
JFP 29, e16, 83 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796819000145

A relational logic for higher-order programs

A L E J A N D R O A G U I R R E
Imdea Software Institute & Universidad Politécnica de Madrid, Campus Montegancedo s/n

28223 Pozuelo de Alarcon, Madrid, Spain
(e-mail: alejandro.aguirre@imdea.org)

G I L L E S B A R T H E
Imdea Software Institute & MPI-SP, Campus Montegancedo s/n

28223 Pozuelo de Alarcon, Madrid, Spain
(e-mail: gilles.barthe@imdea.org)

M A R C O G A B O A R D I
University at Buffalo, The State University of New York (SUNY), Computer Science and Engineering

338B Davis Hall, Buffalo, NY 14260-2500, USA
(e-mail: gaboardi@buffalo.edu)

D E E P A K G A R G
Max Planck Institute for Software Systems (MPI-SWS), Campus E1 5

Saarbruecken, 66123, Germany
(e-mail: dg@mpi-sws.org)

P I E R R E - Y V E S S T R U B
École Polytechnique, Laboratoire d’informatique (LIX), Bâtiment Alan Turing, 1 rue Honoré

d’Estienne d’Orves, CS35003 91120 Palaiseau Cedex, France
(e-mail: pierre-yves@strub.nu)

Abstract

Relational program verification is a variant of program verification where one can reason about
two programs and as a special case about two executions of a single program on different inputs.
Relational program verification can be used for reasoning about a broad range of properties, including
equivalence and refinement, and specialized notions such as continuity, information flow security,
or relative cost. In a higher-order setting, relational program verification can be achieved using
relational refinement type systems, a form of refinement types where assertions have a relational
interpretation. Relational refinement type systems excel at relating structurally equivalent terms but
provide limited support for relating terms with very different structures. We present a logic, called
relational higher-order logic (RHOL), for proving relational properties of a simply typed λ-calculus
with inductive types and recursive definitions. RHOL retains the type-directed flavor of relational
refinement type systems but achieves greater expressivity through rules which simultaneously rea-
son about the two terms as well as rules which only contemplate one of the two terms. We show that
RHOL has strong foundations, by proving an equivalence with higher-order logic, and leverage this
equivalence to derive key meta-theoretical properties: subject reduction, admissibility of a transitiv-
ity rule, and set-theoretical soundness. Moreover, we define sound embeddings for several existing
relational type systems such as relational refinement types and type systems for dependency analysis
and relative cost, and we verify examples that were out of reach of prior work.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145
https://orcid.org/0000-0001-6746-2734
mailto:alejandro.aguirre@imdea.org
mailto:gilles.barthe@imdea.org
mailto:gaboardi@buffalo.edu
mailto:dg@mpi-sws.org
mailto:pierre-yves@strub.nu
https://doi.org/10.1017/S0956796819000145

2 A. Aguirre et al.

1 Introduction

Many important aspects of program behavior go beyond the traditional charac-
terization of program properties as sets of traces (Alpern & Schneider, 1985).
Hyperproperties (Clarkson & Schneider, 2008) generalize properties and capture a larger
class of program behaviors, by focusing on sets of sets of traces. As an intermediate point in
this space, relational properties are sets of pairs of traces. Relational properties encompass
many properties of interest, including program equivalence and refinement, as well as more
specific notions such as noninterference and continuity.

Relational verification is an instance of program verification that targets relational prop-
erties. Expectedly, standard verification methods such as type systems, program logics, and
program analyses can be lifted to a relational setting. However, it remains a challenge to
devise sufficiently powerful methods that can be used to verify a broad range of examples.
In effect, most existing relational verification methods are limited in the examples that they
can naturally verify, due to the fundamental tension between the syntax-directed nature
of program verification and the need to relate structurally different programs. Moreover,
approaches to resolve this tension highly depend on the programming paradigm, on the
class of program properties considered, and on the verification method. In the (arguably
simplest) case of deductive verification of general properties of imperative programs, one
approach to reduce this tension is to use self-composition (Barthe et al., 2004), which
reduces relational verification to standard verification. However, reasoning about self-
composed programs might be cumbersome. Alternatively, there exist expressive relational
program logics that rely on an intricate set of rules to reason about a pair of programs.
These logics combine two-sided rules, in which the two programs have the same top-
level structure, and one-sided rules, which operate on a single program. Rules for loops
are further divided into synchronous, in which both programs perform the same number
of iterations, and asynchronous rules that do not have this restriction but introduce more
complexity (Benton, 2004; Barthe et al., 2017).

In contrast, deductive verification of general properties of (pure) higher-order programs
is less developed. One potential approach to solve the tension between the syntax-
directedness, and the need to relate structurally different programs, is to reduce relational
verification of pure higher-order programs to proofs in higher-order logic (HOL). There
are strong similarities between this approach and self-composition: it reduces relational
verification to standard verification, but this approach is very difficult to use in practice.
A better alternative is to use relational refinement types such as rF∗ (Barthe et al., 2014),
HOARe2 (Barthe et al., 2015), DFuzz (Gaboardi et al., 2013), or RelCost (Çiçek et al.,
2017). Informally, relational refinement type systems use assertions to capture relation-
ships between inputs and outputs of two higher-order programs. They are appealing for
two reasons:

• They capture many important properties of programs in a direct and intuitive man-
ner. For instance, the type {x :: N | x1 ≤ x2}→ {y :: N | y1 ≤ y2} captures the set of
pairs of functions that preserve the natural order on natural numbers, that is, pairs of
functions f1, f2 : N→N such that for every x1, x2 ∈N, x1 ≤ x2 implies f1(x1)≤ f2(x2).
(The subscripts 1 and 2 on a variable refer to its values in the two runs.)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 3

• They can potentially benefit from a long and successful line of founda-
tional (Freeman & Pfenning, 1991; Xi & Pfenning, 1999; Dunfield & Pfenning,
2004; Melliès & Zeilberger, 2015) and practical (Vazou et al., 2014; Swamy et al.,
2016) research on refinement types.

Unfortunately, existing relational refinement type systems fail to support the verification
of several examples. Broadly speaking, the two programs in a relational judgment may
be required to have the same type and the same control flow; moreover, this requirement
must be satisfied by their subprograms: if the two programs are applications, then the two
subprograms in argument position (resp. in function position) must have the same type
and the same control flow; if the two programs are case expressions, they must enter the
same branch, and their branches must themselves have the same control flow; if the two
programs are recursive definitions, then their bodies must perform the same sequence of
recursive calls; etc. This restriction, which can be found in more or less strict forms in the
different relational type systems, limits the ability to carry fine-grained reasoning about
terms that are structurally different. This raises the question whether the type-directed form
of reasoning purported by refinement types can be reconciled with an expressive relational
verification of higher-order programs. We provide a positive answer for pure higher-order
programs; extending our results to effectful programs is an important goal, but we leave it
for future work.

Our starting point is the observation that relational refinement type systems are inher-
ently restricted to reasoning about two structurally similar programs, because relational
assertions are embedded into types. In order to provide broad support for one-sided rules
(i.e., rules that contemplate only one of the two expressions), it is therefore necessary to
consider relational assertions at the top-level, since one-sided rules have a natural formu-
lation in this setting. Considering relational assertions at the top-level can be done in two
different ways: either by supporting a rich theory of subtyping for relational refinement
types, in such a way that each type admits a normal form where refinements only arise at
the top-level, or simply by adapting the definitions and rules of refinement type systems so
that only the top-level refinements are considered. Although both approaches are feasible,
we believe that the second approach is more streamlined and leads to friendlier verification
environments.

Contributions

We present a new logic, called relational higher-order logic (RHOL, Section 6), for reason-
ing about relational properties of higher-order programs written in a variant of Plotkin’s
Programming Computable Functions (PCF) (Section 2). The logic manipulates judgments
of the form:

� |� � t1 : σ1 ∼ t2 : σ2 | φ
where � is a simply typed context, σ1 and σ2 are (possibly different) simple types, t1
and t2 are terms, � is a set of assertions, and φ is an assertion. Our logic retains the
type-directed nature of (relational) refinement type systems, and features typing rules for
reasoning about structurally similar terms. However, disentangling types from assertions
also makes it possible to define type-directed rules operating on a single term (left or right)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

4 A. Aguirre et al.

of the judgment. This confers great expressivity to the logic, without significantly affecting
its type-directed nature, and opens the possibility to alternate freely between two-sided and
one-sided reasoning, as done in the logics for first-order imperative languages.

The validity of judgments is expressed relative to a set-theoretical semantics—our
variant of PCF is restricted to terms which admit a set-theoretical semantics, including
strongly normalizing terms. More precisely, a judgment � |� � t1 : σ1 ∼ t2 : σ2 | φ is valid
if for every valuation ρ (mapping variables in the context � to elements in the interpre-
tation of their types), the interpretation of φ is true whenever the interpretation of (all
the assertions in) � is true. Soundness of the logic can be proved through a standard
model-theoretic argument; however, we provide an alternative proof based on a sound
and complete embedding into HOL (Section 4). We leverage this equivalence to establish
several meta-theoretical properties of the logic, notably subject reduction.

Moreover, we demonstrate that RHOL can be used as a general framework, by defin-
ing sound embedding for several relational type systems: relational refinement types
(Section 7.2), the dependency core calculus (DCC) for many dependency analyses, includ-
ing those for information flow security (Section 7.3), and the RelCost (Section 7.4) type
system for relative cost. The embedding of RelCost is particularly interesting, since it
exercises the ability of our logic to alternate between synchronous and asynchronous rea-
soning. Afterwards, we verify several examples that go beyond the capabilities of previous
systems (Section 8). The system, its meta-theory, and the examples have been mechanized
in Coq. We comment on the Coq implementation in Section 9. In Section 10, we conclude
by presenting other relational systems based on RHOL that have been developed since
the conference version of this paper (Aguirre et al., 2017), and commenting on how they
extend RHOL.

Related work

While dependent type theory is the prevailing approach to reason about (pure) higher-order
programs, several authors have explored another approach, which is crisply summarized
by Jacobs (1999): “A logic is always a logic over a type theory.” Formalisms following
this approach are defined in two stages: the first stage introduces a (dependent) type theory
for writing programs, and the second stage introduces a predicate logic to reason about
programs. This approach has been pursued independently in a series of works on logic-
enriched type theories (Aczel & Gambino, 2000, 2006; Belo, 2007; Adams & Luo, 2010)
and on refinement types (Pfenning, 2008; Zeilberger, 2016). In the latter line of work,
programs are written in an intrinsically typed λ-calculus à la Church; then, a system of
sorts (a.k.a. refinements) is used to establish properties of programs typable in the first
system. Our approach is similar; however, these works are developed in a unary setting
and do not consider the problem of relational verification. A further approach consists of
developing a logic in an untyped setting, as is the case of Logical Theory of Constructions
(LTC) (Dybjer, 1985).

Moreover, there is a large body of work on relational verification; we focus on
type-based methods and deductive methods. Relational Hoare logic Benton (2004) and
relational separation logic (Yang, 2007) are two program logics, respectively, based on
Hoare logic and separation logic, for reasoning about relational properties of (first-order)
imperative programs. These logics have been used for a broad range of examples and

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 5

applications, ranging from program equivalence to compiler verification and information
flow analysis. Moreover, they have been extended in several directions. For example,
probabilistic relational Hoare logic (Barthe et al., 2009) and approximate probabilistic
relational Hoare logic (Barthe et al., 2012) are generalizations of relational Hoare logic for
reasoning about relational properties of (first-order) probabilistic programs. These logics
have been used for a broad range of applications, including probabilistic information flow,
side-channel security, proofs of cryptographic strength (reductionist security), and differ-
ential privacy. Cartesian Hoare logic (Sousa & Dillig, 2016) is also a recent generalization
of relational Hoare logic for reasoning about bounded safety (i.e., k-safety for arbitrary
but fixed k) properties of (first-order) imperative programs. This logic has been used for
analyzing standard libraries. Experiments have demonstrated that such logics can be very
effective in practice. Our formalism can be seen as a proposal to adapt their flexibility to
pure higher-order programs.

Product programs (Barthe et al., 2004; Terauchi & Aiken, 2005; Zaks & Pnueli, 2008;
Barthe et al., 2011) are a general class of constructions that emulate the behavior of two
programs and can be used for reducing relational verification to standard verification.
While product programs naturally achieve (relative) completeness, they are often diffi-
cult to use since they require global reasoning on the obtained program—however, recent
works (Blatter et al., 2017) show how this approach can be automated in specific settings.
Building product programs for (pure) higher-order languages is an intriguing possibil-
ity, and it might be possible to instrument RHOL using ideas from Barthe et al. (2017)
to this effect; however, the product programs constructed in Barthe et al. (2017) are a
consequence, rather than a means, of relational verification.

Several type systems have been designed to support formal reasoning about relational
properties for functional programs. Some of the earlier works in this direction have focused
on the semantics foundations of parametricity, like the work by Abadi et al. (1993) on
System R, a relational version of System F. The recent work by Ghani et al. (2016a) has
further extended this approach to give better foundations to a combination of relational
parametricity and impredicative polymorphism. Interestingly, similarly to RHOL, System
R also supports relations between expressions at different types, although, since System
R does not support refinement types, the only relations that System R can support are the
parametric ones on polymorphic terms. In RHOL, we do not support parametric polymor-
phism à la System F currently but the relations that we support are more general. Adding
parametric polymorphism will require foregoing the set-theoretical semantics, but it should
still be possible to prove equivalence with a polymorphic variant of HOL.

Several type systems have been proposed to reason about information flow security, a
prime example of a relational property. Some examples include SLAM (Heintze & Riecke,
1998), the type system underlying Flow Caml (Pottier & Simonet, 2002) and DCC (Abadi
et al., 1999). Most of these type systems consider only one expression but they allow the
use of information flow labels to specify relations between two different executions of the
expression. As we show in this paper, this approach can also be implemented in RHOL.
We show how to translate DCC since it is one of the most general type systems; however,
similar translations can also be provided for the other type systems.

Relational Hoare type theory (RHTT) (Nanevski et al., 2013; Stewart et al., 2013) is
a formalism for relational reasoning about stateful higher-order programs. RHTT was

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

6 A. Aguirre et al.

designed to verify security properties like authorization and information flow policies but
was used for the verification of heterogeneous pointer data structures as well. RHTT uses
a monad to separate stateful computations and relational refinements on the monadic type
express relational pre- and postconditions. RHTT supports reasoning about two differ-
ent programs but the programs must have the same types at the top-level. RHTT’s rules
support both two- and one-sided reasoning similar to RHOL, but the focus of RHTT is on
verifying properties of the program state. In particular, examples such as those in Section 8
or embeddings such as those in Section 7 were not considered in RHTT. RHTT is proved
sound over a domain-theoretic model and continuity must be proven explicitly during the
verification of recursive functions (rules are provided to prove continuity in many cases). In
contrast, RHOL’s set-theoretic model is simpler, but admits only those recursive functions
that have a unique interpretation in set theory.

Logical relations (Tait, 1967; Plotkin, 1973; Statman, 1985) provide a fundamental
tool for reasoning about programs. They have been used for a broad range of purposes,
including proving unary properties (for instance, strong normalization or complexity) and
relational properties (for instance, equivalence or information flow security). Our work can
be understood as an attempt to internalize the versatility of relational logical relations in a
syntactic framework. There is a large body of work on logics for logical relations, from the
early work by Plotkin and Abadi (1993) to more recent work on logics for reasoning about
states and concurrency (Dreyer et al., 2010, 2011; Jung et al., 2015; Krogh-Jespersen et al.,
2017). In particular, the IRIS logic (Jung et al., 2015) can be seen as a powerful reasoning
framework for logical relations, as shown by Krogh-Jespersen et al. (2017). Even though
we also aim to internalize logical relations, the goal of RHOL differs from the goal of IRIS
in that we aim for syntax-driven relational verification, which IRIS does not.

We have already mentioned the works on relational refinement type systems for veri-
fying cryptographic constructions (Barthe et al., 2014), for differential privacy (Gaboardi
et al., 2013; Barthe et al., 2015), and for relational cost analysis (Çiçek et al., 2017). This
line of works is probably the most related to our work. However, RHOL improves over all
of them, as also shown by some of the embeddings we give in Section 7. Another work in
this direction is that of Asada et al. (2016), which proposes a technique to reduce relational
refinement to standard first-order refinements. Their technique is incomplete but it works
well on some concrete examples. As discussed earlier, we believe that some technique of
this kind can also be applied to RHOL. However, this is orthogonal to our current goal and
we leave this investigation to future work.

In a recent paper, Grimm et al. (2018) propose an alternative manner of proving
relational properties of monadic computations in F�. Intrinsic specification of monadic
computations in this language needs to be unary; however, relational properties can be
proven extrinsically by using a reification operator. This operator exposes the compu-
tational content of the terms and turns them into pure expressions, about which logical
lemmas can be written and proven, exploiting the automation features of F�. The idea of
exposing the pure representation of a computation generalizes the ideas behind our embed-
dings of DCC and RelCost. However, this work offers no specific support for relational
reasoning and would correspond in our setting to embedding these frameworks directly
into HOL rather than into RHOL.

