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Abstract

A quasi-trapezoid inequality is derived for double integrals that strengthens considerably
existing results. A consonant version of the Griiss inequality is also derived. Applications
are made to cubature formul® and the error variance of a stationary variogram.

1. Introduction

Although important for applications, numerical integration in two or more dimensions
is still a much less developed area than its one-dimensional counterpart, ‘which has
been worked on intensively. For some interesting recent commentary, see Sloan [8].
Even the traditional integration of polynomial forms over rectilinear regions translates
in higher dimensions to problems with some complications (¢f. Rathod and Govinda
.Rao [6]).

Central to questions of numerical integration in one dimension are Ostrowski’s
theorem and inequalities of trapezoid type. For a compendious treatment of the latter
see Mitrinovié et al. [5] and the references therein. Recently new versions of some of
the classical tools have been developed for a two-dimensional context.

Suppose f (-, -) is integrable on [a, b] x [¢, d] and for x € [a, b] and y € [c, d] set

b d
£y :=f / £ (s, )dsdt + (b — a)(d — Of (x, y)
d b
—(b—a)f f(x,t)dt—(d—c)/ f (s, y)ds.
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Barnett and Dragomir [1] have proved the following two-dimensional theorem of
Ostrowski type.

THEOREM A. If f (-, ) is continuous on [a, b] x [c, d] and ], = 0%f /0xdy exists
on (a, b) x (¢, d) and is bounded, that is,

Ifillo = sup

(x,y)e(a,b)x(c,d)
then for any x € [a,b) and y € [c, d]

b—a)? + b6\ | [ (d-c)? d\?*|,
!ff(x,y)lsl:( 40) +(x_“2 )][( 4c) +<y_0'|2' ):Ihfsl./t"oo' (1.1)

Here and subsequently it is implicit that f ", is integrable on [a, b] x [c, 1.
An interesting particular case, which is in fact the best inequality we can obtain
from (1.1), is the ‘quasi-midpoint’ inequality
If (@ + B)/2, (c + d)/2)| < (1/16)(b — &)*(d — ) || f L], -

The first two authors have applied (1.1) to cubature formulz in {1] and to the analysis
of variograms in [2].
Define the functional

fr=ffaa+fi@d+f'eo+fiead]/4

b pd
=//f(s,t)dtds+f(a’C)+f(a’d):f(b’C)+f(b’d)(b—a)(d—c)

b d
—(d—c)/ f(s,c);f(s,d)ds_(b_a)/ f(a,t)-;‘-f(b,t)dt.

When Theorem A applies, we have
If f@@ ol < (1/4)(b- a)*d — )* | £,
and similarly for f T(a, d), f (b, ¢) and f (b, d), so that
If*I < (1/8) (b —ay*d ~ ) |f L] -

In this article we show that a much stronger result holds, namely the following.

3*f (x,y)

< 00,
dxady

THEOREM 1. Under the conditions of Theorem A,

* _1_ _ p _ 2 14
1< 1 (b —a@’d =0 |f]

This we establish in.Section 2, where itis shown that it follows from an appropriate
double-integral identity. In Section 3 we derive a conformable inequality of Griiss type
and in Section 4 apply our ideas to cubature formulz. We conclude in Section 5 with
an application to bounds on the error variance of a continuous stream with stationary
variogram.

00"
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2. Integral identities

First we derive a useful ancillary result.

LEMMA 1. Suppose that a;, < a, and B, < B, and that 3°f /050t is integrable on
[ay, az] x [Bi, B2). Ifeither (a, &') = (o), @) or (&', @) = (), &) and similarly for
B, B', then

a rh
/ f (s —a)t = p)f, dtds
=(a —a)(B = B)f (&, B") — (B, — .31)/ 2f(S, B)ds

B o ph
—(@—a) | f( b)dt +/ f (s, dtds.
B ap B

PROOF. This is immediate from a repeated integration by parts.

We now proceed to our main double-integral identity.

THEOREM 2. Under the assumptions of Theorem A,

b pd
f*:/ f (s—a;b) <t—c-'2-d)fs"’,(s,t)dtds. 2.1)

PROOF. Take x € [a, b], y € [c, d] and apply Lemma 1 with the four choices

(alv o, ﬂl’ ﬁZv o, ﬂ)
=(a,x,¢,y,a,¢),(a,x,y,d,a,d),(x,b,y,d b d),(x,b,c,y, b,0c).

