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Abstract

Based on a new cored succession at Winterswijk, evidence is uncovered of the end-Triassic
mass-extinction (ETME) event in a subsurface sedimentary succession of the Netherlands. The
ETME was one of the most devastating events for the biosphere during the Phanerozoic era.
Massive volcanism from the Central Atlantic Magmatic Province initiated the breakup of the
supercontinent Pangea and resulted in terrestrial and marine extinction pulses, which
drastically altered the course of life on Earth. The newly cored material reveals a sedimentary
succession representing a shallow marine setting dominated by laminated black shale and
claystone deposits. A high-resolution palynostratigraphic dataset provides evidence for a late
Rhaetian vegetation assemblage that displays a stepwise decline of arborescent tree vegetation
that is transiently replaced by a community of ferns and fern allies. Geochemical records link
this major disturbance in palynofloral biodiversity to a pulse of volcanic activity as evidenced by
a negative excursion in stable organic carbon isotopes. Shifts towards drier climate conditions,
as inferred from sedimentary elemental composition, suggest continental aridification strongly
influenced the terrestrial realm following volcanic pulses. Presence of reworked material
suggests unstable soils that were affected by increased erosion rates, inhibiting the re-
establishment of conifer tree vegetation. Comparison of our findings with other contempora-
neous European Triassic-Jurassic boundary sections confirms the progression of the end-
Triassic extinction, which exhibits a two-phased structure. The presence of the ETME in the
subsurface of the Netherlands provides further evidence towards our understanding of
terrestrial extinction with emphasis on the decline of vegetation.

1. Introduction

The Winterswijk quarry in the eastern Netherlands is a unique location that exposes Triassic
sediments close to the surface. Based on palynological assessments, a middle Triassic, Anisian
age was determined for the carbonate sequences (Visscher and Commissaris, 1968) of the
‘Muschelkalk’. Later on, Lower Jurassic and Cenozoic deposits overlying the Muschelkalk were
also recognized, cropping out in areas around theWinterswijk quarry (Harsveldt, 1973; van den
Bosch et al. 1975; Herngreen et al. 2005). Subsequent quarry expansion has revealed a peculiar
~11 metre succession of black shale and red claystone deposits overlying the Muschelkalk in the
northern flank of Quarry IV (Fig. 1). Preliminary palynological data strongly hinted at a late
Rhaetian age, which was confirmed by magnetostratigraphy (van Hinsbergen et al. 2019) and
findings of a diverse assemblage of Rhaetian shark teeth (de Lange et al. 2023). Here, we
investigate whether Rhaetian successions in Winterswijk also contain a record of the end-
Triassic mass-extinction (ETME) event.

The ETME has not been documented in the strata of the subsurface of the Netherlands, but
its detection could provide significant insight into the progression of major extinction patterns
in a key location in the Central European Basin (CEB) (Fig. 2). The ETME (~201.5 Ma) is often
causally linked to volcanic activity of the Central AtlanticMagmatic Province (CAMP) initiating
the breakup of the supercontinent of Pangea (Deenen et al. 2010; Blackburn et al. 2013; Percival
et al. 2017; Landwehrs et al. 2020; Ruhl et al. 2020). CAMP-flood basalt emissions are generally
held responsible for the extensive dieback in the marine/terrestrial biosphere through climate
warming/cooling, acid rain andmarine anoxia. An estimated release of 8,000 Gt to 100,000 Gt of
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CO2 (Beerling and Berner, 2002; Heimdal et al. 2018; Capriolo
et al. 2022) resulted in highly elevated atmospheric pCO2

(Steinthorsdottir et al. 2011) and caused a rise in global
temperature between 3 and 6°C (McElwain et al. 1999; Huynh
and Poulsen, 2005). Several climate archives record at least a
doubling of atmospheric pCO2 to nearly 5000 ppm during the
earliest Jurassic (Schaller et al. 2011; Schaller, 2012). Coupled
ocean-atmosphere climate models demonstrate that significantly
increased pCO2 forcing causes continental aridification and
enhanced seasonality in coastal regions of the Pangean landmasses
(Huynh and Poulsen, 2005; Landwehrs et al. 2020; Landwehrs et al.
2022). In addition, acid rain, frequent wildfires and increasing

weathering/erosion rates are factors that contributed to the
instability of terrestrial and marine biomes (van de
Schootbrugge et al. 2020; Bos et al. 2023).

Recent analyses of marine and terrestrial records revealed a
two-phased extinction (Gravendyck et al. 2020; Wignall and
Atkinson, 2020; Lindström, 2021; Bos et al. 2023). Episodes of
increased extinction rates and ecosystem disturbance coincide with
two negative excursions in stable carbon isotopic composition
(δ13C) of the global exogenic carbon pool, as reflected in
sedimentary organic carbon. This revealed that pulsed CAMP-
emissions influenced the global exogenic carbon pool and the
biosphere (Hesselbo et al. 2002; Deenen et al. 2010; Ruhl et al.
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2010a; Whiteside et al. 2010; Lindström et al. 2012; Corso et al.
2014; Hesselbo et al. 2023). Elevated sedimentary mercury (Hg)
concentrations provide evidence that links these negative CIEs to
volcanic activity (Thibodeau et al. 2016; Percival et al. 2017; Kovács
et al. 2020). The onset of the ETME is linked to a first pulse, which
resulted in a stepwise decline in arborescent conifers (Lindström,
2021; Bos et al. 2023) and thus vacated open landscapes that were
gradually colonized by pioneering spore-producing ferns/fern
allies (Ruckwied et al. 2008; Götz et al. 2009; Larsson, 2009; van de
Schootbrugge et al. 2009; Schneebeli-Hermann et al. 2017; van
Konijnenburg-van Cittert et al. 2020; van Konijnenburg-van
Cittert et al. 2021; van Konijnenburg-van Cittert et al. 2022). This
interlude period of fern dominance is generally expressed through
a so-called ‘fern spike’ and is referred to as the main disturbance
interval for terrestrial and marine ecosystems with little to no
extinctions being reported (Larsson, 2009; van de Schootbrugge
et al. 2009;Wignall and Atkinson, 2020; Lindström, 2021; Bos et al.
2023). This disturbance interval culminates into the second phase
of the ETME with the true extinction of Triassic tree taxa at the
Triassic-Jurassic boundary (Lindström, 2021). The extinction of
Triassic vegetation resulted in major turnovers in dominant plant
biomes (McGhee et al. 2013; Lindström, 2016) establishing Early
Jurassic vegetation and a significant component of present-day

flora (Rees et al. 2000). However, uncertainties still remain in the
magnitude of this turnover (Barbacka et al. 2017) and the potential
causes.

We investigate a recently drilled core from Upper Triassic
marginal marine sediments near Winterswijk (the Netherlands)
and provide the first evidence for the presence of the ETME in
subsurface of the Netherlands based on a detailed palynostrati-
graphic framework of this new section. Based on palynofloral
assemblages, we employ standard diversity indices (richness,
evenness, dominance and the Shannon-Wiener index) to assess the
impact of the ETME on plant ecosystems. Additionally, we use
sediment geochemistry to reconstruct palaeo-environmental and
palaeo-climate conditions. This study puts particular emphasis on
the transition from pre-extinction conditions to extinction interval
from an ecological perspective and aims to evaluate patterns in
floral changes at the onset of the ETME.

