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ABSTRACT. Avalanche forecasting is a complex process involving the assimilation of multiple data
sources to make predictions over varying spatial and temporal resolutions. Numerically assisted
forecasting often uses nearest-neighbour methods (NN), which are known to have limitations when
dealing with high-dimensional data. We apply support vector machines (SVMs) to a dataset from
Lochaber, Scotland, UK, to assess their applicability in avalanche forecasting. SVMs belong to a family
of theoretically based techniques from machine learning and are designed to deal with high-dimensional
data. Initial experiments showed that SVMs gave results that were comparable with NN for categorical
and probabilistic forecasts. Experiments utilizing the ability of SVMs to deal with high dimensionality in
producing a spatial forecast show promise, but require further work.

INTRODUCTION
Avalanche forecasting involves the assimilation and predic-
tion of data and information describing weather, snowpack
and stability within a given time period and spatial extent,
and assimilating this information to assess the likelihood of
avalanches in the future. In conventional avalanche fore-
casting, this process is carried out with little or no direct use
of numerical models by avalanche forecasters, who tend to
apply a range of diverse and redundant data sources to the
problem (LaChapelle, 1980). Avalanche forecasts may be
provided for periods in the future ranging from the next few
hours (e.g. in the management of avalanche hazard for
roads) through to the next day (commonly the case in the
provision of avalanche forecasts for recreationalists) to
forecasts covering periods of several days in areas with
relatively low temporal variability in weather conditions.
Similarly, spatial forecast scales can vary from a specific (at
the level of a single avalanche path), through local forecasts
for a particular region (e.g. a ski area) to regional forecasts
for a significant part of a mountain range (McClung and
Schaerer, 1993).

Over the last two decades, a wide range of numerical
models and tools have been developed to assist avalanche
forecasters in the decision-making process, ranging from
physical models of the development of the snowpack
(Bartelt and Lehning, 2002), through expert systems, which
attempt to integrate expert knowledge (Schweizer and Föhn,
1996), to a variety of statistically based methods. In general,
the most commonly used approaches in operational ava-
lanche forecasting are based around statistically based
methods, although physical models and expert systems have
been and are being incorporated in forecasting.

The family of statistically based techniques used in
avalanche forecasting includes discriminant analysis, regres-
sion trees and nearest neighbours (NN) (Obled and Good,
1980; Buser, 1983; Davis and others 1999). Of these, by far
the most widely used in operational forecasting appears to
be NN. The core of NN methods lies in the assumption that
similar events are likely to occur under similar conditions. In
avalanche forecasting, the data describing the likelihood of
avalanches are often divided into three classes, Class III
meteorological factors, Class II snowpack factors and Class I
stability factors, where higher class numbers are considered

to be less directly related to avalanching (McClung and
Schaerer, 1993). Thus, in principle, an approach to ava-
lanche forecasting based on stability factors should have
better forecasting skill than one based on meteorological
factors. In practice, data describing meteorological and
snowpack factors are generally easier to collect and general-
ize over a larger region and are more commonly used in
avalanche forecasting at the local and regional levels. NN
approaches tend to use mostly Class III and some Class II
data (e.g. Buser, 1983; Brabec and Meister, 2001; McColl-
ister and others, 2003; Purves and others, 2003) to describe
the similarity of conditions leading to avalanches. Given a
set of forecast data, a sorted list of previous days together
with the events that occurred on these days is returned to the
forecaster. The sorted list is created by using a distance
metric (usually Euclidean) to compare scaled and weighted
data with the forecast data. Heierli and others (2004) argued
that three possible interpretations of NN existed:

categorical forecasts, where some decision boundary is
used to classify forecast days as avalanche days or not;

probability forecasts, where the proportion of the
number of nearest neighbours with avalanche days is
interpreted as the probability of an avalanche on the
forecast day; and

descriptive forecasts, where experts interpret and in-
corporate a detailed list of events into their decision-
making process.

