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1. Introduction. This paper is the sequel to [1]. Briefly, the context in which we
shall work is as follows. Let & be a finite von Neumann algebra acting on a Hilbert space
¥. Let ¢ be a faithful normal finite trace on & with ¢(I) =1, where I is the identity of .
For 1=p<,, let L?() denote the non commutative Lebsegue spaces associated with
(A, ¢) [9]. We note that L°(«) is a linear space of (possibly unbounded) operators X,
affiliated to &, for which ¢(|X|?) <o, where |X|=(X*X)"?. L°(«) is a Banach space
under the norm || X]}, = #(1X|?)'?. The following facts will be used freely. For 1<p <, let
q be defined by 1/p+1/q =1 with q = if p=1. Then the dual of L*(sf) is L(«) under
the bilinear form (x, y) = ¢(xy), where x € L?(«) and y € L(s), with the convention that
LA)=oA.If 1<r<s<o, then L(f)c L' ()< L'(4). The L' norm may be defined as

llx[ly = & (|x!) = sup |#(xB)|.

If xeL"(«) then x*, the (Hilbert space) adjoint of x, is in LP(sf) too. For a fixed
p<l[l, ) we define an average to be a linear contraction A of L?(sf) satisfying

A®) = A(x)* (xe LP(A)),
AXA®Y)=AX)A(y) (xed, yeL’(HA)).

In [1] it was shown that an average which preserves the identity of & is the
conditional expectation onto its range, which has the form L°(%) for some von Neumann
subalgebra B of . In this paper we shall characterise those averages that do not
necessarily map I to L

2. Characterisation of adjoint preserving averages. We begin by characterising
those subspaces of LP(sf), which are L?(%) for some von Neumann subalgebra & of .

THEOREM 2.1. Let pe[1, ) be fixed and let M be a closed subspace of LP(sf) which
contains a *-subalgebra B° of o4 with 1€ B° and such that B° is || - ||,-dense in M. Then
M =L"(B, ¢), where B is the von Neumann algebra generated by RB°.

Proof. The idea is that the || - ||, closure picks up the strong operator closure too. The
algebra B° is dense in B in the strong operator topology (hereafter denoted t,). By
Kaplansky’s density theorem, the self adjoint part of B9, the unit ball of $°, is 7;-dense in
the self adjoint part of 9,, the unit ball of B. Given x =x*e &, there is a net (x,) of
self-adjoint operators in B9 converging strongly to x. Let 0 # n be a natural number and
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ye ¥; since |x — x,|*=(x —x,)*> we have

Ix =2 POl = llx = x) " W <lx = x 2l = x )W
<2"[(x-x)MI—-0 as a?,

where |- |.. denotes the operator norm. So |x—x,[>*—0—7, as a?. It follows that

Ix ~ x.ll.n — O as a } because ¢ is weak operator continuous on bounded sets in . For
1=<p < we can choose n sufficiently large so that p<2n. We then have

e = xollp <llx = Xallz  (n=p/2).

This relation follows from the corresponding relation for real valued functions from 2-4 of
[9]. So |lx — x.]l, = 0 as « 1 . Hence #" %= L"(%) = M. The reverse inclusion is obvious.

In connection with the next result, see [6].

THEOREM 2.2. Let A : LP(of) — L?(A) be an average. Then A(x)= Mg (ux), where

Mg (-) is the conditional expectation with respect to a von Neumann subalgebra B of & and

u=A"(I). (A" is the L"-adjoint of A.)

Proof. Let B°={xecsf: A(yx)=A(y)x, A(xy)=xA(y) Vye of}. Then B° is a =*-
subalgebra of & containing I. By Theorem 2.1, B =1 °(B), where B denotes the von
Neumann algebra generated by #°. Hence for y e L°(®) there is a sequence (y,)< B°
such that y, —y in |- |,. If xe s we have

lxy, — xyll, <llxlullyn —¥ll, =0 as n—o.