2. Regional palaeogeography and stratigraphic framework

The palaeogeographic setting of the Winterswijk depositional site
is in the south of the CEB (Fig. 2A). During Late Triassic/Early
Jurassic times, northwestern Europe was characterized by high sea
levels relative to the modern (van der Meer et al. 2022) resulting in
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an epicontinental seaway with isolated small landmasses
(Manspeizer, 1994; Golonka et al. 2018). The European
Epicontinental Seaway was situated at mid-latitudes (30–50°N)
dominated by marginal fluvio-lacustrine and shallow marine
depositional settings (Fig. 2). Notable landmasses surrounded the
CEB, including the Rhenish Massif to the south, London-Brabant
Massif to the southwest, the Bohemian Massif to the east and the
Fennoscandian Shield to the north. The CEB lies in a proximate
position to major volcanic activity of the northern extents of
CAMP volcanism, which reached up to Iberia and western France
(Caroff and Cotten, 2004) (Fig. 2A). Sediment distribution
indicates restricted marine facies in the southwest of the CEB
from several sub-basins such as the Anglo-Dutch and Germanic
Basin (Fig. 2B). Towards the northeast of the CEB, the sedimentary
facies transitions to deltaic and fluvial deposits, which dominate
the North German and Danish Basins. The Winterswijk core is
situated at the western edges of the Germanic Basin and is mainly
represented by the restricted marine facies of the Sleen Formation,
which has been dated to the Rhaetian (van Hinsbergen et al. 2019;
de Lange et al. 2023). This formation is equivalent to the marine
Rhaetian deposits of the Penarth Group (Westbury Fm and
Lilstock Fm) from the UK and southern North Sea (Fig. 2C). The
Rhaetian fluvial facies of northern Germany and Denmark are
represented by the Exter Formation and Gassum Formation,
respectively. Marine deposits are not uncommon in the Rhaetian
sections of Denmark and Germany, which indicates roughly the
extent of marine ingression on the eastern side of the
CEB (Fig. 2C).

Stratigraphic correlations of Triassic-Jurassic boundary sec-
tions have been conducted using δ13CTOC records that show two
distinct negative stable carbon isotope excursions (CIEs), reflecting
the volcanic injection of 13C-depleted carbon (Hesselbo et al. 2002;
Deenen et al. 2010; Ruhl et al. 2010b; Whiteside et al. 2010;
Lindström et al. 2012; Corso et al. 2014). These are known as the
Marshi (‘precursor’) and Spelae (‘initial’) CIEs and can be widely
traced (Lindström et al. 2017). The volcanic origin of these
excursions has been substantiated using sedimentary Hg-enrich-
ments (Percival et al. 2017; Kovács et al. 2020; Percival et al. 2021)
as well as Hg-isotope signatures (Yager et al. 2021; Shen et al.
2022a; Shen et al. 2022b; Bos et al. 2024). Furthermore, Upper
Rhaetian chronostratigraphy is mainly recognized by occurrences
of marine fossil groups such as ammonites, bivalves, echinoderms,
brachiopods and conodonts. Ammonites have been widely used as
biostratigraphic markers to correlate sections across the CEB.
Based on the global stratotype sections and point (GSSP) site at
Kuhjoch, the last occurrence (LO) of the ammonite Choristoceras
marshi is recognized to mark the onset of the ETME across Europe
(von Hillebrandt et al. 2013), while the base of the Jurassic is
defined by the first occurrence of the ammonite Psiloceras spelae
tirolicum (von Hillebrandt et al. 2007; von Hillebrandt and
Krystyn, 2009; von Hillebrandt et al. 2013). These ammonite bio-
events are closely associated with the two main negative CIEs
(Lindström et al. 2017).

Based on palynofloral records, the co-occurrence of the fern
spore Polypodiisporites polymicroforatus and the pollen taxon
Ricciisporites tuberculatus provides evidence for the main
disturbed interval of the ETME across European sites
(Lindström et al. 2017), including the GSSP section at Kuhjoch
(Bonis et al. 2009). In addition, the occurrence of a ‘fern spike’ is
widely recognized across the North German Basin (Lindström
et al. 2017), which largely consists of P. polymicroforatus spores
(van de Schootbrugge et al. 2009). In contrast, the abundance of

R. tuberculatus shows more spatial variability. The fern spike
interval also marks the LO of several Triassic palynofloral taxa
including Rhaetipollis germanicus, Lunatisporites rhaeticus, R.
tuberculatus and Ovalipollis ovalis. The top of the fern spike
interval corresponds to the Spelae CIE and sees the disappearance
of Triassic palynofloral taxa. In addition, this interval sees the first
occurrence of the accessory marker pollen taxon Cerebropollenites
thiergartii, marking the base of the Early Jurassic (Hettangian),
which is synonymous with the first occurrence (FO) of P. spelae in
stratigraphic successions at the GSSP section in the Eiberg Basin
(Kuerschner et al. 2007). Aquatic palynomorphs indicate similar
biostratigraphic correlative potential, most notably by the last
common occurrence (LCO) of the dinoflagellate species
Rhaetogonyaulax rhaetica (Bonis et al. 2010; Li et al. 2016;
Lindström et al. 2017; Peng et al. 2018; Gravendyck et al. 2020).

3. Material and Methods

3. a. Scientific drilling and sample collection

The drilling operation was conducted duringMay and June of 2021
in the Dutch province of Gelderland, close to the town of
Winterswijk yielding a 25.90-metre core (Fig. 1; GPS coordinates:
51.96865°N – 6.78120°E). The resulting borehole is registered by
the Geological Survey of the Netherlands (TNO) under borehole
number B41F0262. The drill site has an elevation of 41.79 metres
above local reference level (NAP) and forms part of the
Winterswijk Quarry site managed by Sibelco B.V. Early explora-
tions of the upper strata in the quarry revealed Rhaetian aged
sediments capping the well-known ‘Muschelkalk’ of Anisian age
(Visscher and Commissaris, 1968), dipping approximately 10° to
the north (Fig. 1AþB). The drill site location was therefore
determined just north of the quarry in a small meadow (Fig. 1Dþ
E). The drilling activities were performed by Thijssen Drilling
Company B.V. (Geulle, the Netherlands) using a Nordmeyer DSB-
1. Clean water was used as drilling fluid for the first 15metres using
an auger drill due to the unconsolidated nature of the layers. The
remainder of the core (15 – 25.9 metres) was drilled with a
diamond bit upon reaching more indurated strata. A casing was
introduced to provide stability to the borehole and prevent the
upper layers from collapsing inward. The 1-metre core sections
with a diameter of 100 mm were placed in storage boxes and
transported to the Earth Simulation Laboratory at Utrecht
University (Supplementary Fig. S1), where they were stored in a
cooling cell at ~4 °C. The studied interval (Rhaetian section = ~11
metres) of the core was sampled with 2 cm resolution and placed in
plastic sampling bags for storage.

3. b. Gamma ray well-logging

After completion of the drilling operations, well-logging was
carried out using a multitool measuring probe by the commercial
company Metinco B.V., which was lowered at a constant rate (1
metre/min) down the borehole. The gamma ray logging, as
measured on potassium, uranium and thorium, results in a
distinctive overview of the natural gamma radiation emitted by the
lithologic units. The top ~14.5 metres of the borehole was fitted
with a metallic casing, which resulted in a weaker gamma ray
signal. The overall implementation of logging is completed with
the use of a SCOUT Pro Data Acquisition System and the data
processing is achieved with WELLCAT™ software. The quality of
the data acquisition is considered to be good for the entire section
without any anomalies. The gamma ray signature provides an
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overall image of the lithology of the substrate surrounding the
borehole. Lower intensity values reflect a low clay content and/or
high silica content, whereas higher intensities reflect high clay
content and/or low silica content. The presence of glauconite will
also result in high radiation intensity and higher gamma ray signal.