NN appears to be relatively popular with forecasters
because of the possibility of the latter interpretation, which
accords well with conventional inductive avalanche-
forecasting processes (LaChapelle, 1980). However, NN is
a relatively simple pattern-classification technique and it has
been argued that such methods are very prone to over-fitting
in highly dimensional data (McCollister and others, 2003).
In recent years, a family of theoretically grounded tech-
niques based on statistical learning theory (SLT), a general
mathematical framework for extracting dependencies from
empirical data, has emerged (Vapnik, 1995).

The general approach to statistical learning from data is
based on minimizing the error of the model on the training
data, whilst simultaneously maintaining low complexity.
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Such approaches have been shown to avoid over-fitting and
to provide promising predictive abilities in a range of
problems based around highly dimensional data such as
text, images, and gene data of bioinformatics (Guyon and
others, 2002).

In this paper, we explore the use of support vector
machines (SVMs), a machine learning approach derived
from SLT. SVMs aim to be independent of the dimensionality
of the input space and are designed to deal with non-linear
problems in a robust and non-parametric way. First, we
briefly introduce the background of SVM techniques, before
presenting a case study of their application to avalanche
forecasting in Scotland, UK. We then illustrate the ability of
SVMs to produce categorical and probabilistic forecasts,
before showing an example of the possible extension of
SVM to the production of spatially variable forecasts within
a forecasting region and discussing the potential of using
SVMs in operational avalanche forecasting.

SUPPORT VECTOR MACHINES
The initial assumption underlying SVMs is that given a set
{(x1, e1),( x2, e2), . . . , ( xn, en )}, where xi is an m-dimensional
vector describing the conditions at a given time and ei is a
binary event associated with this vector, a hyper-plane
which cleanly separates the binary events can be identified
(Fig. 1a). It has been shown in SLT (Vapnik, 1995) that the
hyper-plane that provides the maximum margin between
classes will provide the best generalization and lowest
validation error (Fig. 1b). Only a small subset of the
vectors xi, which lies at or near the decision boundary, is
required to identify this hyper-plane. The vectors are known
as the support vectors. The hyper-plane is constructed with
regard to the fact that in most real-world datasets data are
noisy and some vectors can be mislabelled.

The next extension of SVMs consists of indirectly map-
ping the input space into a higher-dimensional space using
kernel functions (Schölkopf and Smola, 2001) and finding an
optimal separating hyper-plane through quadratic program-
ming. This leads to a non-linear decision function f ðxÞ in the
initial feature space, which takes the form of a kernel
expansion, i.e. for any vector of input features x,

f ðxÞ ¼
XN

i¼1

ei�iK ðx, xiÞ, ð1Þ

where xi is a feature vector describing conditions at a given
time, ei is the binary event described by xi, �i is a weight
constrained such that 0 � �i � C, and K(x, xi) is a kernel
function.

The kernel function must be symmetric and positive
definite, and is usually a Gaussian radial basis function with
some radius �. Thus, the algorithm has two parameters, C,
describing the possible range of weights, and �, the radius of
the kernel function. In real-life problems, where the data are
noisy or do not completely describe the events, increasing
the value of C increases the range of possible weights and
allows more vectors to contribute to the function, thereby
also increasing the danger of over-fitting. Thus, C can be
considered to be some measure of data quality with respect
to the events. The value of � describes the radius of the
smoothing function, with higher values resulting in a more
generalized form of the decision function.

These two parameters, � and C, must be tuned to min-
imize misclassification by using cross-validation on either a
training-data or a testing-data subset. The function f ðxÞ can
be interpreted in terms of a categorical decision for some
value of forecast vector x according to some default
threshold value of f ðxÞ. However, it is also possible to
probabilistically interpret the outputs by post-processing, for
example through taking a sigmoid transformation of f ðxÞ
(Platt, 1999). The resulting transformation gives

pðxÞ ¼ 1
1þ exp ðAf ðxÞ þ BÞ , ð2Þ

where A and B are constants.
Generally, A and B are tuned using a maximum-

likelihood estimator using bootstrapping on the training
data. If B is found to be close to zero, then the default
threshold coincides with a probability of 0.5.