Hence A(xy,) — A(xy) in || - ||,. From [1], we know that x e & > A(x)e «. It follows for
xed and ye LP(%) that

A(xy)=lim A(xy,) =lim A(x)y, = A(x)y.
Now let xesf, ye®B. Both Mg(A*(I)x) and A(x) are in L'(®B); the latter because
A(x)e B°. Since

¢ (Mg (A" (Dx)y) = d(A™(Dxy) = $(A(xy)) = $(A(x)y)

it follows (from the definition of the L'(%) norm) that A(x) = Mg (A*(I)x) for x € f. Now
suppose that xeL"(&i) We can choose x, € o with x —llmx,, and A(x)—hm Al(x,) in

Il Il But Mg (A™(I) - ): LP(sf) — L'(%) is continuous, and so (Mg (A*(I)x,)) converges to
Mg (A*(I)x) in L' (B) norm. But || - ||, <|- ||, for a finite algebra so for x € L?(«),

A=, - lim A(x,) =| - [, -lim Mg(A™(D)x,) = Mg (A™(D)x).
REMARKS

(i) An average is a translation followed by a conditional expectation.
(ii) Theorem 2.2 shows A to be a left translation followed by an expectation.
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Why not a right translation? In fact it makes no difference for if y € 9%,, then

(Mg (AT (Dx)y) = d(AT(Dxy) = ¢(Alxy));
but ye @ so that

d(A(xy))=d(Ax)y) = d(yA(x))
= ¢(A(yx)) = (A" (Dyx)
=p(xAT(Dy) = ¢(Mg (xA™(D))y).

3. Fixed points of averages. Let & be a von Neumann subalgebra of & that does
not (necessarily) contain I. We shall denote the || - ||, closure of B in L?(«) by L?(%).

The next result shows that there is a projection onto the fixed points of an average
A : LP(d)— LP(A) with some nice properties. In particular the fixed points of A are a
closed subspace of LP(«f) of the form LP(A), where B is a von Neumann subalgebra of
A.

THeOREM 3.1. Let A : LP(4)— L"() be an average. Then there is a projection F
from LP() onto the fixed points of A with the following properties.

(i) F(x)=F(DA(Qx)=Ax)F(I) (xe L"(s4)).

(1)) F() is a projection.

(iii) F is normal on A.

(iv) F(A) is a von Neumann subalgebra of A.

(v) F maps the centre of o into the centre of F().

(vi) F(L"(sf))=L"(F(s4)).

(vii) F is an average.

Proof. We deal with the cases 1<p < first and then deduce the case of p=1 from
these.
(i) For 1<p<o, LP(dA) is reflexive [9]. The ergodic averages S.(-) =
n—1
= Z A¥(-) are uniformly bounded as maps L"(f)— LP(s#) and, for xeLP(H),

N =0
A*(x)/k converges to 0 in L"(sf) as k — . It follows from Corollaries 2 and 4 of VIILS5
of [2] that for x e L°(A),

F(x)=limS,(x) in |-,

exists and the map x — F(x) is a || ||, contractive projection onto the fixed points of A.
The averaging property indicates that A*(x)= A*"'(I)A(x); therefore,

S, (x) =% (x+AX)+ADAX)+AIPAX)+. ..+ A"H(DA(®K))

_x U+AD+.  +ATDAK) ADAR
_n n n

x CAT(DA®)
= 24 S (DA - ——
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Since A(A;) s, (2.2 of [1]) we have for x € & that S,(I)A(x) - F(I)A (x) in || - ||, and
hence F(x)=F(A(x) for x € . Moreover ||S, (Djl.<1 for n=1,2, 3,.... We claim that
F(I)e o, t00. To see this, note that &, is compact in the weak operator topology ,, and
hence (S,(I)) has a subnet (S, (I)) converging in 7, to some Tesf,. Since (S,(I)) is
convergent in || - ||, to F(I) the subnet converges in || - {,—and hence weakly in L”(s) to
F(I) too. Now on o, the weak and ultraweak topologies coincide, and so every weak
operator continuous linear functional on &, is given by an element of L'(sf). But
L)< L'(A); hence for every X e L(sf), where 1/p+1/q=1,

&(XT) =lim ¢ (XS, (D)) = ¢(XF(I))

and so F(I)=Tes,. It follows that F(x)=F(I)A(x) for each xe L?(#). To see that
F(x)= A(x)F(I) note that A*(x)= A(x)A*'(I), and proceed as above.

(i) We now use (i) noting that x = F(I) is a fixed point in &,. F(I) is self adjomt
because A preserves adjoints.

(iif) Using (i) and the averaging property with the fact that A is *-preserving we see
that F | & is a projection of norm one onto F(sf) which is a C*-algebra. Hence F is
positive [7]. Let x, 1 x in &. By scaling if necessary we can take 0 <x —x, <I. Using the
normality of ¢ we conclude that x, — x in L'(sf). Now for 1<p <<

Oslx—x,°<|x—x,|]=x—x,<L
So for 1<p <<oe,

(x x|V <px—x) =lx = x>0 as a?.