3. c. Palynology

A total of 55 samples were processed for palynology with an
average resolution of ~20 cm within the studied interval. All
samples were oven-dried and approximately 5–7 g of material was
crushed. Samples were subsequently supplemented with a
Lycopodium tablet for absolute quantification and subjected to a
standard palynological protocol at Utrecht University. This
procedure involves a single treatment with 10% HCl solution for
the removal of carbonates and dissolution of the Lycopodium tablet
and double treatment with 38% HF (hydrofluoric acid) for the
removal of siliciclastic elements. Treatments of 30% HCl were
performed after every HF processing step to prevent the
precipitation of CaF2. Residual material was sieved using a 10
μm nylon-mesh, homogenized and permanently mounted using a
combination of 5% Polyvinyl Alcohol solution and glue on glass
slides. Counting of 200 – 300 palynomorphs per sample was
conducted using light microscopy (400x magnification). One
sample (19.825 mbs) yielded too little palynomorphs and was
counted to 150 specimens. Terrestrial palynological (i.e. spores and
pollen grains from land plants) records are presented as relative
abundances (%) of the total palynofloral assemblage. Palynomorph
species were determined using photographic references from
previously well-studied sections (Heunisch et al. 2010; Gravendyck
et al. 2020; Bos et al. 2023; Lindström et al. 2023).

To assess palynofloral diversity, we calculate a number of
statistical diversity indices that include species richness (S; number
of species), Shannon-Wiener index (H), Simpson index of
Dominance and Pielou’s Evenness. The Shannon-Wiener index
(Shannon andWeaver, 1949) represents H= -Σpi * ln(pi), where pi
is the proportion of species i (ni/n), implying it is a function of
relative abundances and the number of taxa. Simpson index of
Dominance is calculated as the sum of pi squared (dominance =
Σ(pi2)) and notes the disproportionate commonness of particular
taxa (Simpson, 1949). The conceptual inverse of dominance is
called (Pielou’s) evenness (= e^(H/S)), which normalizes species
richness. PAST 3 software was used to compute these indices
(Hammer et al. 2001). The Shannon-Wiener index (diversity),
evenness and dominance are calculated based on the total
palynofloral assemblage excluding aquatic and non-pollen
palynomorphs. Varying sample sizes could affect the amplitudes
of the diversity indices. However, all samples yielded enough
palynomorphs (200 – 300 specimens) with a single exception
(19.825 mbs).

3. d. Magnetic susceptibility

A total of 194 samples were analyzed for magnetic susceptibility
(MS) with an average resolution of ~5 cm in the studied interval.
Initially, the mass of the bulk sample and of the 40 ml plastic vials
containing the selected samples was determined. The measure-
ments were performed at room temperature using a AGICO
MFK1-FA device at the palaeomagnetic laboratory (Fort
Hoofddijk) at Utrecht University. Each sample was measured
three times to correct for environmental and temperature-based

influences and to assess the short-term reproducibility and
variability, showing an average relative standard deviation of
0.2%. To account for drift within a single run, duplicates were
introduced to determine the long-term reproducibility. Basic bulk
MS settings were conducted using a standard frequency of 976 Hz
with a weak variable magnetic field of 200 A/m. Results were
corrected for the total weight of the sample. We present the raw
measurements supplemented with a 4-point moving average to
assess the long-term trends in the record. High MS intensities are
generally interpreted to represent terrestrial weathering inputs
(siliclastics), while lower intensities can result from high fractions
of organic matter and/or carbonates (Warrier and Shankar, 2009).

3. e. TOC and bulk organic carbon isotopes

Organic carbon concentration and stable isotope ratios were
determined for 114 samples covering the upper Rhaetian interval
of the Winterswijk core with an average resolution of ~8 cm. All
samples were oven-dried, powdered and treated twice using 10%
HCl and rinsed with de-ionized water for the removal of
carbonates (inorganic carbon), after which residues were homog-
enized and analyzed for organic carbon content using a Carbon,
Nitrogen, Sulphur (CNS) analyser (NA 1500) at Utrecht
University. The total organic carbon (TOC) content was calculated
by multiplying the measured carbon content with ratio of the de-
carbonated and original sample weights. The precision in TOC
determinations is 0.7%. Samples were subsequently analyzed for
δ13CTOC using a Fisons 1500 CNS Elemental Analyzer coupled to a
Finnigan MAT Delta Plus mass spectrometer, bracketed by an in-
house standard (Granite-Quartzite, value: -26.86‰ Vienna Pee
Dee Belemnite (VPDB), determined using IAEA standards).
Accuracy and precision comprise 0.03‰ and 0.01‰ for the
δ13CTOC measurements, respectively, and are reported relative to
the VPDB.

3. f. ICP-OES elemental analysis

Using Inductively Coupled Plasma – Optical Emission
Spectrometry (ICP-OES; Perkin Elmer Avio 500) at Utrecht
University, quantitative elemental composition was determined on
a total of 88 samples with an average resolution of ~8 cm. Oven-
dried and powdered sedimentary rock (100–125mg) was subjected
to total destruction using 2.5ml HF and 2.5mlHClO4 /HNO3 (2:3)
mixture in a closed Teflon container and stored on a 90 °C hot plate
overnight. Samples were heated to 140 °C and subsequently re-
dissolved in 1M HNO3 at 90 °C during a second night. A residual
solution of ~6 ml was transferred to 15 ml Greiner tubes for
analysis. The average overall accuracy (recovery) was between 97
and 108% and based on in-house standards, duplicates and an
internal Germanium standard, an average analytical uncertainty of
1% was determined.

Certain trace elements enriched in fine-grained shale, such as
Sr, Ba, Cu, Ti, V, Cr, Ni and Co, can reveal paleoclimate and
palaeo-redox conditions (Meng et al. 2012; Bai et al. 2015; Fu et al.
2016; Moradi et al. 2016; Borrok et al. 2019). Particularly, redox-
sensitive elements, such as V, Cr, Ni and Co, are widely used with
the ratios of V/Cr andNi/Co considered to be reliable palaeo-redox
indicators. Higher ratios correspond to a decrease in oxygen levels
for both proxies. The reconstruction of the palaeo-salinity and
paleoclimate conditions is derived from the ratios of Sr/Ba and Sr/
Cu (Moradi et al. 2016).
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4. Results

4. a. Core description and lithological indicators

The Winterswijk drilling project yielded a 25.90 m succession
(supplementary Fig. S1) encompassing several distinct strati-
graphic units that have been previously described and assigned to
the Middle Triassic (Anisian; Muschelkalk Fm; Visscher and
Commissaris (1968)) and Late Triassic (Rhaetian; Sleen Fm; van
Hinsbergen et al. (2019)), Oligocene (Ratum Fm–Winterswijk Fm;
van den Bosch et al. (1975)), Miocene-Pliocene (Brinkheurne Fm–
Miste Beds; van den Bosch et al. (1975)) and Quaternary (Fig. 3).
The lowermost unit (25.90 – 24.04 mbs) consists of heavily
bioturbated laminated grey/white limestone known as the
‘Muschelkalk’. These deposits are of Anisian age (Visscher and
Commissaris, 1968). The uppermost 10 cm (24.18 – 24.08) of this
unit consists of a grey marl with alternating dark/light grey
layering, containing silt and burrows.

A sharp lithological transition is noted at 24.08 mbs
(Supplementary Fig. S1). The Muschelkalk is overlain by finely
laminated black shales (Contorta Beds) containing bivalve remains
(Rhaetavicula contorta) (diameter = ~2 cm; 24.08 – 20.17 mbs),
which, in turn, transitions sharply to red/greyish clays (20.17 –
13.53 mbs; Triletes Beds) (Fig. 3). These two units have been
previously dated to represent the late Rhaetian (van Hinsbergen
et al. 2019; de Lange et al. 2023). A ~2 cm thick pyritic layer is
present at 21.70 mbs. Several horizons within the laminated shale
interval exhibit pyritized bivalve remains. A further subdivision
can bemade for the bottom part of the red claystone interval (20.17
– 18.24 mbs), which consists of dark grey claystone interbedded
with brown-red claystone containing plant and coal remains. A
number of grey claystone beds can be discerned that are
interbedded within the red claystone succession. No macrofossils
were found within the upper part of the red claystone unit (18.24 –
13.53 mbs). This unit containing laminated shales and reddish
claystone beds is reminiscent of the upper Rhaetian sections in the
Germanic Basin with the shale-dominated Contorta Beds
transitioning to the red-brown claystone interval of the Triletes
Beds (Gravendyck et al. 2020). These two units will be referred to as
Contorta and Triletes Beds and belong to the Sleen Formation
(Fm), which is the equivalent of the Exter Formation in Germany
(Fig. 2C). Further correlative efforts have revealed that the Sleen
Fm corresponds to the Penarth Group (Westbury and Lilstock
Fms) in the UK (Doornenbal and Stevenson, 2010).