Several works have explored how to automate the verification of higher-order programs
by means of techniques inspired by model checking and Horn clause solving. Some of

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 7

the recent works in this direction (Kobayashi et al., 2017, 2018) have focused on the use
of higher-order modal fixed point logics (HFL). In this approach, a program is translated
to an HFL formula expressing the correctness of the program with respect to a particular
property, and the verification is performed via HFL model checking. This approach is able
to express several properties of higher-order programs in a uniform way. The verification
technique based on HFL is quite different from the one we present here but both techniques
serve similar purposes. Properties that have been targeted using HFL include reachability
and trace properties, which are all non-relational. Instead, we focused on relational prop-
erties including information flow, relational cost, and program equivalence. Nevertheless,
it would be interesting to investigate whether HFL model checking could be used also to
support the automated verification of relational properties. Program verification based on
Horn clauses has also been used for the verification of relational properties of higher-order
programs (Unno et al., 2017). The technique by Unno et al. focuses on a principled way to
encode relational properties in Horn clauses. In our approach instead, the relational nature
of the properties is used in the corresponding logic RHOL and its combined use with unary
higher-order logic (UHOL) and HOL.

Since the publication of the conference version of this paper, a few other papers have
built on top of RHOL to verify relational properties of effectful programs. The Rc sys-
tem (Radicek et al., 2018) establishes the relative cost of a pair of higher-order programs.
Meanwhile, Guarded RHOL (Aguirre et al., 2018) extends RHOL with guarded recursion
and probabilities, which allows reasoning about probabilistic infinite data structures, such
as Markov chains. A recent paper (Sato et al., 2019) shows another extension of RHOL
with continuous probabilities and Bayesian conditioning. We further discuss these exten-
sions in Section 10. These results witness the versatility of the basic principles behind
RHOL.

Comparison with conference version

This is an extended version of a conference paper (Aguirre et al., 2017). The increments
with respect to the conference version are

• A mechanization of our system in the Coq proof assistant (Section 9).
• More detailed explanation of the system (Sections 4–6) and the examples

(Section 8). We also add an informal derivation of an example at the beginning
of the paper (Section 3), which helps in motivating the theoretical development that
follows.

• Detailed proofs of the main theoretical results of this paper.
• A new example (Section 8.3) showing one-sensitivity of sorting, which we believe

to better showcase the advantages of relational reasoning.
• A discussion on extensions of our system that were presented after the publication

of the conference version (Section 10).

2 (A variant of) PCF

We consider a variant of PCF (Plotkin, 1977) with booleans, natural numbers, lists, and
recursive definitions. For the latter, we require that all recursive calls are performed
on strictly smaller elements—as a consequence, the fixpoint equation derived from the

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

8 A. Aguirre et al.

definition has a unique set-theoretical solution. The method to enforce this requirement is
orthogonal to our design and could, for instance, be based on a syntactic guard predicate
or on sized types.

Types and terms of the language are defined by the following grammar:

τ ::=B |N | listτ | τ × τ | τ→ τ

t ::= x | 〈t, t〉 | π1 t | π2 t | t t | λx : τ .t | c | S t | t :: t | case t of 0 �→ t; S �→ t

| case t of tt �→ t; ff �→ t | case t of [] �→ t; _ :: _ �→ t | letrec f x= t

where x ranges over a set V of variables, c ranges over the set {tt, ff, 0, []} of constants, and
λ-abstractions are à la Church. Throughout the paper, we will use letters t, u, v to range
over terms, and letters x, y, z to range over variables. Occasionally, we will also use f , g
for variables with arrow types.

The operational behavior of terms is captured by βιμ-reduction →βιμ=→β ∪→ι

∪→μ, where β-reduction, ι-reduction, and μ-reduction are defined as the contextual
closure of:

(λx.t) u →β t[u/x]
πi〈t1, t2〉 →β ti

case 0 of 0 �→ u; S �→ v →ι u
case St of 0 �→ u; S �→ v →ι (v t)
case tt of tt �→ u; ff �→ v →ι u
case ff of tt �→ u; ff �→ v →ι v

case [] of [] �→ u; _ :: _ �→ v →ι u
case h :: t of [] �→ u; _ :: _ �→ v →ι (v h t)

(letrec f x= t) (C t) →μ t[C t/x][letrec f x= t/f]

where t[u/x] denotes the usual (capture-free) notion of substitution on terms (replace x by
u in t). As usual, we let =βιμ denote the reflexive, symmetric, and transitive closure of
→βιμ. In particular, we only allow reduction of letrec when the argument has a constructor
C ∈ {tt, ff, 0, S, [], ::} in head position.

Typing judgments are of the form � � t : τ , where � is a set of typing declarations of the
form x : σ , such that each variable is declared at most once. The typing rules are standard,
except the one for recursive functions. In this rule, we require that the domain of the recur-
sive function be an inductive type (naturals or lists here) and that the body of the recursive
definition letrec f x= t satisfies a predicate Def (f , x, t) which ensures that all recursive
calls are performed on smaller arguments. The typing rule for recursive definitions is thus:

�, f : I → σ , x : I � e : σ Def (f , x, t) I ∈ {N, listτ }
� � letrec f x = t : I → σ

We give set-theoretical semantics to this system. The choice of this model is motivated by
simplicity, but our construction would still work in a different model. For instance, the Coq
mechanization of this paper uses the calculus of inductive constructions, and the extension
of RHOL presented in Aguirre et al. (2018) has an interpretation in the topos of trees.

For each type τ , its interpretation �τ� is the set of its values:

�B��B �N��N �listτ ��list�τ� �σ→ τ���σ �→ �τ�

where �σ �→ �τ� is the set of total functions with domain �σ � and codomain �τ�.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 9

A valuation ρ for a context � (written ρ |= �) is a partial map such that ρ(x) ∈ �τ�

whenever (x : τ) ∈ �. For every valuation ρ, let ρ[v/x] denote its unique extension ρ ′

such that ρ ′(y)= v if x= y and ρ ′(y)= ρ(y) otherwise. Given a valuation ρ for a con-
text �, every term t for which a typing judgment � � t : τ can be derived has an
interpretation �t�ρ :

�x�ρ � ρ(x) �〈t, u〉�ρ � 〈�t�ρ , �u�ρ〉 �πi t�ρ � πi(�t�ρ)

�λx : τ .t�ρ � λv : �τ�.�t�ρ[�v�ρ/x] �c�ρ � c �S t�ρ � S �t�ρ

�t :: u�ρ � �t�ρ :: �u�ρ

�case t of [] �→ u; _ :: _ �→ v�ρ �
{

�u�ρ if �t�ρ = []

�v�ρ M N if �t�ρ =M :: N

�letrec f x= t�ρ � F

In the case of letrec f x= t, we require that F be the unique solution of the fixpoint equation
extracted from the recursive definition—existence and uniqueness of the solution follows
from the validity of the Def (f , x, t) predicate.

The interpretation of well-typed terms is sound. Moreover, the interpretation equates
convertible terms. (This extends to η-conversion.)

Theorem 1 (Soundness of set-theoretic semantics). The following hold:

• If � � t : τ and ρ |= �, then �t�ρ ∈ �τ�.
• If � � t : τ and � � u : τ and t=βιμ u and ρ |= �, then �t�ρ = �u�ρ .

3 Introductory example

In this section, we show a motivating example for our logic. We use an informal pre-
sentation style here. Later, in Section 8, we revisit the example and prove it formally.
Consider the following pair of programs corresponding to two implementations of the
factorial function:

fact1 � letrec f1 n1 = case n1 of 0 �→ 1; S �→ λx1.(S x1) ∗ (f1 x1)

fact2 � letrec f2 n2 = λacc.case n2 of 0 �→ acc; S �→ λx2.f2 x2 ((S x2) ∗ acc)

We want to show a relation between the functions, namely that for any natural n, and any
initial value a of the accumulator, a ∗ (fact1n)= fact2 n a. To avoid having to name our
programs, we assume our logic has two distinguished variables r1, r2, that represent the
pair of programs we reason about. Then, the relation we want to show is

∀n. ∀a. a ∗ (r1 n)= r2 n a

This relation is not expressible in a relational refinement type system, since the two pro-
grams have different types. But they still have similar structure, and we wish to exploit
this to find a proof. First we notice that both programs are recursive functions, so we apply
a rule for this case, [LETREC]. This gives us the inductive hypothesis that the relation
above holds for natural numbers strictly smaller than n, and the proof obligation that, for
the following two programs:

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

10 A. Aguirre et al.

case n of 0 �→ 1; S �→ λx.(S x) ∗ (f1 x)

λacc.case n of 0 �→ acc; S �→ λx.f2 x ((S x) ∗ acc)

the result of the first one, times a, is equal to the result calling the second one with argument
a, that is,

∀a. a ∗ r1 = r2 a

But now we have a pair of programs that have not only different types but also differ-
ent top-level term former: the first one has a case analysis, while the second one has an
abstraction. We now apply a one-sided rule [ABS-R] that takes care of the abstraction on
the right and ignores the term on the left, leaving a pair of programs

case n of 0 �→ 1; S �→ λx.(S x) ∗ (f1 x)

case n of 0 �→ acc; S �→ λx.f2 x ((S x) ∗ a)

and a proof obligation

a ∗ r1 = r2

Finally, we have two programs with the same type and the same structure. We can do
synchronous reasoning, using the fact that both programs need to take the same branch. In
the 0 branch, it is trivial to check that a ∗ 1= a. In the successor branch, we can instantiate
the inductive hypothesis, since the bound variable x is the predecessor of n, and thus strictly
smaller. This concludes the proof.

4 Higher-Order Logic

HOL is a predicate logic over simply typed, higher-order terms. Its rules are written in the
style of natural deduction. More specifically, its assertions are formulae over typed terms
and are defined by the following grammar:

φ ::= P(t1, . . . , tn) | � | ⊥ | φ ∧ φ | φ ∨ φ | φ⇒ φ | ∀x : τ .φ | ∃x : τ .φ

where P ranges over basic predicates, such as =, ≤, or sorted(l). As usual, we will often
omit the types of bound variables, when they are clear from the context. We assume that
predicates come equipped with an axiomatization. For instance, the predicate All(l, λx.φ)
is defined to capture lists whose elements e all satisfy φ[e/x]. This can be defined axiomat-
ically for a given φ with a free variable x (which we denote with an overloaded λ symbol):

All([], λx.φ) ∀ht. All(t, λx.φ)⇒ φ[h/x]⇒All(h :: t, λx.φ)

The notation λx.φ, used for simplicity, can be made formal by introducing a type for
propositions—adding such a type is straightforward and orthogonal to our work; another
alternative would be to use axiom schemes.

We define well-typed assertions using a judgment of the form � � φ. This judgment
has the expected, straightforward rules. An HOL (inference) judgment is then of the
form � |� � φ, where � is a simply typed context, � is a set of assertions, and φ is an
assertion, and such that � �ψ for every ψ ∈�, and � � φ. The rules of this judgment are
given in Figure 1, where the notation φ[t/x] denotes the (capture-free) substitution of x by
t in φ. In addition to the usual rules for equality, implication, and universal quantification,
there are rules for inductive types (only the rules for lists are shown; similar rules exist

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 11

Fig. 1. Selected rules for HOL.

for booleans and natural numbers): the rule [LIST] models the induction principle for
lists; the rules [NC] and [CONS] formalize injectivity and non-overlap of constructors. A
rule for strong induction [SLIST] can be considered as well, and is in fact derivable from
simple induction.

HOL inherits a set-theoretical interpretation from its underlying simply typed λ-
calculus. We assume given for each predicate P an interpretation �P� which is compatible
with the type of P and its axioms. The interpretation of assertions is then defined in the
usual way. Specifically, the interpretation �φ�ρ of an assertion φ w.r.t. a valuation ρ
includes the clauses:

�P(t1, . . . , tn)�ρ � (�t1�ρ , . . . , �tn�ρ) ∈ �P� ���ρ � �̃ �⊥�ρ � ⊥̃

�φ1 ∧ φ2�ρ � �φ1�ρ ∧̃ �φ2�ρ �φ1 ⇒ φ2�ρ � �φ1�ρ ⇒̃ �φ2�ρ

�∀x : τ .φ�ρ � ∀̃v. v ∈ �τ� ⇒̃ �φ�ρ[v/x]

where the tilde (~) is used to distinguish between HOL connectives and meta-level
connectives. HOL is sound with respect to this semantics.

Theorem 2 (Soundness of set-theoretical semantics). If � |� � φ, then for every valua-
tion ρ |= �,

∧
ψ∈��ψ�ρ implies �φ�ρ .

In particular, HOL is consistent, that is, there is no derivation of � | ∅ �⊥ for any �.

5 Unary Higher-Order Logic

As a stepping stone toward RHOL, we define UHOL. UHOL retains the flavor of
refinement types but dissociates typing from assertions; judgments of UHOL are of the
form:

� |� � t : τ | φ

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

12 A. Aguirre et al.

Fig. 2. Unary Higher-Order Logic rules.

where a distinguished variable r, which does not appear in �, may appear free in φ as a
synonym of t. A judgment is well-formed if t has type τ , � is a valid set of assertions
in the context �, and φ is a valid assertion in the context �, r : τ . Not only is UHOL a
logical system in its own right, but it is also a key component for deriving one-sided rules
in RHOL (Section 6). When reasoning about two terms with different structures, RHOL
relies on UHOL to express proof obligations that affect only one of the two terms.

Figure 2 presents selected typing rules. The [ABS] rule allows proving formulas that
refer to λ-abstractions, expressing that if the argument satisfies a precondition φ′, then
the result satisfies a postcondition φ. The [APP] rule, dually, proves a condition φ on an
application t u provided that the argument u satisfies the precondition φ′ of the function t.
The motivation behind the substitution [r x/r] in both rules is that the type of r changes
from the premise to the conclusion, and when r is bound to an arrow type, it needs to
appear on the left of an application construct to recover its original type.

The [VAR] rule introduces a variable from the context with a formula proven in HOL.
Rules for constants (e.g., [NIL]) work in the same way. Rule [CONS] proves a formula φ
for a non-empty list, provided that φ on the entire list is a logical consequence (in HOL)
of some conditions φ′, φ′′ on its head and its tail, respectively. Rule [PAIR] allows the

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 13

construction of judgments about pairs in a similar manner. The rules [PROJi] for i=
1, 2 establish judgments about the projections of a pair. The rule [SUB] (subsumption)
allows strengthening the assumed assertions � and weakening the concluding assertion φ.
It generates an HOL proof obligation. The rule [CASE] can be used for a case analysis over
the constructor of a term. Finally, the rule [LETREC] supports inductive reasoning about
recursive function. Recall that the domain of a recursive definition is an inductive type, for
which a natural notion of size exists. If, assuming that a proposition holds for all elements
smaller than the argument, we can prove that the proposition holds for the body, then the
proposition must hold for the function as well. Furthermore, we require that the function
we are verifying satisfies the predicate Def (f , x, t), as was the case in HOL. The induction
is performed over the < order, which varies depending on the type of the argument.

We now discuss the main meta-theoretic results of UHOL. The following result
establishes that every HOL judgment can be proven in UHOL and vice versa.

Theorem 3 (Equivalence with HOL). For every context �, simple type σ , term t, set of
assertions �, and assertion φ, the following are equivalent:

• � |� � t : σ | φ
• � |� � φ[t/r].

The forward implication follows by induction on the derivation of � |� � t : σ | φ. The
reverse implication is immediate from the rule [SUB] and the observation that � |� � t :
σ | � whenever t is a term of type σ .

We lift the HOL semantics to UHOL. Terms, types, and formulas are interpreted as
before. The following corollary states the soundness of UHOL.

Corollary 4 (Set-theoretical soundness and consistency). Let t be a term such that � |� �
t : σ | φ and ρ a valuation such that ρ |= �. If

∧
ψ∈��ψ�ρ , then �φ�ρ[�t�ρ/r]. In particular,

there is no proof of the judgment � | ∅ � t : σ | ⊥ for any �, t, and σ .

Next, we prove subject conversion for UHOL. This result follows immediately from
Theorem 3 and subject conversion of HOL, which is itself a direct consequence of the
[CONV] and [SUBST] rules.

Corollary 5 (Subject conversion). Assume that t=βιμ t′ and � |� � t : σ | φ. Then � |� �
t′ : σ | φ.

6 Relational Higher-Order Logic

RHOL extends UHOL’s separation of assertions and types to a relational setting. Formally,
RHOL is a relational type system which manipulates judgments of the form

� |� � t1 : τ1 ∼ t2 : τ2 | φ
which combine a typing judgment for a pair of PCF terms and permit reasoning about
the relation between them. The judgment means that t1 and t2, respectively, have types τ1

and τ2 in � and that t1, t2 are related by the assertion φ. Well-formedness of the judgment

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

14 A. Aguirre et al.

Fig. 3. Two-sided rules.

requires � to be a valid set of assertions in � and φ to be a valid assertion in �, r1 : τ1, r2 :
τ2, where the special variables r1 and r2 are used as synonyms for t1 and t2 in φ.

6.1 Proof rules

The type system combines two-sided rules (Figure 3), which apply when the two terms
have the same top-level constructors and one-sided rules (Figure 4), which analyze either
one of the two terms. For instance, the [APP] rule applies when the two terms are appli-
cations, and requires that the functions t1 and t2 relate and the arguments u1 and u2 relate.
Specifically, t1 and t2 must map values related by φ′ to values related by φ, and u1 and u2

must be related by φ′. The [ABS] rule is dual. The [PAIR] rule requires that the left and
right components of a pair relate independently (a stronger rule is discussed at the end of
this section). The [PROJi] rules require in their premise an assertion that only refers to
the first or the second component of the pair. The rules for lists require that the two lists
are either both empty or both non-empty. The rule [CONS] requires that the two heads
and the two tails relate independently. The [CASE] rule derives judgments about two case
constructs when the terms over which the matching happens reduce to the same branch
(i.e., have the same constructor) on both sides.