That is, [|x — x|, — 0 as n — . By continuity F(x,)— F(x) in || -||, and hence in | - |,
and as F is positive and x = x, Va we have, by §2 of [9],

S=sup F(x,)=| - ||y —lim F(x,) = F(x) :F<sup x).

So F is normal.

(iv) As we noted in (iii), F(sf) is a C*-algebra. Again by (iii), F(sf) is monotone
closed. Finally, because it has a trace defined on it, it has sufficiently many positive limear
functions. We use 3.16 of [7] to get the result.

(v) This follows directly from the averaging property.

(vi) Because F(«) is dense in the range of F.

Now we consider the case p = 1. Since, in this case A contracts || - ||, and also | - |l.. by
[1], it follows from [5] that it contracts | - ||,, 1 <p <ec. For x € L" (&) (where p is fixed) the
relation (i) holds and (ii))—(vi) follow. Since A is an L' contraction and L?(%) is dense in
L'(sf) we can extend the map F(-) from L?(s{f) to L'(sf) by using (i). We note that (i)
then holds (obviously) for x € L'(sf) and that F(x) is a fixed point of A, so that F is an
idempotent.

(vii) This follows from (i), (i) and the fact that A is an average.

It would be useful to know what conditions a contraction of L"(f) shiould satisfy in
order for it to be an average. Kelley [4] has shown that a positive idempotent operator on
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C.(X) is averaging if and only if its range is a subalgebra. The following result is along
these lines.

Lemma 3.2, For a fixed pe[1,®) let T : L?(s4) — LP(sf) be a positive linear mapping
that preserves the identity operator. Then T preserves the trace.

Proof. See 2.4 of [1]. The result is proved for an average, but the proof works just as
well for the T of the hypothesis.

THEOREM 3.3. Let pe[1, ) be fixed and T : LP(d) — LP(A) be a positive contractive
idempotent linear mapping with T(I)=1I and T(s) an algebra. Then T is the conditional
expectation onto L*(R), where B is a von Neumann subalgebra of A.

Proof. By the lemma, T preserves the trace and so for each projection E € of we have
0<=T(E) =TI and ¢(T(E)) < ¢(E). These are the conditions of Proposition 1 of [10]. This
shows that T extends to a map of LP(«) into itself for 1=<p'=<o, and T(HA) <A
moreover if x = x*, then | T(x)||, <| x|l,. We shall use the extension of T to L*(A) below.

So T(s) is a *-subalgebra of & containing I. By Theorem 2.1 above, the range of T
is LP(T()"), where T(s)" denotes the von Neumann algebra generated by T(«). Let M
be the conditional expectation L”(&d)o—moeL”(T (4)"). Suppose that for each ye T(H),
zelLP(A),

¢ (M(2)y) = &(T(2)y). ()
Then by ultraweak continuity we have (*) for y e T(&£)". This shows that M(z) = T(z);
(consider the L* norm). So it remains to show that (*) holds. What we shall show is that if

yesf is a fixed point of T then it is a fixed point of T (the “L°” adjoint of T). We then
get, for ye T(HA),

S (M(2)y) = d(zy) = $(zT"(y)) = ¢(T(2)y),
which finishes the proof.

Consider x € of; we know that T(x)eL*(s{) but only that T*(x)e L), where
1/p+1/q =1. However it is clear that on & the L* adjoint of T agrees with the L? adjoint
of T. So for z< L*({) we have

sup [¢(T*(x)zy)| = sup {dp(xT(zy))| (zy e L*(A))

vesd, yesd,

< sup 2{{xllallylllzll2t,

vesd,

so that T'(x)zeL'(sf) and hence T'(x)e L*(s{). Suppose now that x=x*csf and
T(x)=x. We note first that, since T preserves positivity so does T, and hence they both
preserve adjoints. Thus

0<||T"(x)—x|3 = &((T(x) — x(T*(x)—x))
=(TH(x)TH(x)) = S (T (x)x) — b(xT"(x)) + p(xx)
= (T (x) T (x))— b(xx).
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But by Proposition 1(iii) of [10] we can see that T is | - ||, contractive on self adjoint
elements in & just as T is. Hence T*(x) = x. It follows that T and T™ have the same fixed
points in s{.
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