A second unconformity is recognized at the top of the red
claystone interval (13.53 mbs), where the claystone is sharply
overlain by clay-rich sands with glauconite-containing beds
(13.53 – 11.65 mbs). This lithological unit corresponds to the
Ratum Formation, which commonly overlays Mesozoic deposits
across the larger Winterswijk area and has been suggested to be of
Oligocene (early Rupelian) age (van den Bosch et al. 1975;
Herngreen et al. 2005). This unit transitions to several metres of a
fine to medium sand unit (11.65 – 8.00 mbs) with minimal clay
content and weak layering. This section is consistent with the
Winterswijk Formation (van den Bosch et al. 1975; Herngreen
et al. 2005) with indications of late Rupelian age. The interval
between 8.00 mbs and 5.00 mbs shows facies with a distinctly
higher fraction of greyish/brown clay. This interval corresponds to
the Brinkheurne Formation of Miocene age and is overlain by the
Miste Beds (5.00 – 2.00 mbs) of Miocene-Pliocene age, consisting
of silt to fine sands with olive-green hue of colour (van den Bosch
et al. 1975). The upper two metres of the core consists of grey to
orange/brown fine sands with traces of topsoil, likely derived from

Quaternary (glacial) deposits. The core description is summarized
in Supplementary Table S1.

The gamma ray signature of the lowermost limestone unit
(Muschelkalk) shows moderate intensity that sharply increases at
the upper marl bed at 24.18 mbs (Fig. 3), likely denoting a higher
clay content. The lower part of the Rhaetian section (Contorta
Beds, 24.08 – 20.17 mbs) shows roughly double the intensity of the
underlying limestone unit, which continues into the lower section
of the Triletes Beds (20.17 – 13.53 mbs) with minimal internal
variability, which likely reflects the continuously high fraction of
finer clays (and absence of carbonates). There is a notable peak at
the lowermost bed of the Triletes Beds (20.17 – 20.00 mbs). The
upper part of the Triletes Beds exhibits a notable drop of gamma
ray intensity to values similar to the Muschelkalk, presumably
representing a change in the clay content. The internal variability
of the Triletes Beds is similar compared to the Contorta Beds. The
upper 13.53 m shows the lowest gamma ray intensity with the
previously defined stratigraphy indicating a distinct signature
based on the amount of clay and/or glauconite presence. Sandy
units tend to show lower gamma ray intensity, while higher clay/
glauconite content is noted by relatively higher intensities. The
gamma ray intensities of the Winterswijk core are summarized in
Supplementary Table S2.

The sedimentary composition of the upper Rhaetian deposits of
the Winterswijk core is inferred from measurements of MS, which
provides insight into the major sedimentary components, such as
siliciclastics/clays (weathering products), organic matter and
carbonates. MS intensities indicate a clear separation between
the Contorta Beds and Triletes Beds. TheMS intensity is the lowest
in the Contorta Beds with minimal variation and displays a sharp
5-fold increase across the transition interval (T1-T3) to the Triletes
Beds (20.15 mbs), which rapidly returns to lower values at the top
of this transition (19.58 mbs, T3). A gradual increase in MS
intensity is observed for the upper interval of the Triletes Beds
(19.58 – 14.45 mbs), roughly doubling that of the Contorta Beds
and showing more substantial variation. A notable drop is noted in
the uppermost interval (14.45 – 13.53 mbs). Magnetic suscep-
tibility measurements are summarized in Supplementary Table S4.

4. b. Palynofloral biostratigraphy

Palynological assessment of the presumed late Rhaetian deposits
(24.08 – 13.56 mbs) revealed the presence of several distinct Late
Triassic taxa and assemblages that confirm a late Rhaetian age
(Fig. 4). The Rhaetipollis-Limbosporites (RLi) zone is distinguished
by low abundances (2 – 10%) of R. germanicus and very low
abundances (0–2%) of Limbosporites lundbladii. This palynofloral
zone is generally synonymous with the Contorta Beds (24.08 –
20.17 mbs) and is marked by the occurrence of several typical late
Rhaetian pollen-taxa, such as O. ovalis (1– 10%), L. rhaeticus
(0–5%),R. tuberculatus (5 – 10%) andAlisporites sp. (0 – 3%), while
spore-taxa such as Zebrasporites ssp. (0 – 1%) and P. poly-
microforatus (0 – 2%) are less common (Plate I and II). The RLi
zone is widely used for correlation across Europe (Lund, 1977;
Kuerschner et al. 2007; Bonis et al. 2009; Lindström et al. 2017;
Gravendyck et al. 2020). Overall, the Contorta Beds ofWinterswijk
are characterized by a pollen-dominated assemblage with high
abundances of the cheirolepid conifers (Classopollis sp., ~50%) and
the gymnosperm R. tuberculatus (~10%), and the periodic influx of
dinoflagellate cysts (R. rhaetica and Dapcodinium priscum, see
Supplementary Table S6). An overall biome that is rich in upper
canopy tree vegetation is inferred from additional abundances of
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taxodiaceous conifers (Perinopollenites elatoides), the pollen-taxa
of O. ovalis and various types of bisaccate pollen. Nearly all spore-
producing taxa show minimal occupancy of the ground vegetation
during deposition of the Contorta Beds with the exception of
ground/tree ferns (Deltoidospora sp.) and horsetails (Calamospora
tener), which are consistently present. Furthermore, four periodic
increases of pollen assigned to the family Coniferopsida (most
notably cheirolepid conifers of Classopollis sp.) are observed
throughout the Contorta Beds, while other types of vegetation
display minimal variation.

The RLi zone of theWinterswijk core can be further subdivided
into three subzones (Fig. 4). The lowermost of these subdivisions
(RLi-a; 24.08 – 23.22 mbs) is characterized by peak abundances of
R. tuberculatus (~25%), Classopollis ssp. (~70%) and
Granuloperculatipollis rudis (~6.3%). The RLi-b subzone (23.22
– 20.74 mbs) is characterized by the consistently low abundance of
R. germanicus, O. ovalis, R. tuberculatus and Classopollis ssp. with
minimal variation. Lastly, the upper section of the Contorta Beds in
Winterswijk (20.74 – 20.17 mbs) is denoted by the RLi-c subzone
and shows a notable high abundance of Classopollis ssp. (~62%)
and a higher abundance of the horsetail-derived spore species C.
tener (~3%). Another notable feature of this interval is the apparent
drop in abundance of R. tuberculatus (<2%), which shows a
sudden resurgence at the top of the RLi-c zone to about 15% of the
palynofloral assemblage. The FO of the bisaccate pollen
Vitreisporites bjuvensis also occurs within this interval.

A number of aquatic palynomorph taxa similarly denote the
late Rhaetian age of the Winterswijk core. In particular, relatively
high abundances (of the total assemblage) of the Rhaetian
dinoflagellate cyst species R. rhaetica and D. priscum are noted
for the RLi-a (~3%) and RLi-C (~4%) subzones, while the
intermediated RLi-b subzone shows more moderate abundances
(~1%) with minimal variation. In addition, minor occurrences of
the dinoflagellate cyst Lunnomidinium sp. (<0.5% of total
assemblage) are noted for the RLi-c subzone.