IMPLEMENTING A SVM FOR AVALANCHE
FORECASTING
In this paper, we report on the implementation of a SVM for
a dataset used in an NN-based avalanche-forecasting tool in
Scotland. Scotland has a maritime climate characterized by
high wind speeds and rapid temperature changes, and lies at
a relatively northerly latitude (�578N) with mountains of, by
Alpine standards, low elevations (<1300m). The data used
were collected in the Lochaber region, one of five areas in
Scotland where avalanche forecasts are produced. The
region includes Scotland’s highest mountain Ben Nevis
and some of Scotland’s most popular winter climbing
venues. New snow is accompanied by high winds and
intense snowdrifting, with the 08C isotherm moving above
and below summits many times in the average winter.
During the winter avalanche season, forecasters are in the
field on a daily basis, and the data used in the SVM are a

Fig. 1. Schematic illustration of SVM. The validation data are not used in identifying the decision boundary.
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mixture of those collected by the forecasters and down-
loaded from an automatic weather station.

Data preparation and feature selection
The original data consist of daily measurements of ten
meteorological and snowpack variables. Combining these
data with data for two previous days, an input feature vector
with 30 dimensions was created. Most of these measure-
ments are relatively standard, but because of the large
amount of redistribution of snow by wind and the corres-
ponding difficulties in measuring new-snow depths, the
forecasters measure new snow on an ordinal scale, which
can be summed to give cumulative totals. Because, by
contrast to NN, SVMs are designed to deal with highly
dimensional data, the feature vector was further extended in
a dialogue with an avalanche forecaster for the Lochaber
region, who was asked to list important indicators of
avalanche activity. These expert features included a cumu-
lative snow index (describing the sum of a snowfall index),
change in air temperature over the previous 2 days, snow
temperature gradients, and a number of binary indicator
variables including air temperature crossing 08C, avalanche
activity on two previous days, strong southeasterly winds on
previous days, snowdrifting, and poor visibility during the

previous 2 days. The final feature vector included a total of
44 variables.

An initial step in identifying suitable features used
recursive feature elimination in conjunction with a SVM to
filter redundant features (Guyon and others, 2002). This
feature selection method iteratively omits the variables with
the smallest influence on the decision surface of the SVM
classifier. The list of 20 features, which were found to be the
most valuable for SVM classification, is given in Table 1. It is
important to stress that these features were selected in a
purely data-driven way.

One important characteristic of the selected features
appears to be the retention of almost all Class II (snowpack)
information, including the unfortunately rather noisy and
subjective foot-penetration values. Current air temperature
is not retained, but this information is available to the
system through the previous day’s air temperature and air-
temperature gradient. Half of the expert features are
retained, with south or southeasterly winds perhaps particu-
larly important, since the main climbing venues are found
on north-facing slopes. Furthermore, given the rapid nature
of change in Scotland’s maritime climate, it is notable that
only two non-expert features (foot penetration and wind
direction) are retained 2 days before the forecast day.

Table 1. The list of features selected by recursive feature elimination algorithm, grouped by type: features related to the current or previous
days and expert variables

Current day Previous days (–1, –2) Expert features

New-snow index – an index of the precipitation as snow on a day
(measured in the field by the observer) (0/1/2/4)
Cumulative snow index –sum of the new snow index over the season
Rain at 900m (yes/no)
Snowdrifting (yes/no)
Cloud cover – as a percentage of sky obscured (%)
Foot penetration – measured at the pit site (cm)
Snow temperature – at 10 cm depth at the pit site (8C)

Air temperature (–1)
Rain at 900m (–1)
Wind speed (–1)
Foot penetration (–1)
Foot penetration (–2)
Wind direction (–2)

