1
Stn∣tn�1 xð Þ

h iS S
x∈Xtn�1

Btn∣tn�1 xð Þ
h iS

Γtn over independent unions.

2.1.2. Multitarget observational model

Here, we describe a finite point process model for the time evolution of the set Ytnf gNn¼1 generated from

emission tracks Xtnf gNn¼1 and observed over images Y tnf gNn¼1.
An arbitrary observation ytn ∈Ytn of unknown particle xtn ∈Xtn is generated from a Gaussian density

centered at xtn , with covariance taken to be the marginal covariance of xtn . Its marginal density can be
calculated via f xtnð Þ¼ R

X f
M
tn∣bx xtn jxbxð Þπ xbxð Þdxbx with π xbxð Þ being the initial probability density of

particle xtn at the time of its birth. In this paper, we take π xbxð Þ¼ δ xbxð Þ, the dirac delta function centered
at xbx , yielding ytn ∣xtn �N 2 xtn , σ

2
x tn�bxð ÞI2

� �
: For image observations, we discretize this such that the

pixel intensity of a pixelY tn Pð Þ, denoted I tn Pð Þ, follows I tn Pð Þ∝P
x∈Xtn

R
P f yjxð Þdywith normalization

constant given by the highest pixel intensity across the video.
A particle x∈Xt, at time t is only detected by a satellite sensor with probability pD, t xð Þ. This

detection probability has a spatio-temporal dependence structure which is needed to first, model the
spatial randomness of cloud humidity and second, to account for cloud movement across X . If the
cloud humidity is too low or too high, emission particles cannot be detected. In the former case,
particles cannot be observed since clouds cannot form to produce the necessary observations. In the
latter, the cloud density may be too high, or may already be contaminated with existing aerosols

2 SeaVision data based upon automatic identification systems (AIS) available at https://info.seavision.volpe.dot.gov/.
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which would subsequently not produce observations of new particles. To deal with this, we choose to
model pD,t xð Þ as a function of the existing cloud humidity, formulated by modeling baseline pixel
intensities measured by the satellite sensor and utilizing a lower and upper threshold ιL, ιU . In
particular, setting pD,tn xð Þ¼ 1 ιL < I tn xð Þ< ιUð Þ, enables a particle to be observed with probability
one if its true location x lies within a pixel of the nth frame with an intensity I tn xð Þ∈ ιL, ιUð Þ, sufficient
for its observation. Subsequently, the observational point process Θtn xtnð Þ from an emission particle
xtn ∈X follows:

Θtn xtnð Þ¼ yf gwherey� ytn ∣xtn with probabilitypD,tn xtnð Þ
∅ with probability1�pD,tn xtnð Þ,

	
(4)

specifying multitarget observations Ytn ¼
S

x∈Xtn
Θtn xð Þ observed within pixelated images Y tnf gNn¼1.

3. Data Assimilation and Parameter Learning

In this section, we discuss a method for data assimilation and learning underlying parameters of themodel
from satellite observations, based upon the ship track emulation tool proposed here.

The emulation model Mθ comprises of parameters θ that require estimation from data. Typical
methods of data-driven estimation extend standard filtering approaches (Kalman, 1960) to the point
process domain by utilizing cardinalized probability hypothesis density (CPHD) filters (e.g., Vo et al.,
2006. These not only allow for efficient estimation of the cardinality and states of the underlying point
process but can be leveraged for statistical parameter learning (e.g., Jiang et al., 2015). Unfortunately,

utilizing filtering approaches for this problem requires extracting the observations Ytnf gNn¼1 from
relatively coarse satellite images with pixels containing overlapping tracks, a highly challenging
problem. To alleviate this, we propose accurate simulation-based learning via Sequential Monte Carlo
within an Approximate Bayesian Computation (ABC-SMC) approach, described in detail in Toni et al.
(2009).

ABC-SMC works as follows. At iteration τ¼ 0, parameters are sampled from a prior density θ 0ð Þ
j �

π θð Þ until M datasets Y j �M
θ 0ð Þ
j
are within a tolerance ετ of the observed dataset Yd. This is computed

over the sequence of images via the chosen distance function

Δ Yd, Y j
� �¼XN

n¼1

X
P

Yd
n Pð Þ�Y j

n Pð Þ� �2
:

For τ¼ 1,… , NMC, tolerances ετ < ετ�1 are chosen and θ∗j � θτ�1
m

� �M

m¼1 sampled with replacement

using importance weights w τð Þ
j ¼ π θ τð Þ

j

� �
=
PN

n¼1w
τ�1ð Þ
n Kτ θ∗j jθ τ�1ð Þ

n

� �
and perturbed via Kτ to generate

θ τð Þ
j , until M datasets Y j �M

θ τð Þ
j

satisfy Δ Yd, Y j
� �

< ετ. Parameter values are therefore sequentially

updated, enabling the posterior pετ θjYd
� �

≈
PM

j¼1w
τð Þ
j δ θ�θ τð Þ

j

� �
=M at τ¼NMC to be used to infer θ.