The transition to the overlying Triletes Beds is marked by the
first common occurrence of P. polymicroforatus (10 – 30%) and
other morphotypes of Concavisporites-Deltoidospora (10 – 40%),
culminating in a ‘fern spike interval’ (Larsson, 2009; van de
Schootbrugge et al. 2009) or P. polymicroforatus abundance
interval (Fig. 4) (Lindström, 2016; Lindström et al. 2017). The co-
occurrence with R. tuberculatus is denoted as the RiP
(Ricciisporites-Polypodiisporites) palynological zone and can be
used to stratigraphically correlate the Late Triassic crisis among
records across NW Europe (Larsson, 2009; van de Schootbrugge
et al. 2009; Lindström, 2016; Lindström et al. 2017; Gravendyck
et al. 2020; Bos et al. 2023). Furthermore, the RiP palynological
zone is considered to be the main disturbance interval of the
terrestrial and marine ETME in the CEB (Lindström et al. 2017).
The entire assemblage of the Triletes Beds shifts to a spore-
dominated assemblage mainly represented by pteridopsid ferns (P.
polymicroforatus, Concavisporites spp. and D. mesozoica) (~60%)
and a group of isoetalean lycopods (Densosporites fissus). A
synchronous increase in horsetails (C. tener) and mosses
(Stereisporites sp.) is noted as well for the Triletes Beds. Most
pollen-taxa seem unaffected in their relative abundances after the
transition to the Triletes Beds, except for Classopollis sp., which
diminishes to about 10%. This trend is also reflected in the absolute
palynomorphs amounts (Fig. 7), which shows overall high
concentrations (>105 palynomorphs/gram sediment) in the
Contorta Beds with periodic increases corresponding to increased
abundances of Classopollis sp. Pollen concentrations drop to much

lower concentration (<104 palynomorphs/gram sediment) at 20.17
mbs and remain low for the entirety of the Triletes Beds.

The Triletes Beds are subdivided into RiP-a in the lower part
(20.17 – 19.11mbs) and RiP-b for the upper part (19.11 – 13.53mbs).
RiP-a subzone is characterized by an acme in R. tuberculatus in the
lowermost section (20.15 mbs) that was initiated on the top part of
RLi-c subzone (20.25 mbs). This acme is closely followed by a sharp
increase in P. polymicroforatus (~20%) and morphotypes of
Concavisporites-Deltoidospora (~20%) between 20.03 mbs and
19.53 mbs after which these spore-taxa diminish and are replaced
by R. tuberculatus (~17%). In addition, the top of the RiP-a subzone
marks the LCO of both O. ovalis and R. germanicus (19.53 mbs).
Finally, a relatively high abundance of dinoflagellate cysts R. rhaetica
andD. priscum (~10% of total assemblage) is noted for the top of RiP-
a subzone (19.19 mbs), which mark the LCO of both species. The
remainder of the Triletes Beds (RiP-b subzone) is distinguished by
relatively high abundances of reworked palynomorphs (2 – 8% of the
total assemblage) that include Paleozoic acritarchs (Plate I) (van de
Schootbrugge et al. 2020) andAnisian spores (Plate I) (Brugman et al.
1985). All palynological data are summarized in Supplementary
Table S6.

4. c. Organic carbon content and δ13CTOC

The δ13CTOC signature of the Rhaetian deposits of the Winterswijk
core can clearly be separated in two distinct intervals with average
values of -27.0‰ in the Contorta Beds and values averaging -24.8‰
in the overlying Triletes Beds, with a sharp ~2‰ positive excursion at
20.17 mbs. Consistently, TOC values average 3.44% in the Contorta
Beds and sharply decrease at 20.17 mbs to an average of 0.42% in the
Triletes Beds. Within the top of the Contorta Beds, δ13CTOC values
show a trend towards lower values, which is mirrored in the TOC
values. Several negative δ13CTOC excursions can be recognized within
the Contorta Beds that correspond to periodic increases in TOC
(Fig. 5). The most significant of these occur in the lowermost interval
(23.51 mbs) with a magnitude of ~2.2‰ and a short-lived negative
peak at -28.5‰. Three more modest negative excursions occur at
22.78 – 22.35 mbs, 21.63 – 21.43 mbs and between 20.85 – 20.17 mbs
with a magnitude of about 0.5‰. The uppermost of these has been
recognized as the Marshi CIE in line with the palynofloral
assemblages (RLi-c subzone) and correlation with the nearby
Bonenberg site in Germany (Fig. 6) (Gravendyck et al. 2020). This
marks the transition into theTriletes Beds and is subdivided into three
intervals (T1 – T3; Fig. 5). Following the positive excursion at the
transition into Triletes Beds (20.17 mbs), δ13CTOC values remain high
between 20.15 mbs and 19.745 mbs (T2) after which a modest
negative excursion (magnitude = ~1.1‰) between 19.61 mbs and
19.11 mbs is noted (T3) peaking to -25.8‰, which is accompanied
with a minimal increase in TOC (0.66%). The remainder of the
Triletes Beds (19.11 – 13.53 mbs) shows minimal variation. All TOC
and δ13CTOC values are reported in Supplementary Table S3.

4. d. Elemental chemistry

Elemental composition is derived from ICP-OES elemental
analysis (Supplementary Table S5), which provides further insights
into climatic and redox conditions. The ratio of V/Cr shows an
average of 1.25 in the shales of the Contorta Beds (24.08 – 20.17
mbs), with a distinct peak (~1.4) between 22.78 – 22.35 mbs,
corresponding to a peak in TOC and moderate negative CIE
(Fig. 5). A similar signature is noted for the Ni/Co with an average
of 3.32, with overall Ni/Co values correlating with TOC (R2= 0.65)
and V/Cr to a lesser degree (R2= 0.27; Supplementary Figure S2).
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The V/Cr ratio decreases to an average of 1.1 in the Triletes Beds,
while the Ni/Co increases to an average of 4.6 in the same interval.
This discrepancy is likely caused by detrital input, which is well-
known to affect palaeo-redox indicators (Rimmer, 2004). Ti/Al
ratios are relatively low in the Contorta Beds (average = 0.051)
indicative of low detrital input (Chen et al. 2013). An increase in
Ti/Al is observed for the uppermost interval of the Contorta Beds
(20.44 – 20.17 mbs, T1) and values remain high in the Triletes Beds
(average= 0.055) indicating higher detrital input. Therefore, we
consider the palaeo-redox indicators (V/Cr and Ni/Co) to be
inconclusive for the red claystone-dominated interval of the
Triletes Beds. The Sr/Ba ratios vary between 0.4 and 0.6
(average= 0.52) in the Contorta Beds and increase to an average
of 0.6 in the Triletes Beds. The Sr/Ba ratio correlates weakly with
MS (R2= 0.42) with a peak (0.84) between 20.17 mbs and 19.745
mbs (T2). A decrease to an average value of 0.62 is noted for the T3
interval. The Sr/Cu ratios of shales from the Contorta Beds vary
between 2 and 4 (average= 3.3). An increase in noted for the T2
interval and peaks within the T3 interval (8.3). The average Sr/Cu
value for the remainder of the Triletes Beds is 4.4.