Addition of the resultant identities yields
b d
[ [ pwra0.5sdras
a Je ,
=d-ab-afx,y)—d- C)/ fs,y)ds

d b pd
—(b—a)/ f(x,t)dt-}-//f(s,t)dtds,

where p(x, s) isdefinedass —a if s € [a,x]andas s — bif s € (x, b], whilst g(y, 1)
ist—cifte(c,ylandt —dift € (y,d].
We now make the four choices

(x,y) =(a, 0),(b,¢),(a,d), (b,d)
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and add again to derive

b d
//[P(G,S)+P(b,S)][61(C,l)+4(d,1)1fs',',(s,t)dtds

b d
=4//f(s,t)dtds

+[f(a, o)+ fla,d)+ f(b.c)+ f(b,d)(b—a)d—c)
—2(d — ¢ /ab[f(s, A+ f (s,d)lds — 2(b — a) /d[f(a, D+f (b, 1)]dt.
Since
pla,s)+p(b,s)=2s—(a+D), q(c,n)+q(d, 1) =2t — (c+d),

this is equivalent to the desired identity.

Our theorem provides

1 < a+bH c+d

and a simple calculation yields

8
'/ u_
o

Theorem 1 follows as an immediate corollary.

PRy
a—“;ﬂ‘du _ B 2.2)

4

3. An inequality of Griiss type
The well-known Griiss inequality (see for example Mitrinovi¢ et al. [4, p. 296])
states that if f, g : [a, b] — R are integrable on [a, b] and

p<fx)=< o, y <gx) <I' foralls € [a, b],
then
1
1] < Z(b —a)) (T —y)(® —9),

where

b b b
=(b—a)f f(x)g(x)dx—/ f(x)dx/ ¢(x) dx.

Moreover, the constant 1/4 is best possible.
We establish a closely related result.
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THEOREM 3. Suppose f, g : [a, b] — R are continuous on [a, b}, differentiable on
(a, b) and with bounded derivatives. Put

7., = Sup '@ <oo, |, = ,ggg)lg ®)| < oo.
Then

|1 +1f (@) — f D)]g(a@) — g — a)*/4|

e a)2
< [Ilf f@lllg — g(a)lloo+|lf fD)llwllg - g(0)l]

N el 3.1)

PROOF. Define 4 : [a, b)* — Rby h(s, t) = [f (s) — f ()1[g(s) — g(t)]. We have

h(a, a) + h(a, b) + h(b, a) + h(b, b) = 2[f (b) — f (a)}[g(b) — g(a)]
and

b
/ [A(s, a) + h(s, B)]ds

b
=f [h(a, s) + h(b, s)]ds
b
= f {[f ) = f(@)]ig(s) — g@)] + [f (B) — f (5)][g(®) — g(s)]} ds
Also
aZh > ’ ’ 4 ?
oD g0~ £ (0 ),
so that

a+b a+b\ 3*h(s, 1)
f/( ) (1= 95) S s
b
=_2f (s a+b)f(s)ds/ (t—ﬂ-—f)g(f)dt

Hence applying Theorem 2 to & on [a, b] x [a, b] provides

f (&) —f (@)](g(b) —g(a)]
2

b b
f f [f ()= f (0[g(s) ~ (1)) ds di + (b—-a)’

b
= (b—a)f {If &)= F @]lg(s) —g@1+1f B)—f ()][g(B) —g(s)]} ds

b b
_2f (s——a+b)f(s)d / (:—#)ﬂnm.
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Since

1 b b
3 f / F) —fOllg) —g)ldsde =1,

we deduce that

I+ f (®) — f (a))lg(h) — g(a)]

4
b— b
= 2af {f ) —f @]lg(s)—g@]+f (B)—f ()]lgB)—g(s)]} ds

b b
[ (-2 (-52) e

Thus the left-hand side of (3.1) is bounded above by '

(b-a)?

1
56— a(If = f @llllg = 8@loo + I (B) = £ lellg ®) = gloc]
, , b +b| T
e[ [ s -]

The desired result follows from (2.2).

4. Application to cubature formula

Take arbitrary divisions 1, : @ = xy < x; < -+ < X,y < x, = b of [a, b]
and J, :c =Yy <y < '+ < Ym-1 < Yym = d of [¢c,d] and set h; := x;4; — x;
(i=0,...,n=Dand]; :=y;;, —y; ( =0,...,m—1). Define

Yi+1 , . Xigl ] ‘
nij = h,.f f ("_‘*2&[) dt+1,./ 7 <s, Y +2y’+')ds
Yi X

g

— il f <xi +2xi+l, Yj +2)’j+1>"

Barnett and Dragomir [1] considered a quasi-midpoint rule for double integrals
given by

n—=1 m-1

Cu(f, I, 1) = Z Z Nij

i=0 j=0

and proved that provided the integrals involved exist and |[|f”, |l is finite, then

b d
/ f f(sv t)det=CM(.fq IIH Jm)+RM (fa 1’!9 Jm),
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where the remainder satisfies
1 n—1 m—1
R (f I I)| < 2 Il DR D
i=0 j=0

We are now able to establish a quasi-trapezoid formula. Set

I fyj+l [f (xi, D+ f (xiz1s t)] ) ij+l [f (s, yi)+f (s, )’j+1)] ds’

2 2
7 .
—hil [f iy y;) + f Oy yie) + f Gig, yi) +f(xi+1syj+l)]
itj 4
and define
. n—1 m—1
CT (.f’ Inv Jm) = Z Zsi,j'
i=0 j=0

Then we have the following result.