In contrast, one-sided typing rules only analyze one term; therefore, they come in two
flavors: left rules (shown in Figure 4) and right rules (omitted but similar). Rule [ABS-L]

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 15

Fig. 4. Structural rules.

considers the case where the left term is a λ-abstraction, and requires the body of the
abstraction to be related to the right term u2 whenever the argument on the left side satisfies
a non-relational assertion φ′. Dually, rule [APP-L] considers the case where the left term
is of the form t1 u1, and t1 is related to the right term u2; specifically, t1 should map every
value satisfying φ′ to a value satisfying φ. Moreover, u1 should satisfy φ′ in UHOL (not
RHOL, since φ′ is a non-relational assertion). One-sided rules for pairs and lists follow a
similar pattern.

In addition, RHOL has structural rules (Figure 5). The rule [SUB] can be used for weak-
ening the conclusion; the ensuing side-condition is discharged in HOL. Other structural
rules assimilate rules of HOL. For instance, if we can prove two different assertions for the
same terms, we can prove the conjunction of the assertions ([∧I]). Other logical connec-
tives have similar rules. Finally, the rule [UHOL-L] (and a dual rule [UHOL-R]) allows
falling back to UHOL in a RHOL proof.

Rules [LETREC] and [LETREC-L] introduce recursive function definitions (Figure 6).
These rules allow for a style of reasoning very similar to strong induction. If, assuming that
the function’s specification holds for all smaller arguments, we can prove that the func-
tion’s specification holds, then the specification must hold for all arguments. We require
that the two functions we are relating satisfy the predicates Def (fi, xi, ti), as was the case in
HOL and UHOL. The induction is performed over the simultaneous order (a, b)< (c, d),
which holds whenever both a≤ b and c≤ d, and at least one of the inequalities is
strict.

For reference, we include a full set of rules in the appendix in Figures E.1–E.8.

6.2 Discussion

6.2.1 Management of the typing context

In a relational judgment � |� � t1 : σ1 ∼ t2 : σ2 | φ, the context � contains variables that
can appear free in both t1 and t2. This forces us to add additional premises to the abstraction
rules to ensure the terms in the conclusion remain well-typed. Note that we could have
another sound (but less expressive) version of the [ABS] rule where we abstract over the
same variable on both sides.

An alternative choice of presentation is to have separate contexts �1 and �2 for the
terms on each side of the relational judgments, eliminating the need for the extra premises.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

16 A. Aguirre et al.

Fig. 5. One-sided rules.

Fig. 6. Recursion rules.

However, there would be no other benefit to this alternative. For instance, UHOL premises
as in [APP-L] would still need to use both contexts �1 and �2, since the logical context �
is typed under both.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 17

Fig. 7. Some derived rules.

6.2.2 Variants of the rules

Our choice of the rules is guided by the practical considerations of being able to ver-
ify examples easily, without specifically aiming for minimality or exhaustiveness. In fact,
many of our rules can be derived from others or reduced to a more elementary form. For
instance:

• The structural rules to reason about logical connectives, such as [∧I], can be derived
by induction on the length of derivations with the help of [SUB].

• The [VAR-L] (similarly, [NIL-L]) rule can be weakened, without affecting the
strength of the system,

φ[x1/r1] ∈� r2 �∈ FV (φ)
� |� � x1 : σ1 ∼ x2 : σ2 | φ VAR-L

• The premise of the [VAR] rule in Figure 3 (and similarly, [NIL]) can be changed to
φ[x/r] ∈�. We can recover the original rule by one application of [SUB].

• The rules [APP-FUN] and [APP-ARG] in Figure 7 (adapted from Ghani et al.
(2016b)) can be derived from the rule [APP]. To derive [APP-FUN], instantiate φ′

to r1 = u1 ∧ r2 = u2 in [APP]. To derive [APP-ARG], we have to prove a trivial
condition ∀x1x2.φ[t1 x1/r1][t2 x2/r2]⇒ φ[t1 x1/r1][t2 x2/r2] on t1, t2.

• The [PAIR-FST] and [PAIR-SND] rules in Figure 7 can be derived in a similar
way. These rules overcome a limitation of the original [PAIR] rule, namely that
the relations for the two components of the pair must be independent. [PAIR-FST]
and [PAIR-SND] allow relating, for instance, pairs of integers 〈m1, n1〉 and 〈m2, n2〉
such that m1 + n1 =m2 + n2.

• The [LLCASE-A] rule can be used to reason about case constructs when the terms
over which we discriminate do not necessarily reduce to the same branch. It is
equivalent to applying [LISTCASE-L] followed by [LISTCASE-R].

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

18 A. Aguirre et al.

6.3 Meta-theory

RHOL retains the expressiveness of HOL and is relatively complete with respect to it, as
formalized in the following theorem.

Theorem 6 (Equivalence with HOL). For every context �, simple types σ1 and σ2, terms t1
and t2, set of assertions�, and assertion φ, if � � t1 : σ1 and � � t2 : σ2, then the following
are equivalent:

• � |� � t1 : σ1 ∼ t2 : σ2 | φ
• � |� � φ[t1/r1][t2/r2].

Proof. The easier direction is the reverse implication. To prove it, we can trivially apply
[SUB] instantiating φ′ as a tautology that matches the structure of the types. For instance,
for a base type N we would use �, for an arrow type N→N we would use ∀x.⊥⇒�,
and so on.

The forward implication follows by induction on the derivation of � |� � t1 : σ1 ∼ t2 :
σ2 | φ. We show here the cases for abstraction and application:

Case [ABS]. The rule is

�, x1 : τ1, x2 : τ2 |�, φ′ � t1 : σ1 ∼ t2 : σ2 | φ
� |� � λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1, x2.φ′ ⇒ φ[r1 x1/r1][r2 x2/r2]

By applying the induction hypothesis on the premise:

�, x1 : τ1, x2 : τ2 |�, φ′ � φ[t1/r1][t2/r2] (6.1)

By applying [⇒I] on (6.1):

�, x1 : τ1, x2 : τ2 |� � φ′ ⇒ φ[t1/r1][t2/r2] (6.2)

By applying [∀I] twice on (6.2):

� |� � ∀x1x2.φ′ ⇒ φ[t1/r1][t2/r2] (6.3)

Finally, by applying CONV on (6.3):

� |� � ∀x1x2.φ′ ⇒ φ[(λx1.t1) x1/r1][(λx2.t2) x2/r2]

The proof for [ABS-L] (and [ABS-R]) is analogous.

Case [APP]. The rule is

� |� � t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1, x2.φ′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]
� |� � u1 : τ1 ∼ u2 : τ2 | φ′

� |� � t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]

By applying the induction hypothesis on the premises, we have

� |� � ∀x1x2.φ′[x1/r1][x2/r2]⇒ φ[t1 x1/r1][t2 x2/r2] (6.4)

and

� |� � φ′[u1/r1][u2/r2] (6.5)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 19

By applying twice [∀E] to (6.4) with u1, u2:

� |� � φ′[u1/r1][u2/r2]⇒ φ[t1 u1/r1][t2 u2/r2] (6.6)

and by applying [⇒E] to (6.6) and (6.5):

� |� � φ[t1 u1/r1][t2 u2/r2]

The proof for [APP-L] (and APP-R) is analogous, and it uses the UHOL embedding
(Theorem 3) for the premise about the argument. Proofs for [CONS] and [PAIR] also
follow the same structure. �

This immediately entails soundness of RHOL, as formalized next.

Corollary 7 (Set-theoretical soundness and consistency). Let t1, t2 be two terms such
that � |� � t1 : σ1 ∼ t2 : σ2 | φ and ρ a valuation such that ρ |= �. If

∧
ψ∈��ψ�ρ , then

�φ�ρ[�t1�ρ/r1],[�t2�ρ/r2]. In particular, there is no proof of the judgment � | ∅ � t1 : σ1 ∼ t2 :
σ2 | ⊥ for any �, t1, t2, σ1 and σ2.

The equivalence also entails subject conversion (and as special cases subject reduction
and subject expansion). This follows immediately from subject conversion of HOL (which,
as stated earlier, is itself a direct consequence of the [CONV] and [SUBST] rules).

Corollary 8 (Subject conversion). Assume that t1 =βιμ t′1 and t2 =βιμ t′2 and � |� � t1 :
σ1 ∼ t2 : σ2 | φ. Then we have � |� � t′1 : σ1 ∼ t′2 : σ2 | φ.

Another useful consequence of the equivalence is the admissibility of the transitivity
rule.

Corollary 9 (Admissibility of transitivity rule). Assume that:

• � |� � t1 : σ1 ∼ t2 : σ2 | φ
• � |� � t2 : σ2 ∼ t3 : σ3 | φ′.

Then, � |� � t1 : σ1 ∼ t3 : σ3 | φ[t2/r2]∧ φ′[t2/r1].

Finally, we prove an embedding lemma for UHOL. The proof can be carried by induc-
tion on the structure of derivations, or using the equivalence between UHOL and HOL
(Theorem 3).

Lemma 10 (Embedding lemma). Assume that:

• � |� � t1 : σ1 | φ
• � |� � t2 : σ2 | φ′.

Then � |� � t1 : σ1 ∼ t2 : σ2 | φ[r1/r]∧ φ′[r2/r].

Proof. By the embedding into HOL (Theorem 3), we have

• � |� � φ[t1/r]
• � |� � φ′[t2/r]

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

20 A. Aguirre et al.

and by the [∧I] rule,

� |� � φ[t1/r]∧ φ′[t2/r]

Finally, by Theorem 6:

� |� � t1 : σ1 ∼ t2 : σ2 | φ[r1/r]∧ φ′[r2/r]

�

The embedding is reminiscent of the approach of Beringer and Hofmann (2007) to
encode information flow properties in Hoare logic.

7 Embeddings

In this section, we establish the expressiveness of RHOL and UHOL by embedding several
existing refinement type systems (three relational and one non-relational) from a variety of
domains. All embeddings share the common idea of separating the simple typing informa-
tion from the more fine-grained refinement information in the translation. We use uniform
notation to represent similar ideas across the different embeddings. In particular, we use
vertical bars | · | to denote the erasure of a type into a simple type, and floor bars �·� to
denote the embedding of the refinement of a type in an HOL formula.

For clarity of exposition, we often present fragments or variants of systems that appear in
the literature, notably excluding recursive functions that do not satisfy our well-definedness
predicate. Moreover, the embeddings are given for a version of RHOL à la Curry, in which
λ-abstractions do not carry the type of their bound variable.

7.1 Refinement types

Refinement types (Freeman & Pfenning, 1991; Vazou et al., 2014; Swamy et al., 2016)
are a variant of simple types where for every basic type τ , there is a type {x : τ | φ} which
is inhabited by the elements t of τ that satisfy the logical assertion φ[t/x]. This includes
dependent refinements �(x : τ).σ , in which the variable x is also bound in the refinement
formulas appearing in σ . Here, we present a simplified variant of these systems. (Refined)
types are defined by the grammar

τ := B |N | listτ | {x : τ | φ} |�(x : τ).τ

As usual, we shorten �(x : τ).σ to τ→ σ if x �∈ FV (σ). We also shorten bindings of
the form x : {x : τ | φ} to {x : τ | φ}. Typing rules are presented in Figure 8; note that the
[LETREC] rule requires that recursive definitions satisfy the well-definedness predicate.
Judgments of the form � � τ are well-formedness judgments. Judgments of the form � � φ
are logical judgments; we omit a formal description of the rules, but assume that the logic
of assertions is consistent with HOL, that is, � � φ implies |�| | ��� � φ, where the erasure
functions are defined below.

This system can be embedded in UHOL. The embedding highlights the relation between
these two systems, that is, between logical assertions embedded in the types (as in
refinement types) and logical assertions at the top-level, separate from simple types (as

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 21

Fig. 8. Refinement type rules (subtyping and typing).

in UHOL). The intuitive idea behind the embedding is therefore to separate refinement
assertions from types. Specifically, from every refinement type we can obtain a simple
type by repeatedly extracting the type τ from {x : τ | φ}. We represent this extraction using
the following translation function |τ |:
|B|�B |N|�N |listτ |� list|τ | |{x : τ | φ}|� |τ | |�(x : τ).σ |� |τ |→ |σ |

Since |τ | loses refinement information, we define a second translation that extracts the
refinement as a logical predicate over a variable x that names the typed expression. This
second translation is written �τ�(x).

�B�(x), �N�(x) �� �listτ �(x) � All(x, λy.�τ�(y))

�{y : τ | φ}�(x) � �τ�(x)∧ φ[x/y] ��(x : τ).σ�(x) � ∀y.�τ�(y)⇒�σ�(x y)

The refinement of simple types is trivial. If t is an expression of type {x : τ | φ}, then t must
satisfy both the refinement formula φ and the refinement of τ . The refinement of a list uses
the predicate All, which as defined in Section 4, means that all elements of a list satisfy a
given formula. Finally, if t is an expression of type�(x : τ).σ , then it must be the case that
for every x satisfying the refinement of τ , (t x) satisfies the refinement of σ .

The syntax of assertions and expressions is exactly the same as in HOL, and therefore
there is no need for a translation. The embedding of types can be lifted to contexts in the
natural way.

|x : τ , �|� x : |τ |, |�| �x : τ , ��� �τ�(x), ���
To encode judgments, all that remains is to put the previous definitions together. The

main result about embedding typing judgments is as follows:

Theorem 11. If � � t : τ is derivable in the refinement type system, then |�| | ��� � t :
|τ | | �τ�(r) is derivable in UHOL.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

22 A. Aguirre et al.

Proof. By induction on the derivation. We show the most interesting cases:

Case.
�, x : τ � t : σ

� � λx.t :�(x : τ).σ
.

To prove: |�| | ��� � λx.t : |�(x : τ).σ | | ��(x : τ).σ�(r).
Expanding the definitions:
|�| | ��� � λx.t : |τ |→ |σ | | ∀x.�τ�(x)⇒�σ�(rx)
By induction hypothesis on the premise:
|�|, x : |τ | | ���, �τ�(x)� t : |σ | | �σ�(r)
Directly by [ABS].

Case.
� � t :�(x : τ).σ � � u : τ

� � t u : σ [u/x]
.

To prove: |�| | ��� � t u : |σ [u/x]| | �σ [u/x]�(r).
Expanding the definitions:
|�| | ��� � t e2 : |σ | | �σ�(r)[u/x]
By induction hypothesis on the premise:
|�| | ��� � t : |τ |→ |σ | | ∀x.�τ�(x)⇒�σ�(rx)
and
|�| | ��� � u : |τ | | �τ�(r)
We get the result directly by [APP].

Case.
� � τ � σ � � t : τ

� � t : σ
.

To prove: |�| | ��� � t : |σ | | �σ�(r).
This follows from applying the induction hypothesis to the second premise, and then
applying the rule [SUB] with Theorem 12 below. Note that the first premise implies
|σ | ≡ |τ |.
Case.

�, x : τ , f :�(y : {r : τ | y< x}).σ [y/x]� t : σ Def (f , x, t)

� � letrec f x= t :�(x : τ).σ
.

To prove: |�| | ��� � letrec f x= t : |�(x : τ).σ | | ��(x : τ).σ�(r).
By induction hypothesis on the premise:
|�|, x : |τ |, f : |τ |→ |σ | | ���, �τ�(x), ∀y.�τ�(y)∧ y< x⇒�σ [y/x]�(fy)� t : |σ | | �σ�(r)
Directly by [LETREC]. �

The above proof relies on the following theorem about subtyping.

Theorem 12. If � � τ � σ is derivable in a refinement type system, then |�|, x : |τ | |
���, �τ�(x)� �σ�(x) is derivable in HOL.

Proof. The proof is by induction on the derivation. We show here only the case of the
dependent product:

Case.
� � σ2 � σ1 �, x : σ2 � τ1 � τ2

� ��(x : σ1).τ1 ��(x : σ2).τ2

.

To show: |�|, f : |�(x : σ1).τ1| | ���, ��(x : σ1).τ1�(f)� ��(x : σ2).τ2�(f).

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 23

Expanding the definitions:

|�|, f : |�(x : σ1).τ1| | ���, ∀x.�σ1�(x)⇒�τ1�(fx)� ∀x.�σ2�(x)⇒�τ2�(fx)

By the rules [∀I] and [⇒I], it suffices to prove:

|�|, f : |�(x : σ1).τ1|, x : |σ2| | ���, ∀x.�σ1�(x)⇒�τ1�(fx), �σ2�(x)� �τ2�(fx) (7.1)

On the other hand, by induction hypothesis on the premises:

|�|, x : |σ2| | ���, �σ2�(x)� �σ1�(x) (7.2)

and

|�|, x : |σ2|, y : |τ1| | ���, �σ2�(x), �τ1�(y)� �τ2�(y) (7.3)

which we can weaken, respectively, to:

|�|, x : |σ2|, f : |�(x : σ1).τ1| | |�|, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)� �σ1�(x) (7.4)

and

|�|, x : |σ2|, y : |τ1|, f : |�(x : σ1).τ1| | |�|, �σ2�(x), �τ1�(y), ∀x.�σ1�(x)⇒�τ1�(fx)� �τ2�(y)
(7.5)

From (7.4), by doing a cut with its own premise ∀x.�σ1�(x)⇒�τ1�(fx), we derive

|�|, x : |σ2|, f : |�(x : σ1).τ1| | ���, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)� �τ1�(fx) (7.6)

From (7.5), by [⇒I] and [∀I] we can derive

|�|, x : |σ2|, f : |�(x : σ1).τ1| | ���, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)� ∀y.�τ1�(y)⇒�τ2�(y)

And by [∀E]

|�|, x : |σ2|, f : |�(x : σ1).τ1| | ���, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)� �τ1�(fx)⇒�τ2�(fx)
(7.7)

Finally, from (7.6) and (7.7) by [⇒E] we get

|�|, x : |σ2|, f : |�(x : σ1).τ1| | ���, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)� �τ2�(fx)

and by one last application of [⇒I] we get what we wanted to prove. �

Soundness of refinement types w.r.t. the set-theoretical semantics follows immediately
from Theorem 11 and the set-theoretical soundness of UHOL (Corollary 4).