5. Discussion

5. a. Stratigraphic correlations

The lithology of the studied interval of the Winterswijk section is
strongly reminiscent of the deposits of the Bonenburg section

(Schobben et al. 2019; Gravendyck et al. 2020). The lower unit of
the Contorta Beds in the Bonenburg succession consists of an
organic-rich mudstone (shale) facies that is sharply overlain by a
silt-rich (reddish) mudstone facies of the Triletes Beds. In German
sections, these units belong to the Exter Fm, which is equivalent to
the Sleen Formation in Winterswijk. Furthermore, the transition
between the Contorta and Triletes Beds marks a broader
sedimentological shift that usually is paired with a regressive
interval across the CEB with high siliciclastic input and less
negative δ13CTOC values in various T-J boundary sections (Bonis
et al. 2009; van de Schootbrugge et al. 2009; Pieńkowski et al. 2012;
Lindström et al. 2017; Gravendyck et al. 2020; Bos et al. 2023;
Lindström et al. 2023). The contact between the Muschelkalk Fm
and Sleen Fm of Winterswijk is characterized by an unconformity.
Elevated occurrences of reworked palynomorphs in the Triletes
Beds, including specimens that resemble Anisian-derived spores
(Brugman et al. 1985), hint that the Muschelkalk was exposed
during the late Rhaetian and was partly eroded. The absence of any
reworked palynomorphs in the Contorta Beds also suggests higher
sea-levels during deposition compared to the Triletes Beds. The
nature of the unconformity at the top of the studied interval
remains uncertain with nearly ~160 million years missing. The
reddish colour of the Triletes Beds could indicate post-depositional
oxidation due to (sub)areal exposure, suggesting an erosional
surface at this horizon. Although Early Jurassic strata are not
exposed at the Winterswijk quarry, several studies have described
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the contact of the Sleen Fmwith Lower Jurassic units (Aalburg Fm;
Fig. 2C) in the surrounding area (van den Bosch et al. 1975;
Herngreen et al. 2005; van Hinsbergen et al. 2019). The Triletes
Beds facies of the upper Sleen Fm in the Winterswijk core and
quarry outcrop seems to be restricted to the immediate
surrounding area with no other recorded descriptions.

The co-occurrence and abundances of Late Triassic palyno-
floral species P. polymicroforatus and R. tuberculatus (RiP
palynofloral zone) are diagnostic for the presence of the end-
Triassic mass-extinction (ETME) within the subsurface of the
Netherlands. This transition marks the onset of the ETME and is
traceable through palynofloral changes and corresponds to the
Marshi CIE (van de Schootbrugge et al. 2009; Gravendyck et al.
2020; van de Schootbrugge et al. 2020; Bos et al. 2023). Commonly,
a decrease in arborescent conifers and other upper canopy tree
vegetation is noted within the transition interval with a stepwise
increase in ferns and fern allies occupying the vacated niches (van
de Schootbrugge et al. 2009; Bonis and Kürschner, 2012;

Lindström, 2016; Lindström et al. 2017; Gravendyck et al. 2020;
Bos et al. 2023). The Bonenburg section displays a similar pre-
extinction dominance of Classopollis-producing conifers with a
stepwise decline at the onset of the ETME (Gravendyck et al. 2020).
This trend is also noted in the St. Audrie’s Bay section in the UK
(Bonis et al. 2009), Mingolsheim in southern Germany (van de
Schootbrugge et al. 2009), and several well-studied sites on the
southside of the Bohemian Massif, including the Kuhjoch Global
Stratotype Section and Point (GSSP) site (Bonis et al. 2009) from
the Eiberg Basin and the Csővár section on the western Tethys shelf
(Götz et al. 2009). In contrast, eastern sections of the CEB
represented by Schandelah (Bos et al. 2023), Stenlille (Lindström
et al. 2023) and Kamień Promorski-IG1 (Pieńkowski et al. 2012)
show a much lower relative abundance of Classopollis-producing
conifers, instead showing higher occurrences of the mire-adapted
conifers that produced P. elatoides. This distribution of dominant
conifer types suggests the presence of a vegetation and/or climate
gradient dividing the CEB between a southwestern and a
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northeastern region. These biomes can be separated by vegetation
that prefers cool/warm temperate (P. elatoides-dominated) and
winter-wet conditions resembling Mediterranean areas
(Classopollis-dominated) (Rees et al. 2000).

Our palynological examination within the transition interval of
the Winterswijk core (T1- T3) revealed a particular structure to
this reorganization in vegetation. The interval is synonymous with
the RiP-a subzone and is followed by an interval that is dominant
in spore-bearing vegetation (fern spike, ~80%) for the remainder of
the Triletes Beds (RiP-b subzone). The spread of a pioneering fern
vegetation transiently replacing gymnosperm forests has been
documented from numerous sites (Fowell and Olsen, 1993; Olsen
et al. 2002; Larsson, 2009; van de Schootbrugge et al. 2009). This

fern-dominant interval is widely traceable and is also characterized
by an increase in abundance of reworked palynomorphs
(Gravendyck et al. 2020; van de Schootbrugge et al. 2020; Bos
et al. 2023; Lindström et al. 2023) suggestive of widespread erosion
around the CEB. A darkening of palynomorphs is also noted in the
RiP-b subzone most notably in spore specimens and to a lesser
degree in the pollen assemblage. This ‘dark zone’ was also noted in
other T-J boundary sections (Lund, 2003; van de Schootbrugge
et al. 2009). The second major extinction pulse is recorded close to
the Triassic-Jurassic Boundary, corresponding to the Spelae CIE.
General patterns display another biodiversity crisis within the
palynoflora with several Triassic taxa going extinct (Wignall and
Atkinson, 2020; Lindström, 2021). The emergence of several Early
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Jurassic pollen-taxa is also noted in this interval (Bonis et al. 2009).
This interval is unfortunately missing in the Winterswijk section
due to an unconformity.

The position of theMarshi CIE is found within theWinterswijk
record, which marks the onset of major volcanic activity (Hesselbo
et al. 2002; Heimdal et al. 2018; Lindström et al. 2021). Similarly,
changes in lithology are also widely recognized at the Marshi CIE
around the CEB, suggestive of severe changes in regional climate
conditions affecting sedimentation. The stable organic carbon
isotope record from the Winterswijk core shows a signature that
can be subdivided into several parts (Fig. 6). Interestingly, these
subdivisions correspond to palynofloral zones, which were
independently defined. Comparison with the Bonenburg section
reveals a similar pattern in the δ13CTOC signature and the
palynofloral zonation, suggesting a regional progression of the
ETME (Fig. 6). The lowermost section of the Winterswijk core
shows a negative CIE that corresponds to the RLi-a palynofloral
subzone. This can be confidently correlated to a similar negative
CIE in the Contorta Beds of the Bonenburg section, which similarly
displays a subzone in the palynofloral assemblage (RLi-a)
(Gravendyck et al. 2020). While this earlier CIE has a higher
magnitude and could potentially be regarded as the Marshi CIE,
the relation with palynofloral subzones does not line up with other
records (Lindström et al. 2017).

The top of the RLi-a interval in the Winterswijk section is
marked by an increase in aquatic palynomorphs, which is not as
clearly expressed in the Bonenburg section. This increase hints that
the negative excursions found in both sections could reflect a
transgression (Schobben et al. 2019). This would ultimately shift
the sourcing of organic matter and cause a CIE in shallow marine
records. Lastly, the transition between the RLi zone (Contorta
Beds; pre-extinction) and the RiP zone (Triletes Beds; main
disturbance of the ETME) is marked by a positive excursion in
δ13CTOC values in many sites across Europe (Götz et al. 2009;
Pieńkowski et al. 2012; Gravendyck et al. 2020; Lindström, 2021;
Bos et al. 2023; Lindström et al. 2023). A widespread shift in
lithology indicates a substantial alteration of the depositional
environment in the CEB and is mirrored by a stepwise decline in
arborescent tree vegetation. This horizon is often marked by mass-
rarity in many pollen-bearing taxa (Gravendyck et al. 2020;
Lindström, 2021; Bos et al. 2023) and is traceable up to high
latitudes on east Greenland (Mander, 2011). Whether the
transition from Contorta to Triletes Beds is marked by an
unconformity is uncertain. Although sharp shifts in palynological,
Sr/Ba, Sr/Cu and MS data between the Contorta and Triletes Beds
hint at a major drop in sedimentary rate, the palynofloral
assemblages zones seem complete when compared with the nearby
Bonenburg section (Gravendyck et al. 2020). This study did not
report evidence for an unconformity at this level and therefore
seems unlikely to have occurred in the Winterswijk section.