Change in air temperature
South or southeasterly wind
Poor visibility (–1)
Southeasterly wind (–1)
Cumulative snow index (–2)
Cumulative snowdrift (–2)
Avalanche activity (–1)

Fig. 2. SVM training error surface (left) and cross-validation error surface (right). The classification error is a percentage of correctly classified
data samples: (Hits +Correct Negative)/(Total Number of Samples).
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Training
The data were divided into a training set of 1123 samples
(winters 1991–2000) and a validation set of 712 samples
(winters 2001–07). The validation dataset was only used to
assess the results and was not available during the training
phase. To select values for the parameters � and C, training
and cross-validation surfaces were generated using a wide
range of values of � and C. Figure 2 shows the training error
surface (the error of the model predicting the training data),
with the minimum classification error lying at the top left of
the figure (i.e. for the maximum value of C and minimum
value of �). However, as shown by the cross-validation error
surface, choosing these values of � and C would result in
over-fitting. The cross-validation error surface is generated
by systematically removing one feature vector from the

dataset and calculating the error of its prediction by the
model. Values of � and C were selected to lie roughly in the
centre of the central band with low errors, with � ¼ 12 and
C ¼ 25, thus minimizing cross-validation error whilst
having an acceptable training error.

Validation
As discussed above, the results of NN forecasts can be
interpreted categorically, probabilistically or descriptively.
Here we present the results of a categorical and probabilistic
validation of the implementation of the SVM on the
independent validation dataset of 712 samples (2001–07).
We follow the methodology of Heierli and others (2004) by
first investigating the influence of different threshold values
on a range of forecast-verification measures (Table 2).

The sensitivity of these measures to threshold values of
SVM between 0 and 1 is shown in Figure 3. In choosing a
threshold for categorical forecasts, a decision must be made
about the acceptance of different forms of forecast error. For
example, low threshold values maximize the probability of
detection (i.e. the chances of missing an avalanche event are

Table 2. Forecast-verification measures (Doswell and others, 1990; Wilks, 1995)

Forecast-accuracy measures
PoD (probability of detection) Probability that the event was forecast when it occurred: PoD = Hits/(Hits +Misses).
SR (success rate) Probability that the event occurred when it was forecast: SR = Hits/(Hits + False Alarms).
HR (hit rate) Proportion of correct forecasts: HR = (Hits +Correct Negative)/(Total Number of Days).

Forecast-skill measures
HSS (Heidke skill score) Skill score based on hit rate: HSS = (Hits +Correct Negative –Chance)/(Total – Chance), where Chance is the

expected number of correct event forecasts due to chance.
KSS (Kuipers skill score) Like HSS, but marginal distribution of reference forecasts equal to base rate:

KSS = [(Hits�Correct Negative) – (Misses� FalseAlarms)]/[(Hits +Misses)(False Alarms+Correct Negative)].

Fig. 3. (a) Forecast-accuracy and (b) forecast-skill measures. The
x axis corresponds to the SVM threshold.

Fig. 4. The verification of probabilistic output of the SVM with
reliability diagram (Wilks, 1995). The x axis indicates the prob-
ability value of the decision threshold, and the y axis the empirical
probability of the observed avalanches in the days corresponding to
the selected threshold. Points close to the black line have the best
skill; those closer to the horizontal line have no resolution.
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minimized), whilst leading to increased false alarms. Fig-
ure 3a shows that a reasonable compromise between prob-
ability of detection (PoD) and hit rate lies somewhere
between values of around 0.4 and 0.6. In Figure 3b, skill
scores that describe the ability of a technique to forecast
better than by random chance are shown. Here, the Heidke
skill score once again suggests an ideal threshold value lying
between about 0.4 and 0.6, whilst the Kuipers skill score
suggests slightly lower threshold values.