Corollary 13 (Soundness of refinement types). If � � t : τ , then for every valuation ρ |= �
we have �t�ρ ∈ �τ�ρ .

As a final remark, note that a function with a refinement type can be interpreted in
two different ways: (1) As a map whose domain is the domain type restricted to its (the
type’s) refinement, or (2) As a map whose domain is the entire domain type (disregarding
the refinement), but whose result satisfies the codomain’s refinement only if the argument
satisfies the domain’s refinement. We use the second interpretation, while some prior work
(e.g., Freeman & Pfenning, 1991) uses the first. Type systems using the first interpretation

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

24 A. Aguirre et al.

Fig. 9. Relational typing (selected rules).

can inhabit types that this embedding would erase into uninhabited simple types. For
instance, consider the type {x : N | x> 1∧ x< 1}→Emp where Emp denotes the empty
type. This is inhabited (under appropriate subtyping rules), but it would be erased into the
type N→Emp, which is not inhabited.

7.2 Relational refinement types

Relational refinement types (Barthe et al., 2014, 2015) are a variant of refinement types
that can be used to express relational properties via a syntax of the form {r :: τ | φ} where
φ is a relational assertion—that is, it may contain a left and right copy of r, which are
denoted as r1 and r2, respectively, as well as a left and a right copy of every variable in
the context. In this section, we introduce a simple relational refinement type system and
establish a type-preserving translation to RHOL.

The syntax of relational refinement types is given by the grammar:

τ ::= B |N | τ→ τ

T , U ::= τ | listT |�(x :: T). U | {x :: T | φ}
Relational refinement types are naturally ordered by a subtyping relation � � T �U ,

where � is a sequence of variables declarations of the form x :: U .
Typing judgments are of the form � � t1 ∼ t2 :: T . We present selected typing rules in

Figure 9. Note that the form of judgments requires that t1 and t2 have the same simple type,
and the typing rules require that t1 and t2 have the same structure.1 In the [CASELIST]
rule, we require that both terms reduce to the same branch; the case rule for natural num-
bers is similar. The [LETREC] rule uses (a straightforward adaptation of) the Def (f , x, t)

1 The typing rules displayed in the figure will in fact force t1 and t2 to be the same term modulo renaming. This
is not the case in existing relational refinement type systems; however, rules that introduce different terms on
the right and on the left are limited, since both terms still need to have the same type and most one-sided rules
break this invariant. For instance, in Barthe et al. (2014) there is a rule similar to [LLCASE-A], and a rule for
reducing one of the terms of a judgment.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 25

predicate from our simply typed language and requires that the two recursive definitions
perform exactly the same recursive calls.

Subtyping rules are the same as in the unary case, and therefore we refer to Figure 8 for
them (allowing their instantiation for relational types T , U as well as unary types σ , τ).

The embedding of refinement types into UHOL can be adapted to the relational setting.
From each relational refinement type T , we can extract a simple type |T |. On the other
hand, we can erase every relational refinement type T into a relational formula �T�, which
is parametrized by two expressions and defined as follows:

�listτ�(x1, x2) �
∧

i∈{1,2}
All(xi, λy.�τ�(y))

�listT�(x1, x2) � All2(x1, x2, λy1.λy2.�T�(y1, y2))

�{y : τ | φ}�(x1, x2) �
∧

i∈{1,2}
�τ�(xi)∧ φ[xi/y]

�{y :: T | φ}�(x1, x2) � �T�(x1, x2)∧ φ[x1/y1][x2/y2]

��(y : τ).σ�(x) �
∧

i∈{1,2}
∀y.�τ�(y)⇒�σ�(xy)

��(y :: T). U�(x1, x2) � ∀y1y2.�T�(y1, y2)⇒ �U�(x1y1, x2y2)

The predicate All2 relates two lists element-wise and is defined axiomatically:

All2([], [], λx1.λx2.φ)

∀h1h2t1t2. All2(t1, t2, λx1.λx2.φ)⇒ φ(h1, h2)⇒All2(h1 :: t1, h2 :: t2, λx1.λx2.φ)

To extend the embedding to contexts, we need to duplicate every variable in them:

|x :: T , �|� x1, x2 : |T |, |�| �x :: T , ��� �T�(x1, x2), ���

Now we state the main result:

Theorem 14 (Soundness of embedding). If � � t1 ∼ t2 :: T, then |�| | ���� t1 : |T | ∼ t2 :
|T | | �T�(r1, r2). Also, if � � T �U, then |�|, x1, x2 : |T | | ���, �T�(x1, x2)� �U�(x1.x2).

Proof. The proof proceeds by induction on the structure of derivations. Most cases are
very similar to the unary case, so we will only show the most interesting ones:

Case.
� � T

� � []∼ [] :: listT
.

To show: |�| | ���� [] : |listT | ∼ [] : |listT | | �listT�(r1, r2).
There are two options. If T is a unary type, we have to prove:
|�| | ���� [] : |listT | ∼ [] : |listT | |∧i∈{1,2} All(ri, λx.�τ�(x))

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

26 A. Aguirre et al.

And by the definition of All we can directly prove:
∅ | ∅ �All([], λx.�τ�(x))∧All([], λx.�τ�(x))
If T is a relational type, we have to prove:
|�| | ���� [] : |listT | ∼ [] : |listT | |All2(r1, r2, λx1.λx2.�T�(x1, x2))
And by the definition of All2 we can directly prove:
∅ | ∅ �All2([], [], λx1.λx2.�T�(x1, x2))

Case.
� � h1 ∼ h2 :: T � � t1 ∼ t2 :: listT

� � h1 :: t1 ∼ h2 :: t2 :: listT
.

To show: |�| | ���� h1 :: t2 : |listT | ∼ h2 :: t2 : |listT | | listT .
There are two options. If T is a unary type, we have to prove:
|�| | ���� h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |∧i∈{1,2} All(ri, λx.�T�(x))
By induction hypothesis, we have
|�| | ���� h1 : |T | ∼ h2 :: t2 : |T | |∧i∈{1,2}�T�(ri)
and
|�| | ���� t1 : |listT | ∼ t2 : |listT | |∧i∈{1,2} All(ri, λx.�T�(x))
And by the definition of All, we can directly prove:∧

i∈{1,2}�T�(hi)⇒∧
i∈{1,2} All(ti, λx.�T�(x))⇒∧

i∈{1,2} All(hi :: ti, λx.�T�(x))
So by the [CONS] rule, we prove the result. If T is a relational type, we have to prove:
|�| | ���� h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |All2(r1, r2, λx1.λx2.�T�(x1, x2))
By induction hypothesis, we have
|�| | ���� h1 : |T | ∼ h2 :: t2 : |T | | �T�(r1, r2)
and
|�| | ���� t1 : |listT | ∼ t2 : |listT | |All2(r1, r2, λx1.λx2.�T�(x1, x2))
And by the definition of All2, we can directly prove:
�T�(h1, h2)⇒All2(t1, t2, λx1.λx2.�T�(x1, x2))⇒All(h1 :: t1, h1 ::
h2, λx1.λx2.�T�(x1, x2))
So by the [CONS] rule, we prove the result

Case.

�, x :: T , f ::�(y :: {y :: T | (y1, y2)< (x1, x2)}). U[y/x]� t1 ∼ t2 :: U
� ��(x :: T). U Def (f1, x1, t1) Def (f2, x2, t2)

� � letrec f1 x1 = t1 ∼ letrec f2 x2 = t2 ::�(x :: T). U
.

To show:
|�| | ���� letrec f1 x1 = t1 : |�(x :: T). U | ∼ letrec f2 x2 = t2 : |�(x :: T). U | | ��(x ::
T). U�(r1, r2)
Expanding the definitions:
|�| | ���� letrec f1 x1 = t1 : |T |→ |U | ∼ letrec f2 x2 = t2 : |T |→ |U | |
∀x1x2.�T�(x1, x2)⇒ �U�(r1x1, r2x2)
By induction hypothesis on the premise:
|�|, x1, x2 : |T |, f1, f2 : |T |→ |U | | ���, �T�(x1, x2), ∀y1, y2.(�T�(y1, y2)∧ (y1, y2)<
(x1, x2))⇒ �U�(f1x1, f2x2)� t1 : |U | ∼ t2 : |U | | �U�(r1, r2)
And we apply the [LETREC] rule to get the result. �

Soundness of relational refinement types w.r.t. set-theoretical semantics follows imme-
diately from Theorem 14 and the set-theoretical soundness of RHOL (Corollary 7).

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 27

Corollary 15 (Soundness of relational refinement types). If � � t1 ∼ t2 :: T, then for every
valuation θ |= � we have (�t1�θ , �t2�θ) ∈ �T�θ .

7.3 Dependency core calculus

The DCC (Abadi et al., 1999) is a higher-order calculus with a type system that tracks data
dependencies. DCC was designed as a unifying framework for dependency analysis, and
it was shown that many other calculi for information flow analysis (Volpano et al., 1996;
Heintze & Riecke, 1998), binding-time analysis (Hatcliff & Danvy, 1997), and program
slicing, all of which track dependencies, can be embedded in DCC. Here, we show how a
fragment of DCC can be embedded into RHOL. Transitively, the corresponding fragments
of all the aforementioned calculi can also be embedded in RHOL. The fragment of DCC we
consider excludes recursive functions. DCC admits general recursive functions, while our
definition of RHOL only admits a subset of these. Extending the embedding to recursive
functions admitted by RHOL is not difficult.

DCC is an extension of the simply typed lambda calculus with a monadic type family
T�(τ), indexed by labels �, which are elements of a lattice. Unlike other uses of monads,
DCC’s monad does not encapsulate any effects. Instead, its only goal is to track depen-
dence. The type system forces that the result of an expression of type T�(τ) can depend
on an expression of type T�′ (τ ′) only if �′ � � in the lattice. Dually, if �′ �� �, then even if
an expression e of type T�(τ) mentions a variable x of type T�′ (τ ′), then e’s result must be
independent of the substitution provided for x during evaluation.

For simplicity and without any loss of generality, we consider here only a two point
lattice {L, H} with L � H . The syntax of DCC’s types and expressions is shown below.
We use e to denote DCC expressions, to avoid confusion with HOL’s expressions.

τ ::= B | τ→ τ | τ × τ |T�(τ)
e ::= x | λx.e | e1 e2 | tt | ff | case e of tt �→ et; ff �→ ef | 〈e1, e2〉 | π1(e) | π2(e)

| η�(e) | bind(e1, x.e2)

Here, η�(e) and bind(e1, x.e2) are, respectively, the return and bind constructs for the
monad T�(τ). Typing rules for these two constructs are shown below. Typing rules for
the remaining constructs are the standard ones.

� � e : τ

� � η�(e) : T�(τ)

� � e1 : T�(τ1) �, x : τ1 � e2 : τ2 τ2 ↘ �

� � bind(e1, x.e2) : τ2

The crux of the dependency tracking is the relation τ2 ↘ � in the premise of the rule for
bind. The relation, read “τ2 protected at level �” and defined below, informally means that
all primitive (boolean) values extractable from e2 are protected by a monadic construct of
the form T�′(τ), with �� �′. Hence, the rule forces that the result obtained by eliminating
the type T�(τ1) flow only into types protected at � in this sense.

�� �′
T�′ (τ)↘ �

τ ↘ �

T�′ (τ)↘ �

τ1 ↘ � τ2 ↘ �

τ1 × τ2 ↘ �

τ2 ↘ �

τ1 → τ2 ↘ �

This fragment of DCC has a relational set-theoretical interpretation. For every type τ , we
define a carrier set |τ |:

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

28 A. Aguirre et al.

|B|�B |τ1 → τ2|� |τ1|→ |τ2| |τ1 × τ2|� |τ1| × |τ2| |T�(τ)|� |τ |
Next, every type τ is interpreted as a lattice-indexed family of relations �τ�a ⊆ |τ | × |τ |.
The role of the lattice element a is that it defines what can be observed in the system.
Specifically, an expression of type T�(τ) can be observed only if �� a. When � �� a,
expressions of type T�(τ) look like “black-boxes.” Technically, we force �T�(τ)�a =
|τ | × |τ | when � �� a. DCC’s typing rules are sound with respect to this model. The sound-
ness implies that if � �� �′ and x : T�(B)� e : T�′(B), then for e1, e2 : T�(B), e[e1/x] and
e[e2/x] are equal booleans in the set-theoretical model. This result, called noninterference,
formalizes that DCC’s dependency tracking is correct.

To translate DCC to RHOL, we actually embed this set-theoretical model in RHOL. We
start by defining an erasing translation, |τ |, from DCC’s types into RHOL’s simple types.
This translation is exactly the same as the definition of carrier sets shown above, except
that we treat × and → as RHOL’s syntactic type constructs instead of set-theoretical
constructs. Next, we define an erasure of terms:

|tt|� tt |ff|� ff |case e of tt �→ et; ff �→ ef |� case |e| of tt �→ |et|; ff �→ |ef |

|x|� x |λx.e|� λx.|e| |e1 e2|� |e1| |e2| |〈e1, e2〉|� 〈|e1|, |e2|〉
|π1(e)|� π1(|e|) |π2(e)|� π2(|e|) |η�(e)|� |e| |bind(e1, x.e2)|� (λx.|e2|) |e1|
It is fairly easy to see that if � e : τ in DCC, then � |e| : |τ |. Next, we define the lattice-
indexed family of relations �τ�a in HOL. For technical convenience, we write the relations
as logical assertions, indexed by variables x, y representing the two terms to be related.

�B�a(x, y) � (x= tt∧ y= tt)∨ (x= ff∧ y= ff)

�τ1 → τ2�a(x, y) � ∀v w. �τ1�a(v, w)⇒�τ2�a(x v, y w)

�τ1 × τ2�a(x, y) � �τ1�a(π1(x), π1(y))∧ �τ2�a(π2(x), π2(y))

�T�(τ)�a(x, y) �
{ �τ�a(x, y) �� a
� � �� a

The most important clause is the last one: When � �� a, any two x, y are in the relation
�T�(τ)�a. This generalizes to all protected types in the following sense.

Lemma 16. If � �� a and τ ↘ �, then � ∀x y.(�τ�a(x, y)≡�) in HOL.

Proof. By induction on the derivation of τ ↘ �.

Case.
�� �′

T�′ (τ)↘ �
.

Since � �� a (given) and �� �′ (premise), it must be the case that �′ �� a. Hence, by
definition, �T�′ (τ)�a(x, y)=�.

Case.
τ ↘ �

T�′ (τ)↘ �
.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 29

We consider two cases:
If �′ �� a, then �T�′ (τ)�a(x, y)=� by definition.
If �′ � a, then �T�′ (τ)�a(x, y)= �τ�a(x, y) by definition. By i.h. on the premise, we have

�τ�a(x, y)≡�. Composing, �T�′ (τ)�a(x, y)≡�.

Case.
τ1 ↘ � τ2 ↘ �

τ1 × τ2 ↘ �
.

By i.h. on the premises, we have �τi�a(x, y)≡� for i= 1, 2 and all x, y. Therefore, �τ1 ×
τ2�a(x, y) � �τ1�a(π1(x), π1(y))∧ �τ2�a(π2(x), π2(y))≡�∧�≡�.

Case.
τ2 ↘ �

τ1 → τ2 ↘ �
.

By i.h. on the premise, we have �τ2�a(x, y)≡� for all x, y. Hence, �τ1 → τ2�a(x, y) �
(∀v, w. �τ1�a(v, w)⇒�τ2�a(x v, y w))≡ (∀v, w. �τ1�a(v, w)⇒�)≡�. �

The translations extend to contexts as follows:

|x1 : τ1, . . . , xn : τn|� x1
1 : |τ1|, x1

2 : |τ1|, . . . , xn
1 : |τn|, xn

2 : |τn|
�x1 : τ1, . . . , xn : τn�a � �τ1�a(x1

1, x1
2), . . . , �τn�a(xn

1, xn
2)

The following theorem states that the whole translation is sound: It preserves well-
typedness. In the statement of the theorem, |e|1 and |e|2 replace each variable x in |e|
with x1 and x2, respectively.

Theorem 17 (Soundness of embedding). If � � e : τ in DCC, then for all a ∈ {L, H}: |�| |
���a � |e|1 : |τ | ∼ |e|2 : |τ | | �τ�a(r1, r2).

Proof. By induction on the given derivation of � � e : τ . We show here the cases
corresponding to the monadic constructions only:

Case.
� � e : τ

� � η�(e) : T�(τ)
.

To show: |�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | �T�(τ)�a(r1, r2).
By i.h. on the premise:

|�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | �τ�a(r1, r2) (7.8)

If �� a, then �T�(τ)�a(r1, r2) � �τ�a(r1, r2), so the required result is the same as (7.8).
If � �� a, then �T�(τ)�a(r1, r2) �� and the required result follows from rule SUB applied
to (7.8).