5. b. Regional ecosystem and climate variability

Prior to the onset of the ETME, vegetation in the Winterswijk area
was dominated by the thermophilic cheirolepid conifer that
produced Classopollis spp. Fluctuations in Classopollis dominance
within the Contorta Beds indicate periodic shifts towards cool/
warm temperate conditions (Rees et al. 2000), still dominated by
conifers. During the Late Triassic and Early Jurassic, five distinct
biomes dominated by upper canopy conifer vegetation (Willis and
McElwain, 2014) have been recorded. Within the European
continent, two of these biomes dominated the landscape, which

includes cool/warm temperate for higher latitudes separated by a
climate gradient of narrow bands of winter-wet biomes to the south
(Rees et al. 2000). Northward migrations of winter-wet biomes
(Classopollis-dominated) as a result of changing climatic con-
ditions are likely the main cause for changes in plant assemblage in
the Contorta Beds of the Winterswijk core (Kent and Olsen, 2000;
Rees et al. 2000; Sellwood and Valdes, 2006). These repeated
northward/southward migrations in climate gradients are caused
by (orbitally paced) changes in the regional hydrological regime,
which limits and enhances moisture availability (Hollaar et al.
2021; Bos et al. 2023).

Elemental compositions indicate overall wet conditions during
the deposition of the Contorta Beds (low Sr/Ba and Sr/Cu ratios)
with minimal terrestrial input (low Ti/Al ratio) (Fig. 5). Increases
in terrestrial input, as indicated by increases in the Ti/Al ratio,
suggests more efficient riverine runoff due to increased overall
precipitation. Contemporary increases in aquatic palynomorphs
further suggest that this could have had a significant impact on
marine productivity with indications of decreased oxygen levels as
evidenced by redox-sensitive elements (V/Cr and Ni/Co). The
semi-enclosed nature of the CEB likely made this shallow marine/
coastal setting much more sensitive to changes in the hydrological
cycle and prone to water-column stratification, anoxia and algal
blooms. This was in some ways similar to the volcanogenic-
induced Ocean Anoxic Events during the Toarcian and Cretaceous
(Hesselbo et al. 2000; Jenkyns, 2003; Mailliot et al. 2009; van de
Schootbrugge et al. 2013; Slater et al. 2019). Although the main
pulses of CAMP are assumed to be restricted to the Marshi and
Spelae CIEs, early onset of CAMP volcanism occurred some
hundred thousand years earlier and could have led to an early onset
of atmospheric CO2 increase contemporaneous with the onset of
black shale deposition of the Contorta Beds.

The Triletes Beds mark a dramatic shift in paleoceanographic
and paleoclimatic conditions that is evident in many proxy records
presented here. It is marked by a major drop in TOC, a decrease in
the absolute amounts of palynomorphs and a semi-quantitative
decrease in pollen, all suggestive of a collapse in standing
arborescent vegetation. This phase of forest dieback and terrestrial
mass rarity has been noted in many other sections across the
European continent and marks the initiation of the main
extinction phase (Lindström, 2021). Whereas the proliferation of
fern and fern allies during the main disturbance interval would
suggest climate shifted towards more humid conditions, increases
in Sr/Ba and Sr/Cu ratios seem to indicate drier conditions.
However, the relatively elevated input of Sr during deposition of
the clay-rich Triletes Beds could also point to more intense
weathering and erosion. This is substantiated by higher abundan-
ces of reworked palynomorphs in the Triletes Beds. The resulting
open landscape was likely highly susceptible to erosion and
terrestrial runoff (van de Schootbrugge et al. 2020).

Diversity indices (dominance, evenness and Shannon-Wiener
diversity) are commonly used in palaeo-ecological research to trace
ecological disturbances (Svensson et al. 2012). Ecosystem
restructuring introduces successional stages of pioneering species
in a stressed ecological community leading to high evenness,
diversity and low dominance (Grim, 1973; Osman, 1977;
Gravendyck et al. 2020). Within the Contorta Beds, peaks in
dominance correspond to low evenness and diversity (Shannon-
Wiener and richness; Fig. 7) and are largely attributable to high
abundances of Classopollis sp. (Fig. 8). Increased conifer
(Classopollis) dominance is accompanied by low evenness and
diversity, which suggest stable biomes without any indication of
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disturbance (Fig. 7). The opposite relation is noted for the intervals
in between conifer dominance and seems to suggest some form of
biome reorganization that is likely attributable to changes in
climate conditions and/or vegetation gradients. However, no
significant changes in the biome assemblages are noted within the
parent vegetation groups (Fig. 7) suggesting changes in the
Contorta Beds are part of the natural (orbitally-forced) climate
variability. Two periods of this Classopollis-dominance coincide
with increased abundances of aquatic palynomorphs (RLi-a
(~14%) and RLi-c (~12%) subzones) suggesting marine trans-
gressions. Sea-level variations constitute a first-order control on
the preservation of organic matter and potentially could have
played a role in the preferential preservation of wind-dispersed
conifer pollen further from the palaeo-shoreline (the Neves effect;
Chaloner (1958)). However, the lowermost samples (24.07 –
23.985 mbs; RLi-a zone) that indicate palynofloral disturbance
seem unique with indication of high terrestrial input (high Ti/Al)
and low TOC, hinting at a disturbed biome.

Diversity indices show a trend towards disturbed conditions
(increased evenness and diversity) starting within the RLi-c
subzone (T1), which is synonymous with the Marshi CIE. This
shift is accompanied by a rapid increase in spore-bearing
vegetation (Fig. 7) that peaks in the T2 interval (~75%).
Evenness and Shannon-Wiener diversity peak within the T3
interval suggesting the presence of a successional stage and biome
reorganization at this interval. Interestingly, the peaks in diversity
indices see a short-lived return of pollen-bearing taxa (Classopollis
sp. and Ricciisporites tuberculates). This could, however, be a side
effect of a transgression within the T3 interval as noted by a sudden
short-lived influx of aquatic palynomorphs, mostly dinoflagellate
cysts (R. rhaetica and D. priscum). The presence of a late Rhaetian
transgression in the CEB has been recorded in previous studies

following the Marshi CIE (Lindström, 2016; Lindström et al. 2017;
Lindström et al. 2019; Bos et al. 2023). This shift is accompanied by
a stepwise rise in spore-bearing plants (ferns and fern allies) with
tree/ground ferns (Pteridopsida/Filicopsida) becoming the dom-
inant parent plant group, although not as significant as
Classopollis-producing conifers in the Contorta Beds. During the
deposition of the Triletes Beds, tree and ground ferns belonging to
the family of Pteridopsida/Filicopsida (Deltoidospora sp.) indicate
a good correlation with diversity indices (Fig. 8), suggesting this
type of biome thrived during the main disturbance interval of
the ETME.