4. Imaging Simulation

Here, we present a ship track emulation example and parameter learning with ABC-SMC.
A snapshot of five simulated images taken 20 time steps apart with time step Δ¼ 0:2 hr are shown in

Figure 3. In this study, four ships were simulated in 300�500 longitude/latitude units appearing at
staggered times. The tracks were generated using ship positions, spawning, persistence, and death

processes within a simulated circular wind motion where μ xtð Þ¼ 10π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�0:2tð Þ2þ yþ0:1tð Þ2

q
=4NΔ.

An initial realistic cloud background image, where cloud pixels alsomovedwith the simulated wind field,
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was omitted for illustration purposes. In particular, tracks are observed to follow both the ships’ directions
and wind field, with diffusivity emphasized by the broadening of each track through time. Further, pixel
intensities are observed to be higherwhen cloud tracks overlap, highlighting the expected increase in pixel
intensity when multiple sources are present.

Figure 3 also shows posterior distribution samples drawn using the ABC-SMC algorithm
(described in Section 3) targeting parameters θ¼ σβ σx

� �
from the track produced by the red ship,

with other input parameters fixed at their simulated values. Here, it is seen that the algorithm is
accurate in learning the underlying simulation parameters, with true values contained within 95%
posterior credible intervals.

5. Discussion and Follow-Up Work

In this paper, we have described and demonstrated a computational method to emulate aerosol–cloud tracks
given wind and ship fields, using an SPDE that incorporates aerosol packet birth, motion, diffusion, and
death. A demonstration of parameter learning using simulation-based ABC-SMC, highlights the power of

Figure 3. Top: Simulation snapshots are taken 4 hr apart, with N¼ 100, Δ¼ 0:2 hr, εb ¼ 5 hr,
σβ ¼ σx ¼ 0:01, λT ¼ 80 hr, σpd ¼ 0:2 hr, ιL ¼ 0:25, and ιU ¼ 0:75. Ships (red, blue, purple, and
yellow) indicated by colored dotted trajectories have initial conditions bt ¼ 5cos πt=10NΔð Þþ3,½
5sin πt=2NΔð Þþ2�, 1þ5t=NΔ, 18�2t=NΔ½ �, 1þ5t=NΔ, 18�10t=NΔ½ �, �4þ10t=NΔ, 10þ2t=NΔ½ �
respectively, with heads (orange). Wind direction is shown via yellow arrows and tracks indicated by
white trajectories. Bottom: Approximate posterior densities for θ1 ¼ σβ (left) and θ2 ¼ σx (right) are
shown with estimated values (red), true values (black), and 95% credible intervals (blue). Here,

NMC ¼ 4, M¼ 50, θi �Lognormal �5, 1ð Þ,Kτ θijθ∗i
� �¼Uniform max 0, θ∗i �σ τð Þ

i

� �
, θ∗i þσ τð Þ

i

� �
component-wise, with σ τð Þ

i ¼ 0:5 max1≤ k≤M θ k, τ�1ð Þ
i

n o
� min1≤ k≤M θ k, τ�1ð Þ

i

n o� �
; ε0 ¼ 1 and ετ>0

computed at the 80% quantiles of accepted parameter distances at the previous iteration (Filippi et al.,
2013).
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our algorithm in learning aerosol–cloud behavior from simulated inputs. Through careful parameterizations
of our simulation mode, learned parameter estimates will correspond to specific behavior of aerosol
injections in clouds such as the lateral dispersion of the linear ship tracks and the observed change in cloud
brightness over time due to the aerosols. Incorporating parameters that account for observedwind data from
ERA-5 reanalysis and available atmospheric information that are well-documented to contribute to cloud
track formation, such as cloud condensation nuclei (CCN), liquid water path (LWP), and low-lying cloud
cover, would also improve emulation of more realistic aerosol–cloud behaviors.

Using the presented methodology, a natural next step would be to verify that this surrogate model is
accurate in representing aerosol–cloud paths using satellite imagery and large eddy simulation (LES)model
simulations. This is challenging as real tracks have poorly identifiable sources and the relationship between
observed atmospheric properties and track behavior is not trivial to infer from imagery alone. We are
currently pursuing methods to validate against real and LES simulated data through calibrating the
parameters of our model to match the observed lateral behavior in satellite imagery and vertical dispersion
behavior in LES runs. LES runs will also be important to incorporate dependencies on physical depend-
encies such as the aforementioned convolution neural network (CNN), LWP, and low-lying cloud cover.

While this would allow application of the presented methodology to learn specific atmospheric
conditions under which ship tracks form, the high computational burden that is expected when using
simulation-based learning for high-resolution feature-rich satellite imagery, must be taken into account.
For example, leveraging (preprocessing) image compression and feature extraction algorithms such as
CNNs already developed for this problem (Yuan et al., 2019), could result in improved structured sparsity
and drastically reduce the resulting computational complexity required for efficient parameter learning.
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