Case.
� � e : T�(τ) �, x : τ � e′ : τ ′ τ ′ ↘ �

� � bind(e, x.e′) : τ ′
.

To show: |�| | ���a � (λx.|e′|1) |e|1 : |τ ′| ∼ (λx.|e′|2) |e|2 : |τ ′| | �τ ′�a(r1, r2).
By i.h. on the first premise:

|�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | �T�(τ)�a(r1, r2) (7.9)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

30 A. Aguirre et al.

By i.h. on the second premise:

|�|, x1 : |τ |, x2 : |τ | | ���a, �τ�a(x1, x2)� |e′|1 : |τ ′| ∼ |e′|2 : |τ ′| | �τ ′�a(r1, r2) (7.10)

We consider two cases:

Subcase. �� a. Here, �T�(τ)�a(r1, r2) � �τ�a(r1, r2), so (7.9) can be rewritten to:

|�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | �τ�a(r1, r2) (7.11)

Applying rule ABS to (7.10) yields:

|�| | ���a � λx1.|e′|1 : |τ |→ |τ ′| ∼ λx2.|e′|2 : |τ |→ |τ ′| |
∀x1x2.�τ�a(x1, x2)⇒�τ ′�a(r1 x1, r2 x2) (7.12)

Applying rule APP to (7.12) and (7.11) yields:

|�| | ���a � (λx1.|e′|1) |e|1 : |τ ′| ∼ (λx2.|e′|2) |e|2 : |τ ′| | �τ ′�a(r1, r2)

which is what we wanted to prove.

Subcase. � �� a. Here, �T�(τ)�a(r1, r2) � �τ�a(r1, r2), so (7.9) can be rewritten to:

|�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | � (7.13)

Applying rule ABS to (7.10) yields:

|�| | ���a � λx1.|e′|1 : |τ |→ |τ ′| ∼ λx2.|e′|2 : |τ |→ |τ ′| |
∀x1x2.�τ�a(x1, x2)⇒�τ ′�a(r1 x1, r2 x2)

By Lemma 16 applied to the subcase assumption � �� a and the premise τ ′ ↘ �, we have
�τ ′�a(r1 x1, r2 x2)≡�. So, by rule SUB:

|�| | ���a � λx1.|e′|1 : |τ |→ |τ ′| ∼ λx2.|e′|2 : |τ |→ |τ ′| | ∀x1x2.�τ�a(x1, x2)⇒�
Since (∀x1x2.�τ�a(x1, x2)⇒�)≡�≡ (∀x1, x2.�⇒�), we can use SUB again to get:

|�| | ���a � λx1.|e′|1 : |τ |→ |τ ′| ∼ λx2.|e′|2 : |τ |→ |τ ′| | ∀x1, x2.�⇒� (7.14)

Applying rule APP to (7.14) and (7.13) yields

|�| | ���a � (λx1.|e′|1) |e|1 : |τ ′| ∼ (λx2.|e′|2) |e|2 : |τ ′| | �
which is the same as our goal since �τ ′�a(r1, r2)≡�. �

DCC’s noninterference theorem is a corollary of this theorem and the soundness of
RHOL in set theory.

7.4 Relational cost

RelCost (Çiçek et al., 2017) is a relational refinement type-and-effect system designed to
reason about relative cost—the difference in the execution costs of two similar programs
or of two runs of the same program on two different inputs. RelCost combines reason-
ing about the maximum and minimum costs of a single program with relational reasoning

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 31

about the relative cost of two programs. This combination of reasoning styles is motivated
by the following observation: if two programs are structurally similar, then relational rea-
soning can improve precision when computing their relative cost. And if this approach
fails, one can still establish an upper bound on the relative cost by computing the difference
of the maximum cost of one program and the minimum cost of the other.

Here, we show how a fragment of RelCost can be embedded into RHOL. Similar to
what we did for DCC, to just convey the main intuition, we consider a fragment of RelCost
excluding recursive functions. The syntax of RelCost is based on two sorts of types:

A ::= N | listA[n] | A exec(k,l)−−−−→ A | ∀i
exec(k,l)

:: S. A (unary types)

τ ::= Nr | listτ [n]α | τ diff(k)−−−→ τ | ∀i
diff(k)

:: S. τ |UA |� τ (relational types)

Unary types are used to type one program and they are mostly standard except for the effect
annotation exec(k, l) on arrow types and universally quantified types representing the min
and max cost k and l of the body of the closure, respectively. Relational types ascribe two
programs, so they are interpreted as pairs of expressions. In relational types, arrow types
and universally quantified types have an effect annotation diff(k) representing the relative
cost k of the two closures. Besides, the superscript α refines list types with the number of
elements that can differ in two lists. The type UA is the weakest relation over elements of
the unary type A, that is, it can be used to type two arbitrary terms, while the type � τ is
the diagonal subrelation of τ , that is, it can be used to type only two terms that are equal.
There are two kinds of typing judgments, unary and relational:

�;�;��l
k t : A �;�; � � t1 t2 � l : τ

The unary judgment states that the execution cost of t is lower bounded by k and upper
bounded by l, and the expression t has the unary type A. The relational judgment states
that the relative cost of t1 with respect to t2 is upper bounded by l and the two expressions
have the relational type τ . Here, � is a unary type environment, � is a relational type
environment,� is an environment for index variables, and� for assumed constraints over
the index terms. Figure 10 shows selected rules.

To embed RelCost in RHOL, we define a monadic-style cost-instrumented translation of
RelCost types. The translation is given in two steps: First, we define an erasure of cost and
size information into simple types and then we define a cost-passing style translation of
simple types with a value-translation and an expression-translation. The erasure function
is defined as follows:

|N|� |Nr|�N |listA[n]|� list|A| |listτ [n]α|� list|τ | |UA|� |A|

|� τ |� |τ | |∀i
exec(k,l)

:: S. A|�N→|A| |∀i
diff(k)

:: S. τ |�N→|τ |

|A exec(k,l)−−−−→ B|� |A|→ |B| |τ1
diff(k)−−−→ τ2|� |τ1|→ |τ2|

The cost-passing style translation of simple types is

�N�v �N �listA�v � list�A�v �A→ B�v � �A�v→ �B�e �A�e � �A�v ×N

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

32 A. Aguirre et al.

Fig. 10. RelCost unary and relational typing (selected rules).

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 33

Fig. 11. Cost-instrumented translation of expressions.

Guided by the translation of types above, we can provide a cost-instrumented translation of
simply typed λ-expressions (Figure 11). This translation maps an expression of the simple
type τ to an expression of type τ ×N, where the second component is the number of
reduction steps under an eager, call-by-value reduction strategy (which is the semantics of
RelCost). It is fairly easy to see that this translation preserves typability and that it counts
steps accurately.

However, this translation forgets the cost and size information in types. To recover these,
we define an HOL formula for every unary type. But, first, we define axiomatically a
predicate listU(n, l, P) that captures size information about lists:

∀l, P. listU(0, l, P)≡ l= []

∀n, l, P. listU(n+ 1, l, P)≡∃w1, w2. l=w1 :: w2 ∧ P(w1)∧ listU(n, w2, P)

We can now define an HOL formula inductively on unary types.

�N�v(x) �� �listA[n]�v(x) � listU(n, x, �A�v)

�A exec(k,l)−−−−→ B�v(x) � ∀y.�A�v(y)⇒�B�k,l
e (x y)

�∀i
exec(k,l)

:: S. A�v(x) � ∀y.�⇒∀i.�A�k,l
e (x y)

�A�k,l
e (x) � �A�v(π1x)∧ k ≤ π2x≤ l

The type translation can also be extended to type environments: �|x1 : A1, . . . , xn : An|�=
x1 : �|A1|�v , . . . , xn : �|An|�v Similarly, we can associate with a type environment an HOL
context that we can use to recover the cost and size information: �x1 : A1, . . . , xn : An� =
�A1�v(x1), . . . , �An�v(xn). Now we can provide a cost-instrumented translation of unary
judgments.

Theorem 18. If �;�;��l
k t : A, then: �|�|�,� |�, ��� � �t� : �|A|�e | �A�k,l

e (r).

Proof. By induction on the derivation of �;�;��l
k t : A. We show selected cases.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

34 A. Aguirre et al.

Case.
�;�a;�, x : A�0

0 x : A
.

We can conclude by the following derivation:

�|�|�, x : �|A|�v ,� |�a, ���, �A�v(x)� x : �|A|�v | �A�v(r)
VAR

�|�|�, x : �|A|�v ,� |�a, ���, �A�v(x)� 0 : N | 0≤ r≤ 0
NAT

�|�|�, x : �|A|�v ,� |�a, ���, �A�v(x)� (x, 0) : �|A|�v ×N | �A�v(π1r)∧ 0≤ π2r≤ 0
PAIR-L

where the additional proof condition that is needed for the [PAIR-L] rule can be easily
proved in HOL.

Case.
�;�a;��0

0 n : int
.

Then we can conclude by the following derivation:

�|�|�,� |�a, ��� � n : N | � NAT
�|�|�,� |�a, ��� � 0 : N | 0≤ r≤ 0

NAT

�|�|�,� |�a, ��� � (n, 0) : N×N | 0≤ π2r≤ 0
PAIR-L

where the additional proof condition that is needed for the [PAIR-L] rule can be easily
proved in HOL.

Case.
�;�a; x : A1,��l

k t : A2

�;�a;��0
0 λx.t : A1

exec(k,l)−−−−→ A2

.

By induction hypothesis, we have �|�|�, x : �|A1|�v ,� |�, ���, �A1�v(x)� �t� : �|A2|�e |
�A�k,l

e (r) and we can conclude by the following derivation:

�|�|�, x : �|A1|�v ,� |�, ���, �A1�v(x)�
�t� : �|A2|�e | �A2�k,l

e (r)

�|�|�,� |�, ��� � λx.�t� : �|A1|�v→ �|A2|�e |
∀x.�A1�v(x)⇒�A2�k,l

e (rx)

ABS

�|�|�,� |�, ��� � 0 : N | 0≤ r≤ 0

�|�|�,� |�, ��� � (λx.�t�, 0) : (�|A1|�v→ �|A2|�e)×N |
∀x.�A1�v(x)⇒�A2�k,l

e ((π1r)x)∧ 0≤ π2r≤ 0

PAIR-L

where the additional proof condition that is needed for the [PAIR-L] rule can be easily
proved in HOL.

Case.
�;�a;��l1

k1
t1 : A1

exec(k,l)−−−−→ A2 �;�a;��l2
k2

t2 : A1

�;�a;��l1+l2+l+capp
k1+k2+k+capp

t1 t2 : A2

.

By induction hypothesis and unfolding some definitions, we have

�|�|�,� |�a, ��� � �t1� : (�|A1|�v→ (�|A2|�v ×N))×N |
∀h.�A1�v(h)⇒ (�A2�v(π1((π1(r))h))∧ k ≤ π2((π1(r))h)≤ l)∧ k1 ≤ π2(r)≤ l1

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 35

and �|�|�,� |�a, ��� � �t2� : �|A1|�v ×N | �A1�v(π1(r))∧ k2 ≤ π2(r)≤ l2. So, we can
prove:

�|�|�,� |�a, ��� � let x= �t1� in let y= �t2� in π1(x) π1(y) : �|A2|�v ×N |
�A2�v(π1(r))∧ k ≤ π2(r)≤ l ∧ k1 ≤ π2(x)≤ l1 ∧ k2 ≤ π2(y)r≤ l2

This combined with the definition of the cost-passing translation �t1 t2�� let x=
�t1� in let y= �t2� in let z= π1(x) π1(y) in (π1(z), π2(x)+ π2(y)+ π2(z)+ capp) allows us to
prove as required the following:

�|�|�,� |�a, ��� � �t1 t2� : �|A2|�v ×N |
�A2�v(π1(r))∧ k + k1 + k2 + capp ≤ π2(r)≤ l+ l1 + l2 + capp.

�

For the embedding of cost and size information in the relational case, we first define a
predicate listR(n, l1, l2, a, P) in HOL axiomatically:

∀l1, l2, a, P. listR(0, l1, l2, a, P)≡ l1 = l2 = [] ∀n, l1, l2, a, P. listR(n+ 1, l1, l2, a, P)≡
∃w1, z1, w2, z2. l1 =w1 :: w2 ∧ l2 = z1 :: z2 ∧ P(w1, z1)∧

(((w1 = z1)∧ listR(n, w2, z2, a, P))∨
(a> 0∧ ∃b. a= b+ 1∧ listR(n, w2, z2, b, P)))

Let τ denote RelCost’s erasure of the binary type τ to a unary type.2 This erasure maps

listτ [n]α to listτ [n], τ
diff(l)−−→ σ to τ

exec(0,∞)−−−−−→ σ , etc. Next, we define HOL formulas for the
binary types.

�N�v(x, y) � x= y �UA�v(x, y) � �A�v(x)∧ �A�v(y)

�� τ�v(x, y) � (x= y)∧ (�τ�v(x, y))

�τ
diff(l)−−→ σ�v(x, y) �

{
�τ exec(0,∞)−−−−−→ σ�v(x)∧ �τ exec(0,∞)−−−−−→ σ�v(y)∧
(∀z1, z2.�τ�v(z1, z2)⇒ �σ�l

e(x z1, y z2))

�∀i
diff(l)
:: S. τ�v(x, y) �

{
�∀i

exec(0,∞)
:: S. τ�v(x)∧ �∀i

exec(0,∞)
:: S. τ�v(y)∧

(∀z1z2.�⇒∀i.�τ�l
e(x z1, y z2))

�listτ [n]α�v(x, y) � listR(n, x, y, α, �τ�v)

�τ�l
e(x, y) � �τ�v(π1x, π1y)∧ (π2x− π2y≤ l)

The type translation can also be extended to relational type environments pointwise:
‖x1 : τ1, . . . , xn : τn‖� x1

1 : �|τ1|�v , x1
2 : �|τ1|�v , . . . , xn

1 : �|τn|�v , xn
2 : �|τn|�v We also need to

derive from a type relational environment an HOL context that remembers the cost and size
information: �x1 : τ1, . . . , xn : τn���τ1�v(x1

1, x1
2), . . . , �τn�v(xn

1, xn
2). Now we can provide

the translation of relational judgments.

2 In RelCost, this erasure is written |τ |. We use a different notation to avoid confusion with our own erasure
function from RelCost’s types to simple types.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

36 A. Aguirre et al.

Theorem 19. If �;�; � � t1 t2 � l : τ , then:

‖�‖,� |�, ���� �t1�1 : �|τ |�e ∼ �t2�2 : �|τ |�e | �τ�l
e(r1, r2),

where �ti�j is a copy of ti where each variable x is replaced by a variable xj for j ∈ {1, 2}.

To prove Theorem 19, we need three lemmas.

Lemma 20. Suppose �;�� τ wf.3 Then, the following hold:

1. � |�� ∀xy. �τ�v(x, y)⇒�τ�v(x)∧ �τ�v(y)
2. � |�� ∀xy. �τ�t

e(x, y)⇒�τ�0,∞
e (x)∧ �τ�0,∞

e (y).

Also, (3) ���⇒��1� ∧ ��2� where �1 and �2 are obtained by replacing each variable x
in � with x1 and x2, respectively.

Proof. (1) and (2) follow by a simultaneous induction on the given judgment. (3) follows
immediately from (1). �

Lemma 21. If �;�a; � � e1 e2 � t : τ in RelCost, then �;�; � �∞0 ei : τ for i ∈ {1, 2}
in RelCost.

Proof. By induction on the given derivation. �

Lemma 22. If �;� |= τ1 � τ2, then �;�� ∀x y. �τ1�v(x, y)⇒ �τ2�v(x, y).

Proof. By induction on the given derivation of �;� |= τ1 � τ2. �

Proof of Theorem 19 The proof is by induction on the given derivation of �;�;
� � t1 t2 � k : τ . We show only a few representative cases here.

Case:

i :: S,�;�a; � � e e′ � t : τ i �∈ FIV(�a; �)

�;�a; � ��e �e′ � 0 : ∀i
diff(t)
:: S. τ

R-ILAM.

To show: ‖�‖,� |�a, ���� (λ_.�e�1, 0) : (N→ �|τ |�e)×N∼ (λ_.�e′�2, 0) : (N→
�|τ |�e)×N | �∀i

diff(t)
:: S. τ�0

e(r1, r2).

Expand �∀i
diff(t)
:: S. τ�0

e(r1, r2) to �∀i
diff(t)
:: S. τ�v(π1 r1, π1 r2)∧ π2r1 − π2 r2 ≤ 0, and

apply the rule [PAIR] to reduce to two proof obligations:
(A) ‖�‖,� |�a, ���� λ_.�e�1 : N→ �|τ |�e ∼ λ_.�e′�2 : N→ �|τ |�e |
�∀i

diff(t)
:: S. τ�v(r1, r2).

(B) ‖�‖,� |�a, ���� 0 : N∼ 0 : N | r1 − r2 ≤ 0.
(B) follows immediately by rule [ZERO]. To prove (A), we start by expanding

�∀i
diff(t)
:: S. τ�v(r1, r2) and apply rule [∧I]. We get three proof obligations.

(C) ‖�‖,� |�a, ���� λ_.�e�1 : N→ �|τ |�e ∼ λ_.�e′�2 : N→ �|τ |�e | �∀i
exec(0,∞)

:: S. τ�v(r1).

3 This judgment simply means that τ is well-formed in the context �;�. It is defined in the original RelCost
paper (Çiçek et al., 2017).