5. c. Implications for volcanic kill mechanisms

Contrasting climate conditions between the Contorta and Triletes
Beds are most likely reflective of a major swing in the hydrological
regime. Palynological records from St. Audrie’s Bay indicate
periodic changes in terrestrial palynomorph concentrations and
spore abundances during the main disturbance interval reflecting
changes in monsoonal activity mediated by the 23-kyr precession
cycle (Bonis et al. 2010). Other indicators for increased humidity
are derived from elevated levels of kaolinite in boundary beds
indicating enhanced chemical weathering in the North German
Basin (van de Schootbrugge et al. 2009) and other European
sections (Ahlberg et al. 2003; Pieńkowski et al. 2014; Zajzon et al.
2018). Alternatively, elevated kaolinite could indicate increased
erosion and redeposition. Sudden shifts in atmospheric pCO2

would also result in brief periods of regional droughts increasing
the likelihood of wildfires. Major climatic perturbations in the
geological past have been linked to periods of enhanced levels of
wildfire activity (Baker, 2022) with several T-J boundary sections
showing increased abundances of charcoal in Greenland (Belcher
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et al. 2010; Williford et al. 2014) and Germany (Uhl and
Montenari, 2011). Additionally, the Late Triassic climate con-
ditions may have favoured combustion-prone, narrow-leaved
vegetation due to increased atmospheric CO2 levels (Belcher et al.
2010), which was subsequently exacerbated by widespread
droughts (Peyser and Poulsen, 2008; Slodownik et al. 2021). The
sudden dieback (mass rarity) in conifer vegetation in the
Winterswijk core could be the result of enhanced wildfire activity.
The resulting open landscapes were subsequently perfect for fern
colonization, which fared much better during periods of enhanced
monsoonal activity. Combined with instable soils, as indicated by
increased reworked palynomorphs, this prevented the re-establish-
ment of conifer tree vegetation.

Rapid and major climate shifts during the late Rhaetian and
early Hettangian are thought to indicate pulses in CAMP eruptions
leading to rapid large igneous province (LIP) emplacement, and
the release of large quantities of volatiles (Knight et al. 2004). The
release of CO2 is thought to be recorded in the Marshi and Spelae
CIEs across the Triassic-Jurassic boundary (Hesselbo et al. 2002).
However, several studies have pointed to the role of strongly
fluctuating carbon sources related to changes in marine versus
terrestrial organic matter and changes in standing biomass. Recent
studies have suggested that negative excursions in carbon isotope
records could be due to shifts in organic matter source rather than
volcanic injection of light 12C in the atmosphere (Fox et al. 2020;
Beith et al. 2023). Therefore, characterization of the sedimentary
organic matter is crucial to understand the nature of the carbon
cycle perturbations (Ruhl et al. 2010b). The Winterswijk core
clearly demonstrates a severe impact on the terrestrial vegetation,
mainly upper canopy conifers, during the transition from pre-
extinction to extinction conditions, which is initiated at the Marshi
CIE. Therefore, we can infer that the negative excursions can be
partly explained through the loading of light 12C from a volcanic
source.

The cyclic variation of the pre-extinction (Contorta Beds)
interval indicates an already turbulent climate that likely
responded to variation in orbital parameters. Combined with
high dominance of thermophilic cheirolepid conifers
(Classopollis), this could indicate elevated atmospheric pCO2

due to volcanic emissions. Furthermore, the onset of the ETME is
clearly defined in both the Bonenburg andWinterswijk sections by
another short-lived increase in R. tuberculatus corresponding to a
negative CIE that has been correlated with the Marshi CIE. A
similar increase in R. tuberculatus can be traced to other
contemporaneous sections in Europe, which include the
Schandelah-1 core of northern Germany (Bos et al. 2023),
Mingolsheim core in southern Germany (van de Schootbrugge
et al. 2009) and the Stenlille cores in Denmark (Lindström et al.
2023). In most cases, the increased abundance of R. tuberculatus
persisted into the subsequent palynofloral stage. Some studies have
implicated that R. tuberculatus is an aberrant palynomorph
produced by the Peltaspermales seed plant Lepidopteris ottonis
(Vajda et al. 2023; Vajda et al. 2024), although uncertainties remain
(Zavialova, 2024). If R. tuberculatus is indeed an aberrant
palynofloral expression, this could indicate atmospheric pollution,
which further suggests a volcanic influence on the carbon isotope
signature at the Marshi CIE.

The emission of volcanic pollutants can further destabilize
terrestrial ecosystems. Besides direct input of greenhouse gasses,
CAMP emissions included pollutants such as halocarbons (CH3Br
and CH3Cl), potentially depleting stratospheric ozone and
increasing UV-B radiation at the Earth’s surface (Benca et al.

2018). Widespread mutagenesis has been observed in the form
of aberrant pollen such as unseparated Isotelus-tetrads
(Kraeuselisporites), attributed to elevated UV-B radiation, which
either produced sterility or the capacity to reproduce asexually
(Visscher et al. 2004; Benca et al. 2018; Vajda et al. 2023). In
addition, the appearance of abnormal trisaccate pollen similarly
indicates increased mutations in Permo-Triassic boundary
sections as observed in Russia and China (Visscher et al. 2004;
Foster and Afonin, 2005; Metcalfe et al. 2009). Intervals of elevated
ozone deterioration due to volcanic pollution may have triggered
temporary forest sterility and led to a population decline in several
gymnosperm lineages rather than immediate extinction. Cessation
of volcanic activity and a reduction in halocarbon emissions would
lead to a rapidly recovering ozone layer (within 10 to 20 years)
allowing for a rebound of surviving gymnosperm populations.
However, combined with additional stress-inducing parameters
such as increased wildfires and intense rain seasons, over time,
modest seedling mortality and reduced germination could have
culminated in the regional extirpation and/or extinction of
gymnosperm lineages, as noted for the End-Permian crisis
(Benca et al. 2018). The onset of extinction, as noted through
the disappearance of conifer vegetation in the Winterswijk core,
partly overlaps with the Marshi CIE, which is partly volcanic in
origin. This volcanic pulse could have affected the established
forest biome through UV-B radiated sterility combined with an
enhanced hydrological cycle.

6. Conclusions

Sediments recovered in a new drill core taken near Winterswijk
(The Netherlands) provide new insights into a number of
palynofloral events associated with emphasis on the onset of the
ETME and confirm and support previous observations from other
TJ-boundary sections across Europe. A highly detailed palynos-
tratigraphic framework identified two informal palynofloral
assemblage zones (RLi and RiP zones), which provide conclusive
evidence for the presence of the ETME in the Winterswijk section
(Sleen Formation). By correlation with other European TJ-
boundary sections, it can be shown that gradual transition through
successional stages characterized the onset of the extinction. The
pre-extinction interval (RLi zone) is characterized by
Cheirolepidiaceae-dominated conifer forest (Classopollis spp.)
with a notable presence of the gymnosperm R. tuberculatus. The
transition to the main disturbance interval is noted by a
successional stage that sees increased abundances of Pteridopsid
ferns (Deltoidospora ssp.), with vegetation that overall is
characterized by a shrubbier and more herbaceous cycad/fern
vegetation, while upper canopy vegetation decreases. The timing of
vegetational changes, leading into the main biotic crisis, confirms
the recorded supra-regional structure of the ETME.
Interpretations of the depositional environment, based on
lithological and elemental composition, indicate overall wet
climate conditions during laminated clay deposition that are
synonymous with pre-extinction conditions (Contorta Beds). A
transition to red claystone-dominated facies (Triletes Beds) marks
the onset of the ETME and displays overall drier climate
conditions. Three distinct influxes of aquatic palynomorphs
further indicate marine ingressions in the Winterswijk section
consistent with published reconstructions of distinct relative sea-
level changes in the CEB. Furthermore, increased siliciclastic
content and elevated MS intensity in the Triletes Beds, indicates
riverine influx variability and confirms changes in the weathering
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regime during the extinction interval. Elevated abundances in
reworked palynomorphs in the Triletes Beds further suggest
increased erosion rates during the main extinction interval.
Indicators of aridification and increased weathering suggest major
swings in the hydrological cycle. Global warming likely affected the
regional climate and caused a rapid gradual decline in arborescent
tree vegetation, likely through frequent wildfires and perhaps via
increased UV-B radiation due to ozone depletion. Although the
Winterswijk core only covers a partial record of the Late Rhaetian
extinction, the succession provides a connecting site between
eastern and western margins of the CEB.

Supplementary material. For supplementary material accompanying this
paper visit https://doi.org/10.1017/S0016756824000323
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