Table 3 shows the joint distribution of forecasts and
observations for binary categorical forecasts for the selected
threshold value and two other threshold values, and allows
the calculation of any forecast-accuracy or -skill measure.
When a low threshold (0.25) is selected, more avalanches
are correctly forecast (164), at the cost of many more false
alarms (139). Equally, when a higher threshold (0.75) is
used, many more misses occur (117), though the number of
correct negatives also increases (515). These results confirm
that a sensible threshold value lies, for these data, around a
value of 0.5.

As explained above, it is also possible to probabilistically
interpret the output of SVMs. To evaluate the quality of this
output, we calculated the empirical probability of an event
for a given range of values. Figure 4 shows the resulting
curve. It can be seen that the forecast probabilities generally
agree well with the empirical probability of events,
especially for cases with higher probabilities. At lower
probabilities, the results show less resolution, suggesting that
the values of the parameters of the transformation (Equa-
tion (2)) may not be ideal.

Figure 5 shows SVM predictions for a single winter in the
validation dataset and the corresponding avalanche events.
It can be seen that, qualitatively, there is good agreement
between events and periods assigned high probabilities for
this time period.

EXTENDING THE SVM TO SPATIAL AVALANCHE
PREDICTIONS
Since SVMs are well suited to high dimensionality it is
relatively straightforward to add some level of spatial
forecasting to an SVM. In the case of Lochaber, information
about some 700 avalanche events for 49 individual ava-
lanche paths was available. Thus, for every day in the data-
set, a feature describing the meteorological and snowpack
parameters, the altitude, aspect (presented as north/south
and east/west components) and gradient of each path was
added. This results in a much larger number of feature

vectors with the same total number of avalanche events.
Meteorological and snowpack data were treated as con-
stants over the region. The SVM can then be used to generate
a spatial avalanche forecast, extrapolated over the region
through the use of a digital elevation model (DEM), based on
the enhanced feature vectors. Figure 6 shows the results of
such a forecast, which appears to agree well with the
location of observed avalanches for the day. However, it is
important to emphasize that these are early results intended
to illustrate that SVMs can be used in spatial avalanche
forecasting, and more work is needed to consider the
validity of the results.

DISCUSSION
A key motivation for this paper lies in the desire to apply one
member of a family of techniques derived from SLT to
avalanche forecasting. We have demonstrated that SVMs
produce categorical results in avalanche forecasting which
are comparable with a baseline technique (NN) operation-
ally used in the region (Purves and others, 2003). The NN
approach was applied to the dataset (without the expert
features) considered in this paper, giving performance values
broadly comparable with those shown by SVMs at optimum
thresholds of 0.5 in Figure 3. However, the number of
neighbours that have to be used to provide the best
performance was found to be relatively high (around 20)
(Fig. 7).

Results obtained from NN on the validation data (winters
2001–07) are summarized in Table 4. Interestingly, the best

Table 3. Joint distribution of forecasts and observations for binary
categorical forecasts and the obtained values for default SVM
threshold of 0.5 (values in parentheses are for thresholds of (0.25/
0.75) respectively)

Forecast

Yes No Total

Yes
Hits
131 (164/61)

Misses
47 (14/117)

178

Observed No
False alarms
52 (139/19)

Correct negative
482 (395/515)

534

Total 183 (303/80) 529 (409/627) 712

Fig. 5. The prediction of SVM for the validation data of winter 2003/04. The observed events are plotted as black boxes (or continuous series
of black boxes) at 0 (no events) and 1 (avalanche activity) levels. The probabilistic output of SVM is plotted as a continuous curve. The x axis
corresponds to time in days.

Pozdnoukhov and others: Machine learning methods in avalanche forecasting 111

https://doi.org/10.3189/172756408787814870 Published online by Cambridge University Press

https://doi.org/10.3189/172756408787814870


prediction with the NNmodel was observed using 20 nearest
neighbours, while the use of 10 or a single nearest neigh-
bour produces a drop in performance. This is likely to be due
to the ‘curse of dimensionality’ whereby, as the number of
features is increased, the NN method requires more neigh-
bours. Note that while a 20-NN model was found to provide
good results, the descriptive interpretation of a forecast
based on 20 events becomes complicated.