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 37

(D) ‖�‖,� |�a, ���� λ_.�e�1 : N→ �|τ |�e ∼ λ_.�e′�2 : N→ �|τ |�e | �∀i
exec(0,∞)

:: S.τ�v(r2).
(E) ‖�‖,� |�a, ���� λ_.�e�1 : N→ �|τ |�e ∼ λ_.�e′�2 : N→ �|τ |�e |
∀z1z2.�⇒∀i.�τ�t

e(r1 z1, r2 z2).
To prove (C), apply Lemma 34 to the given derivation (not just the premise), obtain-

ing a RelCost derivation for �;�a; � �∞0 �e : (∀i
exec(0,∞)

:: S. τ). Applying Theorem 18

to this yields ���,� |�a, ��� � (λ_.�e�, 0) : (N→ �|τ |�e)×N | �∀i
exec(0,∞)

:: S. τ�0,∞
e (r)

in UHOL, which is the same as ���,� |�a, ��� � (λ_.�e�, 0) : (N→ �|τ |�e)×N |
�∀i

exec(0,∞)
:: S. τ�v(π1 r)∧ 0≤ π2 r≤∞. Applying rule [PROJ1], we get ���,� |

�a, ��� � π1(λ_.�e�, 0) : N→ �|τ |�e | �∀i
exec(0,∞)

:: S. τ�v(r). By subject conversion,

���,� |�a, ��� � λ_.�e� : N→ �|τ |�e | �∀i
exec(0,∞)

:: S. τ�v(r). Renaming variables, we get

���1,� |�a, ��1� � λ_.�e�1 : N→ �|τ |�e | �∀i
exec(0,∞)

:: S. τ�v(r).
Now note that by definition, ‖�‖ ⊇ ���1 and by Lemma 33(3), ���⇒��1�. Hence,

we also get ‖�‖,� |�a, ���� λ_.�e�1 : N→ �|τ |�e | �∀i
exec(0,∞)

:: S. τ�v(r). (C) follows
immediately by rule [UHOL-L].

(D) has a similar proof.
To prove (E), apply the rule [ABS], getting the obligation:

‖�‖,�, z1, z2 : N |�a, ���� �e�1 : �|τ |�e ∼ �e′�2 : �|τ |�e | ∀i.�τ�t
e(r1, r2)

Since z1, z2 do not appear anywhere else, we can strengthen the context to remove them,
thus reducing to: ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e′�2 : �|τ |�e | ∀i.�τ�t

e(r1, r2)
Next, we transpose to HOL using Theorem 6. We get the obligation:
‖�‖,� |�a, ���� ∀i.�τ�t

e(�e�1, �e′�2)
This is equivalent to:
‖�‖,�, i : S |�a, ���� �τ�t

e(�e�1, �e′�2)
The last statement follows immediately from i.h. on the premise, followed by transposition
to HOL using Theorem 6.

Case:

�;�a; � � e e � t : τ ∀x ∈ dom(�). �;�a |= �(x)�� �(x)

�;�a; �, �′;�� e e � 0 : � τ
NOCHANGE.

To show: ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �� τ�0
e(r1, r2).

Expanding the definition of �� τ�0
e , this is equivalent to:

‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �τ�v(π1 r1, π2 r2)∧ (π1 r1 = π1 r2)∧
(π2 r1 − π2 r2 ≤ 0)
Using rule [∧I], we reduce this to two obligations:
(A) ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �τ�v(π1 r1, π2 r2).
(B) ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | (π1 r1 = π1 r2)∧ (π2 r1 − π2 r2 ≤ 0).

By i.h. on the first premise,
‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �τ�v(π1 r1, π2 r2)∧ (π2 r1 − π2 r2 ≤ t)
By rule [SUB],
‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �τ�v(π1 r1, π2 r2)
which is the same as (A).

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

38 A. Aguirre et al.

To prove (B), apply Lemma 35 to the second premise to get for every x ∈ dom(�)
that� |�a � ��(x)�v(x1, x2)⇒ �� �(x)�v(x1, x2). Since �� �(x)�v(x1, x2)⇒ x1 = x2 and
from ��� we know that ��(x)�v(x1, x2), it follows that ‖�‖,� |�a, ���� x1 = x2. Since
this holds for every x ∈ dom(�), it follows immediately that ‖�‖,� |�a, ���� �e�1 =
�e�2. By Theorem 6, ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | r1 = r2. (B) follows
immediately by rule [SUB]. �

RelCost’s type-soundness theorem can be derived from Theorem 19 and the soundness
of RHOL in set theory.

8 Examples

We present some illustrative examples to show how RHOL’s rules work in practice.
Our first example shows the functional equivalence of two recursive functions that are
synchronous—they perform the same number of recursive calls. The second example
shows the equivalence of two asynchronous recursive functions. The third example shows
a sensitivity property of sorting. Finally, our fourth example illustrates reasoning about
the relative cost of two programs, using an encoding similar to that of RelCost, but the
example cannot be verified in RelCost itself.

Notational simplifications. Throughout this section, we often omit types and typing con-
texts when they are clear. We also apply the [SUB] rule implicitly in some places, for
example, to change the assertion of a function from ∀x.φ to ∀x.�⇒ φ so that we can
apply [ABS], to rearrange the order of quantified variables, or to pull quantifiers outwards
when there is no variable capture.

8.1 First example: factorial

Expanding on Section 3, we show that the following two standard implementations of
factorial, with and without an accumulator, are functionally equivalent:

fact1 � letrec f1 n1 = case n1 of 0 �→ 1; S �→ λx1.(S x1) ∗ (f1 x1)

fact2 � letrec f2 n2 = λa.case n2 of 0 �→ a; S �→ λx2.f2 x2 ((S x2) ∗ a)

Our goal is to prove that the result is the same on both implementations after scaling the
result on the first one by the accumulator. In RHOL, this is expressed by the following
judgment (with empty contexts):

fact1 : N→N∼ fact2 : N→N→N | ∀n1n2.n1 = n2 ⇒∀a.(r1 n1) ∗ a= r2 n2 a

The proof starts by applying [LETREC], which has the following main premise:

� �
case n1 of
0 �→ 1;
S �→ λx1.(S x1) ∗ (f1 x1)

∼
λa. case n2 of

0 �→ a;
S �→ λx2.f2 x2 ((S x2) ∗ a)

| ∀a.r1 ∗ a= r2 a

where � � n1 = n2, ∀y1y2.(y1, y2)< (n1, n2)⇒ y1 = y2 ⇒∀a.(f1 y1) ∗ a= f2 y2 a asserts
the inductive hypothesis and the equality between the arguments.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 39

To prove this premise, we start by applying the one-sided [ABS-R] rule, with a trivial
condition on a. Then we can apply a two-sided [CASE] rule, which has three premises.
The first one asserts that the same branch is taken on both sides. The other two consider,
respectively, the zero and the successor case. Since the branching is synchronous, we do
not need to consider the crossed cases:

1. � � n1 = 0⇔ n2 = 0
2. �, n1 = 0, n2 = 0� 1∼ a | r1 ∗ a= r2

3. � � λx1.(S x1) ∗ (f1 x1)∼ λx2.f2 x2 ((S x2) ∗ a) | ∀x1x2.n1 = S x1 ⇒ n2 = S x2 ⇒
(r1 x1) ∗ a= r2 x2.

Premise 1 is a direct consequence of the assertion n1 = n2 in �. Premise 2 is a triv-
ial arithmetic identity which can be proven in HOL (using rule SUB or by invoking
Theorem 6). To prove premise 3, we first apply the (two-sided) [ABS] rule, which leaves
the following proof obligation:

�, n1 = S x1, n2 = S x2 � (S x1) ∗ (f1 x1)∼ f2 x2 ((S x2) ∗ a) | r1 ∗ a= r2

This is proven in HOL by instantiating the inductive hypothesis in � with y1 �→ x1, y2 �→
x2, a �→ (S x1) ∗ a.

8.2 Second example: take and map

This example establishes the equivalence of two programs that compute the same result,
but using different number of recursive calls. Consider the following function take that
takes a list l and a natural number n and returns the first n elements of the list (or the whole
list if its length is less than n).

take � letrec f1 l1 = λn1.case l1 of []�→ []
_ :: _�→ λh1t1. case n1 of 1 �→ []

S �→ λy1.h1::(f1 t1 y1)

Next, consider the standard function map that applies a function g to every element of a
list l pointwise.

map � letrec f2 l2 = λg2. case l2 of [] �→ []
; _ :: _ �→ λh2t2.(g2 h2) :: (f2 t2 g2)

Intuitively, it should be clear that for all g, n, l, map (take l n) g= take (map l g) n (mapping
g over the first n elements of the list is the same as mapping g over the whole list and then
taking the first n elements). However, the computations on the two sides of the equality are
very different: For a list l of length more than n, map (take l n) g only examines the first n
elements, whereas take (map l g) n traverses the whole list. In the following, we formalize
this property in RHOL (Theorem 23) and outline the high-level idea of the proof. The full
proof is in Section D.3 in Appendix D.

Theorem 23. l1, l2 : listN, n1, n2 : N, g1, g2 : N→N | l1 = l2, n1 = n2, g1 = g2 �
map (take l1 n1) g1 : listN ∼ take (map l2 g2) n2 : listN | r1 = r2

Proof idea. Since the two sides make an unequal number of recursive calls, we need
to reason asynchronously on the two sides (specifically, we use the rule [LLCASE-A]).

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

40 A. Aguirre et al.

However, equality cannot be established inductively with asynchronous reasoning: If two
function applications are to be shown equal, and a recursion step is taken in only one of
them, then the induction hypothesis cannot be applied. So, we strengthen the induction
hypothesis, replacing the assertion r1 = r2 in the theorem statement with r1 � r2 ∧ |r1| =
min(n1, |l1|)∧ |r2| =min(n2, |l2|) where � denotes the prefix ordering on lists and | · |
is the list length function. This assertion implies r1 = r2 and can be established induc-
tively. The full proof is in Section D.3, but at a high-level, the proof requires proving two
judgments, one for the inner map-take pair and another for the outer one:

• � � take l1 n1 ∼map l2 g2 | r1 �g2 r2

• � �map∼ take | ∀m1m2.m1 �g2 m2 ⇒
(∀g1.g1 = g2 ⇒∀x2.x2 ≥ |m1|⇒ (r1 m1 g1)� (r2 m2 x2))

where m1 �g m2 is an axiomatically defined predicate equivalent to (map m1 g)�m2 and
� are the assumptions in the statement of the theorem (in particular, l1 = l2). The proof of
the first premise proceeds by an analysis of map using synchronous rules. For the second
premise, after applying [LETREC] we apply the asynchronous [LLCASE-A] rule, and
then prove the following premises:

1. �,�, x2 ≥ |m1|, g1 = g2, m1 = [], m2 = []� []∼ [] | r1 � r2

2. �,�, x2 ≥ |m1|, g1 = g2, m1 = []� []∼ λh2t2.case x2 of 0 �→ []; S �→ λy2.h2 ::
f2 t2 y2 |
∀h2t2.m2 = h2 :: t2 ⇒ r1 � (r2 h2 t2)

3. �,�, x2 ≥ |m1|, g1 = g2, m2 = []� λh1t1.(g1 h1) :: (f1 t1 g1)∼ [] | ∀h1t1.m1 = h1 ::
t1 ⇒ (r1 h1 t1)� r2

4. �,�, x2 ≥ |m1|, g1 = g2 � λh1t1.(g1 h1) :: (f1 t1 g1)∼ λh2t2.case x2 of 0 �→ []; S �→
λy2.h2 :: f2 t2 y2 | ∀h1t1h2t2.m1 = h1 :: t1 ⇒m2 = h1 :: t1 ⇒ (r1 h1 t1)� (r2 h2 t2)

where � is the inductive hypothesis obtained from the [LETREC] application. The first
two premises follow directly from the definition of�, while the third one follows from the
contradictory assumptions m1 �g m2, m1 = h1 :: t1 and m2 = []. The last premise is proved
by first applying the [NATCASE-R] rule and then applying the induction hypothesis. �

The proof presented here is intended to show how the one-sided rules can deal with
asynchronous reasoning, but we remark that a much simpler proof could be written using
equational rewriting rules. However, note that our system can also be seen as a framework
in which to embed and prove sound such rewriting rules, in the style of Benton (2004).

8.3 Third example: selection sort

This example showcases a property, namely sensitivity, that is out of reach of equational
reasoning, but that is easy to prove using relational reasoning.

Given two lists of integers of the same length, we define the distance between them as
the maximum of the pointwise distances:

d(l1, l2) � maxi |l1[i]− l2[i]| if l1, l2 have the same length
d(l1, l2) �∞ otherwise

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 41

It is routine to check that this defines in fact a metric. Furthermore, it is known that
sorting is 1-Lipschitz continuous under this metric: If sort(l) denotes the list obtained by
sorting l, then, for all l1, l2 we have that d(sort(l1), sort(l2))≤ d(l1, l2).

This result can be proved directly by showing that for any k the function mink , which
picks the k-th smallest element of a list, is 1-Lipschitz continuous. The above result then
follows by noting that sort(l)= [min1(l), min2(l), ..., minn(l)] where n is the length of l.

Here, we provide a different proof. We prove that a particular implementation of sorting,
namely selection sort has this property. Selection sort is a basic sorting algorithm that
traverses a list, finds the least element, puts it in front, and then sorts the rest of the list
recursively. The function ssort below implements selection sort.

ssortl � ssort′ l (length l)

ssort′ � letrec ssort′ l=
λn.case n of

0 �→ [];
S �→ λm.case l of

[] �→ []
_ :: _ �→ λht. let(rest, min)= restmin t h

in min :: ssort′ rest m

restmin� letrec restmin l=
λa.case l of

[] �→ ([], a)
_ :: _ �→ λht.let M =max(a, h)

m=min(a, h)
(rest, min)= restmin m t
in 〈M :: rest, min〉

We then want to prove the following in RHOL:

Theorem 24 (1-Lipschitz continuity of ssort).

� ssort∼ ssort | ∀l1l2δ. |l1| = |l2|⇒ d(l1, l2)≤ δ⇒ d(r1 l1, r2 l2)≤ δ

Note that the postcondition above is equivalent to

∀l1l2. |l1| = |l2|⇒ d(r1 l1, r2 l2)≤ d(l1, l2)

but our version is easier to prove, because we need an explicit δ to appear in the verifica-
tion of ssort’ and restmin. The proof is entirely synchronous and relies on the property of
restmin that, for two lists of equal length satisfying the invariant of being closer than δ
under the metric defined above, (1) the two returned minima are spaced less than δ (under
the usual metric for the integers) and (2) the two returned remaining lists satisfy the same
invariant. In RHOL, this is expressed as:

�restmin∼ restmin |∀l1l2. d(l1, l2)≤ δ⇒∀h1h2. |h1 − h2| ≤ δ⇒D(r1 l1 h1, r2 l2 h2)≤ δ

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

42 A. Aguirre et al.

where we use D to denote the distance induced by the maximum of the component-wise
distances.

The only interesting case is where we reach the h :: t branch of restmin. Here, we use
the following (mathematical) lemma about max and min. This lemma must be proved in
HOL with sufficient axiomatization.

Lemma 25. Let δ be a non-negative real number. For every a1, b1, a2, b2 real, if |a1 −
a2| ≤ δ and |b1 − b2| ≤ δ, then:

|max(a1, b1)−max(a2, b2)| ≤ δ and

|min(a1, b1)−min(a2, b2)| ≤ δ

8.4 Fourth example: insertion sort

Insertion sort is a standard sorting algorithm that sorts a list h :: t by sorting the tail t
recursively and then inserting h at the appropriate position in the sorted tail. Consider the
following implementations of the insertion function, insert, and the insertion sort function,
isort, each returning a pair, whose first element is the usual output list (inserted list for
insert and sorted list for isort) and whose second element is the number of comparisons
made during the execution (assuming an eager, call-by-value evaluation strategy).

insert � λx. letrec insert l= case l of [] �→ ([x], 0);
_ :: _ �→ λh t. case x≤ h of

tt �→ (x :: l, 1);
ff �→ let s= insert t in

(h :: (π1 s), 1+ (π2 s))

isort � letrec isort l= case l of []�→ ([], 0);
_ :: _ �→ λh t. let s= isort t

let s′ = insert h (π1 s) in
(π1 s′, (π2 s)+ (π2 s′))

Using this implementation, we prove the following interesting fact about insertion sort:
Among all lists of the same length, insertion sort computes the fastest (with fewest com-
parisons) on lists that are already sorted. This is a property about the relational cost of
insertion sort (on two different inputs), which cannot be established in RelCost. To state
the property in RHOL, we define a list predicate sorted(l) in HOL axiomatically:

sorted([])≡� ∀h t. sorted(h :: t)≡ (sorted(t)∧ h≤ lmin(t))

where the function lmin(l) returns the minimum element of l:

lmin � letrec f l= case l of [] �→∞; _ :: _ �→ λht. min(h, f t)

As in the previous example, let | · | be the standard list length function. The property of
insertion sort mentioned above is formalized in the following theorem. In other words, the

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 43

theorem says that if isort is executed on lists x1 and x2 of the same length and x1 is sorted,
then the number of comparisons made during the sorting of x1 is no more than the number
of comparisons made during the sorting of x2.

Theorem 26. Let τ � listN→ listN. Then, • | • � isort : τ ∼ isort : τ | ∀x1 x2. (sorted(x1)∧
|x1| = |x2|)⇒ π2(r1 x1)≤ π2(r2 x2).