THEOREM 4. Let f : [a, b] X [¢, d] — R satisfy the conditions of Theorem A. Then
we have the cubature formula

b d
/ / f(s9 t)detZCT(fv In’ Jm)+RT(,fv Inv Jm)’

where the remainder term satisfies

m—1

Wy L. (4.1)

n—1
i=0 Jj=

1 14
|R1‘ (f, Im -’m)' =< Tg "fs.t"oo

PROOF. Applying Theorem 1 to the interval [x;, x;41} X [y;, yjilfori =0,...,
n—1landj =0,...,m—1 gives

1
< —
- 16

Xigl Yi+1
/ f(s,deds — &

i Vi

272 ”
B £ -

Summing over i from Oto n — 1 and j from O to m — 1 and using the generalized
triangle inequality yields the desired inequality (4.1).

REMARK 1. Set

v(h) :==max{h;:i=0,...,n—1}, p@®:=max{l:=j=0,..,m—-1}.
Then since

n

-1 n—1
D kP <v(h)Y hi=(b—a)w(h)
=0 i=0

i
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and
m—1 m-1
D E=u®) L =@-on,
j= j =0
the right-hand side of (4.1) is bounded above by
1 ”
76 Il @ — @) @ = i),

which is of order two precision.

5. The error variance of a continuous stream with stationary variogram

Suppose (X (#)) is a continuous-time stochastic process, possibly nonstationary.
Typically (X (¢)) represents a continuous-stream industrial process such as is common
in many areas of the chemical industry. In [3], the authors considered X (f) as defining
the quality of a product at time ¢. The paper was concerned with issues related to
sampling the stream with a view to estimating the mean quality X characteristic of
the flow over the interval [0, d]. The sampling location ¢ is said to be optimal if it
minimizes the estimation error variance

E[®-x0)], o<i<a

In [3] it was shown that for constant stream flows, the optimal sampling point is
the midpoint of [0, d] for the situation where the process variogram
1
Vu) = —E [(X(1) — Xt +w)?],
V(O) - ’ V(_u) = V(u)a ue [_d, d]

is stationary. We remark that variogram stationarity is not equivalent to process
stationarity.

In this paper we use Theorem 1 to give an approximation of the estimation error
variance E[(X — X (1))?] for t = d.

From [3], it can be shown using an identity given in [7] that

E[(X - x0)] // V(v - u)dudy

d—t
+_{/ v(u)du+/ V(u)du}. (5.1)
d 0 0

Suppose V is continuous on [—d, d], twice differentiable on (—d, d) and has
bounded second derivative V” bounded on that interval. It is shown in [2] that from
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(1.1) it is possible to get the bound
. 2 1 t=d/2*T Ly
E[X-xo)]=|;+—F—]| @IV, (5.2)

forall ¢t € [0, d].
The best inequality we can get from (5.2) is for t = 1, = d/2 when we have the
bound

- 42
E[(X - x@m)] < =1Vl
Fort =d,

- d?
E[@-x@)]<Z V...

This can be complemented as follows.
Put f(s,t) = V(s —t),a =c=0and b = d in Theorem 1 to get

d d 3
f / V(s — tydsdr + L O+ W d)4+ V@) + VO ,
0 0

d d
—d/ V(-+V(d-1) di— d/ Vis)+V(s—d) ds
0 2 0 2

d4 1
‘ <L, 63

Since V (0) = 0 and V(—d) = V(d), we have

d d
/ VEn+Vd-n / V) + Vs —d)
0 2 0 2

v+ vd-n 1
_/0 7 dt—/0 V(u)du
and by (5.3)
d d d 4
f / V(s—t)dsdt—Zd[ V(u)du+Md2 < i"—|| vi.. (54
o Jo 0 2 16 oo

But, by the identity (5.1), we deduce that

d d d _ )
// V(s—t)dsdt—-2d/ V(u)du:—dzE[(X—X(d))].
0 0 0

Consequently, by (5.4), we get

V(d)
D)

d2
<

&[0 - x@y] <Zyvi,

which gives an approximation for E [()—( — X (d))?] in terms of V(d).
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Note that for small d the approximation is accurate and is of order two precision.
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