Concerning the descriptive interpretation of SVM fore-
casts, the features identified by the recursive feature removal
are in accordance with what might be expected for this
region, with the Class II (snowpack) features being prefer-
entially retained and a number of, apparently redundant,
meteorological features being removed. It is important to
note here that feature selection and extraction opens prom-
ising perspectives for improving the current SVM model.
Since a key ingredient in the acceptance of avalanche-

forecasting tools is the transparency and interpretability of
the input data, and because SVM are not black boxes, it is
possible not only to identify which features contribute to the
classification of avalanche and non-avalanche events, but
also to examine the individual support vectors. Since SVMs
aim to identify a small number of support vectors, which
contribute to the definition of the hyper-plane, there is
potential to explore which support vectors lie at or near the
decision boundary and consider the physical meaningfulness
of the features of these vectors.

Figures 4 and 5 illustrate the probabilistic interpretation
of the output from the SVM. Once again, SVM techniques
appear to show reasonable performance in producing
probabilistic outputs.

However, the performance of SVMs in terms of both cat-
egorical and probabilistic measures is not significantly better
than equivalent NN techniques, such as those reported for
the Lochaber region by Heierli and others (2004). Rather, it is
in the potential wider application of SVMs to avalanche
forecasting that we see considerable potential. Since SVMs
are specifically designed to take high-dimensional data and
extract a sparse set of support vectors from such data, they
are applicable to problems with very low base rates, such as
the forecasting of avalanches for individual avalanche paths.
This is in contrast to NN, where the high dimensionality of
the problem makes the application of a technique based on
Euclidean distances, where all features are considered in
every forecast, unlikely to be successful. This ability to deal
with high dimensionality also makes SVMs flexible: it is
possible to add different types of information to the feature
vector; for example, in this paper we illustrate how spatial
data might be added to the feature vector. Importantly, since
the original data are not transformed it is also possible to
apply the resulting probability function to generalize the
solution over space. This part of our work is in its early stages,
and considerable further research will be required to
investigate the validity, as opposed to the feasibility, of
applying SVMs to spatial avalanche forecasting. Further work
is also necessary in investigating the uncertainties associated
with the results of SVMs.

CONCLUSIONS
In this paper, we have illustrated the application of a SVM to
avalanche forecasting for a dataset from Lochaber. Initial
results show that the SVM’s forecasting performance for
categorical and probabilistic forecasts is comparable to

Fig. 6. (a) DEM of the Lochaber region. The locations of avalanche
paths are shown with circles. (b) The sample output of the spatio-
temporal SVM model, indicating the probability of the event on
20 January 1991. The actual observed events are shownwith circles.

Fig. 7. Training error and cross-validation error curves used to
identify the optimal number of neighbours.
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baseline NN methods on an independent validation dataset.
Since the features used are untransformed, the method could
also be used to produce descriptive forecasts and is likely to
be suitable for operational avalanche forecasting.

SVMs have a number of promising aspects, which will be
the focus of further work:

A small number of support vectors contribute to the
result; exploration of these may provide insight into
avalanche forecasting.

SVMs are well suited to solving problems with very high
dimensionality, in contrast to NN. Thus, feature vectors
containing a wide range of features from a variety of
sources can be created. Such features might include
more snowpack data extracted from physical models
such as SNOWPACK (Bartelt and Lehning, 2002). The
lack of features representing snowpack data, and the
implications of increasing dimensionality, is a weakness
of NN approaches.

This applicability to problems of high dimensionality
allows the extension of SVMs to the production of
spatially distributed avalanche forecasts. Future work
will investigate whether such approaches can produce
useful results.
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