A full proof is shown in Section D.5 in Appendix D. The proof proceeds mostly
synchronously in the two sides. Following the structure of isort, we apply the rules
[LETREC], [LISTCASE], and [APP] + [ABS] (for the let binding, which, as usual, is
defined as a function application), followed by an application of the inductive hypothesis
for the recursive call to isort. Eventually, we expose the call to insert on both sides. At this
point, the observation is that since x1 is already sorted, its head element must be no greater
than all elements in its tail, so insert must return immediately with at most 1 comparison
on the x1 side. Formally, this last proof step can be completed by switching to either UHOL
or HOL and using subject conversion; in the Section D.5, we switch to HOL.

9 Implementation

We have mechanized our system in the Coq proof assistant (The Coq Development Team,
2018). Instead of building the mechanization of the system over a set-theoretic model,
we build it over the calculus of inductive constructions that underlies Coq via a shal-
low embedding. In other words, we make a slight change to the system—in place of
PCF (Section 2) and HOL (Section 4) as the language and the underlying logic of refine-
ments, we use Coq’s language and Coq’s Prop logic, respectively. In addition to allowing
us to leverage Coq directly for proofs in the underlying logic, this also shows that our
syntax-directed unary and relational rules are not particularly tied to set theory or HOL.
Another reason for using Coq is that it supports type quantification, which we exploit
in our embedding (see the definition of j_rhol below). We believe that a mechanization
could also be carried out in an HOL-based proof assistant like Isabelle/HOL but since these
assistants typically lack support for type quantification, the mechanization would be more
involved (Wildmoser & Nipkow, 2004).

A judgment in RHOL (similarly for UHOL) is mechanized as a function that receives
an element of type A1, an element of type A2, and a function of type A1 -> A2 -> Prop
and returns a Prop, namely the result of applying the latter to the former.

D e f i n i t i o n j _ r h o l : f o r a l l (A1 A2 : Type) ,
A1 −> A2 −> (A1 −> A2 −> Prop) −> Prop :=
fun A1 A2 t 1 t 2 P => P t 1 t 2 .

N o t a t i o n "|− t 1 ; A1 ~ t 2 ; A2 | P" := (j _ r h o l A1 A2 t 1 t 2 P)

Our relational and unary proof rules are mechanized as lemmas. We describe as an
example the application rule. We require that the arguments t1 and t2 be related by P, and
that the functions f1 and f2 send arguments related by P to results related by Q. This can
be described through the following lemma.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

44 A. Aguirre et al.

Lemma App2 :
f o r a l l (A1 A2 B1 B2 : Type)

(P : A1 −> A2 −> Prop) (Q: A1 −> A2 −> B1 −> B2 −> Prop)
(f1 : A1 −> B1) (f2 : A2 −> B2) (t 1 : A1) (t 2 : A2) ,

(|− t 1 ; A1 ~ t 2 ; A2 | P) −>
(|− f1 ; A1 −> B1 ~ f2 ; A2 −> B2 |

(fun r1 r2 => f o r a l l (x1 : A1) (x2 : A2) ,
P x1 x2 −> Q x1 x2 (r1 x1) (r2 x2))) −>

(|− (f1 t 1) ; B1 ~ (f2 t 2) ; B2 | Q t 1 t 2) .

Working with a shallow embedding allows us to use Coq directly to manage most of the
type and logical context. So, in general, they do not need to explicitly appear in the rules.
However, notice that we need to pass t1 and t2 as arguments to Q since they appear in its
context. Compare this to the way the quantified variables get replaced by the arguments in
the conclusion of the [APP] rule in Section 6.

The choice of Coq as a base language also allows us to have a more general recursion
rule that inducts on some arbitrary well-founded order:

Lemma RecWF2 :
f o r a l l (A B1 B2 : Type)

(P : A −> A −> Prop) (Q : A −> A −> B1 −> B2 −> Prop)
(f1 : A −> B1) (f2 : A −> B2)
(R : A −> A −> Prop) ,

(w e l l _ f o u n d e d R) −>
(f o r a l l (x1 x2 : A) ,

P x1 x2 −> (f o r a l l y1 y2 ,
R y1 x1 −> R y2 x2 −> P y1 y2 −>

Q y1 y2 (f1 y1) (f2 y2)) −>
|− (f1 x1) ; B1 ~ (f2 x2) ; B2 | Q x1 x2) −>

|− f1 ; (A −> B1) ~ f2 ; (A −> B2) |
(fun r1 r2 => f o r a l l (x1 x2 : A) ,

P x1 x2 −> Q x1 x2 (r1 x1) (r2 x2)) .

Since the embedding is shallow, the proof of a lemma is also a proof of soundness of
the rule that the lemma is implementing. The choice of a shallow embedding makes the
proofs go through smoothly, and most of them can be fully automated with the default
auto tactic. This takes care of proving the forward implications (soundness) in Theorems
3 and 6. To prove the reverse implications (relative completeness) we need additional
theorems, which can also be proven with auto. For instance, the relative completeness of
RHOL is expressed as

Theorem r h o l _ c o m p l e t e : f o r a l l (A1 : Type) (A2 : Type)
(t 1 : A1) (t 2 : A2)
(P : A1 −> A2 −> Prop) ,

(wt_uhol A1 t 1) −> (wt_uhol A2 t 2) −> P t 1 t 2 −>
|− t 1 ; A1 ~ t 2 ; A2 | P .

P r o o f .
a u t o .

Qed .

where wt_uhol is a predicate expressing well-typedness.
Our implementation also includes the proof of the two examples presented in Sections

8.1 and 8.2. We verified these using the rules as lemmas. See, for example, the following
(abridged) proof of the first example.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 45

Theorem f a c t _ e q u i v :
|− f a c t o r i a l ; n a t −> n a t ~ f a c t o r i a l _ a c c ; n a t −> n a t −> n a t |

fun r1 r2 => f o r a l l n1 n2 , n1 = n2 −>
f o r a l l k , ((r1 n1)* k)% n a t = r2 n2 k .

P r o o f .
(** We s t a r t by a p p l y i n g t h e 2− s i d e d r e c u r s i o n r u l e *)
a p p l y (RecNat2 _ _ _

(fun _ _ r1 r2 =>
f o r a l l k , (r1 *k)% n a t = r2 k) f a c t o r i a l f a c t o r i a l _ a c c) .

i n t r o s x1 x2 Heq IH .
au to_absR .
(** We u n f o l d t h e d e f i n i t i o n s *)
(* 2 l i n e s o m i t t e d *)
(** We s t a r t t h e c a s e a n a l y s i s *)
a p p l y CaseNat2 .
d e s t r u c t Heq .
− (** We f i r s t need t o show t h a t bo th t e r m s

t a k e t h e same b r a n c h . *)
ea sy .

− (** Now we prove t h e 0 ~ 0 c a s e *)
a u t o wi th a r i t h .

− (** F i n a l l y we show t h e S ~ S c a s e . *)
a u t o _ a b s 2 .
a p p l y Var2 .
(** The r e s t o f t h e p r o o f i s b a s i c r e a s o n i n g i n

FOL wi th A r i t h m e t i c . We j u s t need t o
i n s t a n t i a t e t h e i n d u c t i o n h y p o t h e s i s IH *)

(* 10 l i n e s o m i t t e d *)
r i n g .

Qed .

Here, the auto_abs tactics provide automation for some common patterns of applica-
tion of the rule [ABS]. Notice also how the structure of the Coq proof follows the proof in
Section 8.1.

10 Extensions

The system presented in this paper allows us to prove relational properties about pure
programs. Our system has four ingredients:

1. A base language and its typing rules (PCF).
2. A logic over such programs, based on inference rules (HOL).
3. A system of refinements over the type system defined in the first step (UHOL),

where the refinements are expressed in the logic of the second step.
4. A similar system of refinements on pair of programs (RHOL), which uses the unary

system defined in the third step in the one-sided rules.

The way these components interact is key to having a system that allows for an informal
style of reasoning while retaining completeness with respect to the base logic. Abstracting
a bit, the four steps above can be seen as a general recipe for building a syntax-directed
system for proving relational properties of programs. The key idea is to keep types and

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

46 A. Aguirre et al.

refinements separate but, at the same time, make the refinements mirror the construction
of the types in such a way that type and logical inference can be done simultaneously (see,
e.g., how the logical implication in the refinement of function abstraction mirrors the arrow
in the type). Finding the right way to achieve this is crucial in building unary and relational
systems from the base language’s type system and the base logic.

The work presented in this paper only considers simply typed terms, but systems for
reasoning about pure programs are already very common in the literature. A question that
may arise is whether the approach used in this paper could also be used to build a relational
logic for a more expressive language and base logic, while retaining an informal reasoning
style and relative completeness. The answer to this question is affirmative: since the publi-
cation of the conference version of this paper (Aguirre et al., 2017), a few systems based on
the ideas of RHOL have been developed to reason about programs in richer languages with
effects. While the individual designs of these systems are guided by the effects considered
and by the relational properties of interest, they all use recipes similar to the one described
above. The common challenge in the design of these systems is identifying abstraction
mechanisms which permit reasoning about the effects and their relational properties in a
natural way. These abstraction mechanisms often also require changes to the underlying
logic. We comment on some of these systems briefly.

Monadic Relational Cost (Radicek et al., 2018). This work starts from a PCF-like lan-
guage that has a monad to track the cost of a computation. The base logic is HOL extended
with principles to establish equality of monadic computations with costs. The combination
of functional refinements with the cost monad results in a very expressive system where
the proof of the cost of a computation may depend on functional properties. Following the
recipe described here, the work develops two syntax-directed systems: a unary system UC

to reason about the cost of a single computation, and a relational system RC to reason about
the difference in the costs of two computations.

Guarded RHOL (Aguirre et al., 2018). This work extends the present paper in two ways:
(1) it adds the later modality to the language and the base logic, which allows reasoning
about infinite data structures inductively, and (2) it adds a monad of discrete probability
distributions. Combined, the two extensions allow the representation of, and reasoning
about, stochastic processes such as Markov chains. The relational system syntax-directed
system uses probabilistic couplings, a common tool from probability theory, to express
relations between pairs of Markov chains. One-sided rules help in proving properties of
unsynchronized runs of a pair of Markov chains.

Probabilistic RHOL (Sato et al., 2019). This work presents a relational logic to reason
about PCFp, a higher-order language with probabilistic sampling and Bayesian condition-
ing. It presents a new base logic, PL, to express and prove properties of probabilistic
programs in PCFp. On top of this logic, two syntax-directed systems are built using the
recipe described above—a unary one (UPL) and a relational one (RPL).

11 Conclusion

We have developed RHOL, a new formalism to reason about relational properties of
(pure) higher-order programs written in a simply typed λ-calculus with inductive types

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 47

and recursive definitions. The system is expressive, has solid foundations via an equiva-
lence with HOL, and yet retains the (nice) “feel” of relational refinement type systems.
An important direction for future work is to extend RHOL to other kinds of effects, in
particular mutable state.

For practical purposes, it will also be interesting to automate RHOL. We believe that
much of the technology developed for (relational) refinement types, and in particular the
automated generation of verification conditions (maybe with user hints to switch between
unary and binary modes of reasoning) and the connection to SMT-solvers can be lifted
without significant hurdle to RHOL.

References

Abadi, M., Banerjee, A., Heintze, N. & Riecke, J. G. (1999) A core calculus of dependency. In POPL
’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, TX, USA, January 20–22, 1999, pp. 147–160.

Abadi, M., Cardelli, L. & Curien, P.-L. (1993) Formal parametric polymorphism. In Conference
Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, South Carolina, USA, January 1993, pp. 157–170.

Aczel, P. & Gambino, N. (2000) Collection principles in dependent type theory. In Types for
Proofs and Programs, International Workshop, TYPES 2000, Durham, UK, December 8–12,
2000, Selected Papers, Callaghan, P., Luo, Z., McKinna, J. & Pollack, R. (eds), Lecture Notes
in Computer Science, vol. 2277. Springer, pp. 1–23.

Aczel, P. & Gambino, N. (2006) The generalised type-theoretic interpretation of constructive set
theory. J. Symb. Log. 71(1), 67–103.

Adams, R. & Luo, Z. (2010) Classical predicative logic-enriched type theories. Ann. Pure Appl.
Logic 161(11), 1315–1345.

Aguirre, A., Barthe, G., Birkedal, L., Bizjak, A., Gaboardi, M. & Garg, D. (2018) Relational rea-
soning for Markov chains in a probabilistic guarded lambda calculus. In Programming Languages
and Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14–20, 2018, Proceedings, Ahmed, A. (ed), Lecture Notes in Computer Science,
vol. 10801. Springer, pp. 214–241.

Aguirre, A., Barthe, G., Gaboardi, M., Garg, D. & Strub, P.-Y. (2017) A relational logic for higher-
order programs. PACMPL 1(ICFP), 21:1–21:29.

Alpern, B. & Schneider, F. B. (1985) Defining liveness. Inf. Process. Lett. 21(4), 181–185.
Asada, K., Sato, R. & Kobayashi, N. (2016) Verifying relational properties of functional programs

by first-order refinement. Sci. Comput. Program. 137, 2–62.
Barthe, G., Crespo, J. M. & Kunz, C. (2011) Relational verification using product programs. In FM

2011: Formal Methods - 17th International Symposium on Formal Methods, Limerick, Ireland,
June 20–24, 2011. Proceedings, pp. 200–214.

Barthe, G., D’Argenio, P. R. & Rezk, T. (2004) Secure information flow by self-composition. In 17th
IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28–30 June 2004, Pacific
Grove, CA, USA, pp. 100–114.

Barthe, G., Fournet, C., Grégoire, B., Strub, P.-Y., Swamy, N. & Béguelin, S. Z. (2014) Probabilistic
relational verification for cryptographic implementations. In Proceedings of the 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
Jagannathan, S. & Sewell, P. (eds), pp. 193–206.

Barthe, G., Gaboardi, M., Gallego Arias, E. J., Hsu, J., Roth, A. & Strub, P.-Y. (2015) Higher-
order approximate relational refinement types for mechanism design and differential privacy.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15–17, 2015, Rajamani, S. K.
& Walker, D. (eds), pp. 55–68.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

48 A. Aguirre et al.

Barthe, G., Grégoire, B. & Béguelin, S. Z. (2009) Formal certification of code-based crypto-
graphic proofs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009, Savannah, GA, USA, January 21–23, 2009, pp. 90–101.

Barthe, G., Grégoire, B., Hsu, J. & Strub, P.-Y. (2017) Coupling proofs are probabilistic product
programs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18–20, 2017, pp. 161–174.

Barthe, G., Köpf, B., Olmedo, F. & Béguelin, S. Z. (2012) Probabilistic relational reasoning for dif-
ferential privacy. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22–28, 2012,
pp. 97–110.

Belo, J. F. (2007) Dependently sorted logic. In Types for Proofs and Programs, International
Conference, TYPES 2007, Cividale del Friuli, Italy, May 2–5, 2007, Revised Selected Papers,
Miculan, M., Scagnetto, I. & Honsell, F. (eds), Lecture Notes in Computer Science, vol. 4941.
Springer, pp. 33–50.

Benton, N. (2004). Simple relational correctness proofs for static analyses and program transfor-
mations. In Proceedings of the 31th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’04, Jones, N. D. & Leroy, X. (eds), pp. 14–25.

Beringer, L. & Hofmann, M. (2007) Secure information flow and program logics. In 20th IEEE
Computer Security Foundations Symposium, CSF 2007, 6–8 July 2007, Venice, Italy. IEEE
Computer Society, pp. 233–248.

Blatter, L., Kosmatov, N., Gall, P. L. & Prevosto, V. (2017) Deductive verification with rela-
tional properties. In Proceedings of the 23th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2017), Uppsala, Sweden, pp. 391–397.
https://doi.org/10.1007/978-3-662-54577-5.

Çiçek, E., Barthe, G., Gaboardi, M., Garg, D. & Hoffmann, J. (2017) Relational cost analysis. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18–20, 2017, Castagna, G. & Gordon, A. D. (eds). ACM,
pp. 316–329.

Clarkson, M. R. & Schneider, F. B. (2008) Hyperproperties. In Proceedings of CSF ’08, pp. 51–65.
Dreyer, D., Ahmed, A. & Birkedal, L. (2011) Logical step-indexed logical relations. Logical Methods

Comput. Sci. 7(2).
Dreyer, D., Neis, G., Rossberg, A. & Birkedal, L. (2010) A relational modal logic for higher-order

stateful adts. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, January 17–23, 2010, pp. 185–198.

Dunfield, J. & Pfenning, F. (2004) Tridirectional typechecking. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice,
Italy, January 14–16, 2004, Jones, N. D. & Leroy, X. (eds). ACM, pp. 281–292.

Dybjer, P. (1985) Program verification in a logical theory of constructions. In Functional
Programming Languages and Computer Architecture, FPCA 1985, Nancy, France, September
16–19, 1985, Proceedings, Jouannaud, J.-P. (ed), Lecture Notes in Computer Science, vol. 201.
Springer, pp. 334–349.

Freeman, T. S. & Pfenning, F. (1991) Refinement types for ML. In Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Language Design and Implementation (PLDI),
Toronto, Ontario, Canada, June 26–28, 1991, Wise, D. S. (ed). ACM, pp. 268–277.

Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A. & Pierce, B. C. (2013) Linear dependent types for
differential privacy. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy, January 23–25, 2013, Giacobazzi, R. & Cousot,
R. (eds). ACM, pp. 357–370.

Ghani, N., Forsberg, F. N. & Simpson, A. (2016a) Comprehensive parametric polymorphism:
Categorical models and type theory. In Foundations of Software Science and Computation
Structures - 19th International Conference, FOSSACS 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2–8, 2016, Proceedings, pp. 3–19.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1007/978-3-662-54577-5
https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 49

Ghani, N., Forsberg, F. N. & Simpson, A. (2016b) Comprehensive parametric polymorphism:
Categorical models and type theory. In Foundations of Software Science and Computation
Structures - 19th International Conference, FOSSACS 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2–8, 2016, Proceedings, Jacobs, B. & Löding, C. (eds), Lecture Notes in Computer Science,
vol. 9634. Springer, pp. 3–19.

Grimm, N., Maillard, K., Fournet, C., Hritcu, C., Maffei, M., Protzenko, J., Ramananandro, T.,
Rastogi, A., Swamy, N. & Béguelin, S. Z. (2018) A monadic framework for relational verification:
Applied to information security, program equivalence, and optimizations. In Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los
Angeles, CA, USA, January 8–9, 2018, Andronick, J. & Felty, A. P. (eds). ACM, pp. 130–145.

Hatcliff, J. & Danvy, O. (1997) A computational formalization for partial evaluation. Math. Struct.
Comput. Sci. 7, 507–541.

Heintze, N. & Riecke, J. G. (1998) The slam calculus: Programming with secrecy and integrity.
In POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, CA, USA, January 19–21, 1998, pp. 365–377.

Jacobs, B. (1999) Categorical Logic and Type Theory. Studies in Logic and the Foundations of
Mathematics, vol. 141. Amsterdam: North Holland.

Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L. & Dreyer, D. (2015)
Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15–17, 2015, pp. 637–650.

Kobayashi, N., Lozes, É. & Bruse, F. (2017) On the relationship between higher-order recursion
schemes and higher-order fixpoint logic. Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18–20, 2017, pp.
246–259.

Kobayashi, N., Tsukada, T. & Watanabe, K. (2018) Higher-order program verification via HFL
model checking. In Programming Languages and Systems - 27th European Symposium on
Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14–20, 2018, Proceedings, pp. 711–738.

Krogh-Jespersen, M., Svendsen, K. & Birkedal, L. (2017) A relational model of types-and-effects in
higher-order concurrent separation logic. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18–20, 2017, pp.
218–231.

Melliès, P.-A. & Zeilberger, N. (2015) Functors are type refinement systems. In Rajamani, S. K.
& Walker, D. (eds), Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15–17, 2015. ACM,
pp. 3–16.

Nanevski, A., Banerjee, A. & Garg, D. (2013) Dependent type theory for verification of information
flow and access control policies. ACM Trans. Program. Lang. Syst. 35(2), 6:1–6:41.

Pfenning, F. (2008) Church and Curry: Combining intrinsic and extrinsic typing. In Reasoning in
Simple Type Theory: Festschrift in Honor of Peter B. Andrews on His 70th Birthday, Benzmüller,
C., Brown, C., Siekmann, J. & Statman, R. (eds), Studies in Logic, vol. 17. College Publications,
pp. 303–338.

Plotkin, G. (1973) Lambda-definability and logical relations. https://www.cl.cam.ac.uk/∼nk480/
plotkin-logical-relations.pdf

Plotkin, G. (1977). LCF considered as a programming language. Theor. Comput. Sci. 5(3), 223–255.
Plotkin, G. D. & Abadi, M. (1993) A logic for parametric polymorphism. In Typed Lambda Calculi

and Applications, International Conference on Typed Lambda Calculi and Applications, TLCA
’93, Utrecht, The Netherlands, March 16–18, 1993, Proceedings, pp. 361–375.

Pottier, F. & Simonet, V. (2002) Information flow inference for ML. In Conference Record of
POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, OR, USA, January 16–18, 2002, pp. 319–330.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://www.cl.cam.ac.uk/~nk480/plotkin-logical-relations.pdf
https://www.cl.cam.ac.uk/~nk480/plotkin-logical-relations.pdf
https://doi.org/10.1017/S0956796819000145

50 A. Aguirre et al.

Radicek, I., Barthe, G., Gaboardi, M., Garg, D. & Zuleger, F. (2018) Monadic refinements for
relational cost analysis. PACMPL 2(POPL), 36:1–36:32.

Sato, T., Aguirre, A., Barthe, G., Gaboardi, M., Garg, D. & Hsu, J. (2019) Formal verification
of higher-order probabilistic programs: reasoning about approximation, convergence, Bayesian
inference, and optimization. PACMPL 3(POPL), 38:1–38:30.

Sousa, M. & Dillig, I. (2016) Cartesian hoare logic for verifying k-safety properties. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13–17, 2016, pp. 57–69.

Statman, R. (1985) Logical relations and the typed λ-calculus. Inf. Control 65(2–3), 85–97.
Stewart, G., Banerjee, A. & Nanevski, A. (2013) Dependent types for enforcement of information

flow and erasure policies in heterogeneous data structures. In 15th International Symposium on
Principles and Practice of Declarative Programming, PPDP ’13, Madrid, Spain, September 16–18,
2013, pp. 145–156.

Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bhargavan, K.,
Fournet, C., Strub, P.-Y., Kohlweiss, M., Zinzindohoue, J. K. & Béguelin, S. Z. (2016) Dependent
types and multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20–22, 2016, Bodík, R. & Majumdar, R. (eds). ACM, pp. 256–270.

Tait, W. W. (1967) Intensional interpretations of functionals of finite type I. J. Symb. Log. 32(2),
198–212.

Terauchi, T. & Aiken, A. (2005) Secure information flow as a safety problem. In Static Analysis
Symposium, Hankin, C. & Siveroni, I. (eds), LNCS, vol. 3672, pp. 352–367.

The Coq Development Team (2018) The Coq proof assistant, version 8.8.0.
Unno, H., Torii, S. & Sakamoto, H. (2017) Automating induction for solving horn clauses. In

Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany,
July 24–28, 2017, Proceedings, Part II, pp. 571–591.

Vazou, N., Seidel, E. L., Jhala, R., Vytiniotis, D. & Jones, S. L. P. (2014). Refinement types for
Haskell. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming, Gothenburg, Sweden, September 1–3, 2014, Jeuring, J. & Chakravarty, M. M. T.
(eds). ACM, pp. 269–282.

Volpano, D., Smith, G. & Irvine, C. (1996) A sound type system for secure flow analysis. J. Comput.
Secur. 4(3), 1–21.

Wildmoser, M. & Nipkow, T. (2004) Certifying machine code safety: Shallow versus deep embed-
ding. In Theorem Proving in Higher Order Logics, 17th International Conference, TPHOLs 2004,
Park City, Utah, USA, September 14–17, 2004, Proceedings, pp. 305–320.

Xi, H. & Pfenning, F. (1999) Dependent types in practical programming. In Appel, A. W. & Aiken,
A. (eds), POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Antonio, TX, USA, January 20–22, 1999. ACM, pp. 214–227.

Yang, H. (2007) Relational separation logic. Theor. Comput. Sci. 375(1–3), 308–334.
Zaks, A. & Pnueli, A. (2008) CoVaC: Compiler validation by program analysis of the cross-product.

In Formal Methods, Cuéllar, J., Maibaum, T. S. E. & Sere, Kaisa (eds), Lecture Notes in Computer
Science, vol. 5014, pp. 35–51.

Zeilberger, N. (2016) Principles of type refinement. Notes for OPLSS 2016 School.

Appendix A: Semantics

A.1 Semantics of HOL

A.1.1 Types

The interpretation for the types corresponds directly to the usual representation of pairs,
lists, and functions in set theory.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 51

�B�� {ff, tt}
�N��N

�listτ �� list�τ�

�τ1 × τ2�� �τ1�× �τ2�

�τ1 → τ2�� �τ1�→ �τ2�

A.1.2 Terms

The terms are given an interpretation with respect to a valuation ρ which is a partial func-
tion mapping variables to elements in the interpretation of their type. Given ρ, we use the
notation ρ[v/x] to denote the unique extension of ρ such that if y= x then ρ[v/x](y)= v
and, otherwise, ρ[v/x](y)= ρ(y).

�x�ρ � ρ(x) �〈t, u〉�ρ := 〈�t�ρ , �u�ρ〉 �πi t�ρ � πi(�t�ρ)

�λx : τ .t�ρ � λv : �τ�.�x�ρ[�v�ρ/v] �c�ρ � c �S t�ρ � S �t�ρ

�t :: u�ρ � �t�ρ :: �u�ρ

�case t of [] �→ u; _ :: _ �→ v�ρ �
{

�u�ρ if �t�ρ = []

�v�ρ M N if �t�ρ =M :: N

�letrec f x= t�ρ � F where F is the unique solution of the fixpoint equation

A.1.3 Formulas

We assume that for predicate P of arity τ1 × · · · × τn, we have an interpretation �P� ∈
�τ1�× · · · × �τn� that satisfies the axioms for P. The interpretation of a formula is defined
as follows:

�P(t1, . . . , tn)�ρ � (�t1�ρ , . . . , �tn�ρ) ∈ �P�

���ρ � �̃
�⊥�ρ � ⊥̃

�φ1 ∧ φ2�ρ � �φ1�ρ ∧̃ �φ2�ρ

�φ1 ⇒ φ2�ρ � �φ1�ρ ⇒̃ �φ2�ρ

�∀x : τ .φ�ρ � ∀̃v.v ∈ �τ� ⇒̃ �φ�ρ[v/x]

where we use the tilde (∼) to distinguish between the (R)HOL connectives and the meta-
level connectives.

A.1.4 Soundness

We have the following result:

Theorem 27 (Soundness of set-theoretical semantics). If � |� � φ, then for every
valuation ρ |= �,

∧
ψ∈��ψ�ρ implies �φ�ρ .

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

52 A. Aguirre et al.

Proof. By induction on the length of the derivation of � |� � φ. �

A.2 Semantics of UHOL

The intended meaning of a UHOL judgment � |� � t : τ | φ is

for all ρ. s.t. ρ |= �, �
∧
��ρ implies �φ�ρ[�t�ρ/r]

We have the following result:

Theorem 28 (Set-theoretical soundness and consistency of UHOL). If � |� � t : σ | φ,
then for every valuation ρ |= �,

∧
ψ∈��ψ�ρ implies �φ�ρ[�t�ρ/r]. In particular, there is no

proof of � | ∅ � t : σ | ⊥ in UHOL.

Proof. It is a direct consequence of the embedding from UHOL into HOL and the
soundness of HOL. �

A.3 Semantics of RHOL

The intended meaning of a RHOL judgment � |� � t1 : τ1 ∼ t2 : τ2 | φ is

for all ρ. s.t. ρ |= �, �
∧

��ρ implies �φ�ρ[�t1�ρ/r1][�t2�ρ/r2]

We have the following result:

Theorem 29 (Set-theoretical soundness and consistency of RHOL). If � |� � t1 : σ1 ∼
t2 : σ2 | φ, then for every valuation ρ |= �,

∧
ψ∈��ψ�ρ implies �φ�ρ[�t1�ρ/r1],[�t2�ρ/r2]. In

particular, there is no proof of � | ∅ � t1 : σ1 ∼ t2 : σ2 | ⊥ for any �.

Proof. It is a direct consequence of the embedding of RHOL into HOL and the soundness
of HOL. �

Appendix B: Additional rules

For reasons of space, we have omitted some derivable and admissible rules in HOL,
UHOL, and RHOL. These are useful to prove some theorems and examples. We now
discuss the most interesting among them:

B.1 HOL

The following rules are derivable in HOL:

• A cut rule can be derived from [⇒I] and [⇒E]:

� |�, φ′ � φ � |� � φ′
� |� � φ CUT

• A rule for case analysis can be derived from [LIST]:

� � l : listτ � |�, l= []� φ �, h : τ , t : listτ |�, l= h :: t � φ
� |� � φ DESTR-LIST

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 53

• A rule [S-LIST] for strong induction can be derived from [LIST]:

� |� � φ[[]/t] �, h : τ , t : listτ |�, ∀u : listτ .|u| ≤ |t|⇒ φ[u/t]� φ[h :: t/t]
� |� � ∀t : listτ .φ

• A rule [D-LIST] for (weak) double induction can be derived by applying [LIST]
twice:

� |� � φ[[]/l1][[]/l2]
�, h1 : τ1, t1 : listτ1 |�, φ[t1/l1][[]/l2]� φ[h1 :: t1/l1][[]/l2]
�, h2 : τ2, t2 : listτ2 |�, φ[[]/l1][t2/l2]� φ[[]/l1][h2 :: t2/l2]

�, h1 : τ1, t2 : listτ2 , h2 : τ2, t2 : listτ2 |�, φ[t1/l1][t2/l2]� φ[h1 :: t1/l1][h2 :: t2/l2]

� |� � ∀l1l2.φ

• A rule [S-D-LIST] for strong double induction can be derived from [D-LIST]:

� |� � φ[[]/l1][[]/l2]
�, h1 : τ1, t1 : listτ1 |�, ∀m1.|m1| ≤ |t1|⇒ φ[m1/l1][[]/l2]� φ[h1 :: t1/l1][[]/l2]
�, h2 : τ2, t2 : listτ2 |�, ∀m2.|m2| ≤ |t2|⇒ φ[[]/l1][m2/l2]� φ[[]/l1][h2 :: t2/l2]

�, h1 : τ1, t1 : listτ1 , h2 : τ2, t2 : listτ2 |
�, ∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |h2 :: t2|)⇒ φ[m1/l1][m2/l2]�

φ[h1 :: t1/l1][h2 :: t2/l2]

� |� � ∀l1l2.φ

B.2 RHOL

The following version [NATCASE*] of the case rule with an extra premise on the case
guards is admissible:

� |� � t1 : listτ1 ∼ t2 : listτ2 | φ′ ∧ (r1 = 0⇔ r2 = 0)
� |�, φ′[0/r1][0/r2]� u1 : σ1 ∼ u2 : σ2 | φ

� |� � v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.φ′[Sx1/r1][Sx2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

� |� � case t1 of 0 �→ u1; S �→ v1 : σ1 ∼ case t2 of 0 �→ u2; S �→ v2 : σ2 | φ
The one-sided version is admissible as well:

� |� � t1 : listτ1 ∼ t2 : σ2 | φ′
� |�, φ′[0/r1][t2/r2]� u1 : σ1 ∼ t2 : σ2 | φ

� |� � v1 : N→ σ1 ∼ t2 : σ2 | ∀x1.φ′[Sx1/r1]⇒ φ[r1 x1/r1]

� |� � case t1 of 0 �→ u1; S �→ v1 : σ1 ∼ t2 : σ2 | φ NATCASE*-L

Notice that we can always recover the initial version of the rule by instantiating φ′ as
t1 = r1 ∧ t2 = r2.

Appendix C: Proofs

C.1 Proof of Theorem 6

The easier direction is the reverse implication. To prove it, one just notices that we can
trivially apply [SUB] instantiating φ′ as a tautology that matches the structure of the types,
For instance, for a base type N we would use �, for an arrow type N→N we would use
∀x.⊥⇒�, and so on.

We now prove the direct implication by induction on the derivation of � |� � t1 : σ1 ∼
t2 : σ2 | φ. Suppose the last rule is

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

54 A. Aguirre et al.

Case. [VAR] (similarly, [NIL] and [PROJ])
The premise of the rule is already the judgment we want to prove.

Case [ABS]. The rule is

�, x1 : τ1, x2 : τ2 |�, φ′ � t1 : σ1 ∼ t2 : σ2 | φ
� |� � λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1, x2.φ′ ⇒ φ[r1 x1/r1][r2 x2/r2]

By applying the induction hypothesis on the premise:

�, x1 : τ1, x2 : τ2 |�, φ′ � φ[t1/r1][t2/r2] (C1)

By applying [⇒I] on (C1):

�, x1 : τ1, x2 : τ2 |� � φ′ ⇒ φ[t1/r1][t2/r2] (C2)

By applying [∀I] twice on (C2):

� |� � ∀x1x2.φ′ ⇒ φ[t1/r1][t2/r2] (C3)

Finally, by applying CONV on (C3):

� |� � ∀x1x2.φ′ ⇒ φ[(λx1.t1) x1/r1][(λx2.t2) x2/r2]

Proof for [ABS-L] (and [ABS-R]) is analogous.

Case [APP]. The rule is

� |� � t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1, x2.φ′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]
� |� � u1 : τ1 ∼ u2 : τ2 | φ′

� |� � t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]

By applying the induction hypothesis on the premises, we have

� |� � ∀x1x2.φ′[x1/r1][x2/r2]⇒ φ[t1 x1/r1][t2 x2/r2] (C4)

and

� |� � φ′[u1/r1][u2/r2] (C5)

By applying twice [∀E] to (C4) with u1, u2:

� |� � φ′[u1/r1][u2/r2]⇒ φ[t1 u1/r1][t2 u2/r2] (C6)

and by applying [⇒E] to (C6) and (C5):

� |� � φ[t1 u1/r1][t2 u2/r2]

Proof for [APP-L] (and APP-R) is analogous, and it uses the UHOL embedding for the
premise about the argument. Proofs for [CONS] and [PAIR] are very similar as well.

Case [SUB]. The rule is

� |� � t1 : σ1 ∼ t2 : σ2 | φ′ � |� �HOL φ
′[t1/r1][t2/r2]⇒ φ[t1/r1][t2/r2]

� |� � t1 : σ1 ∼ t2 : σ2 | φ

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 55

Applying the inductive hypothesis on the premises, we have
� |� � φ′[t1/r1][t2/r2]
and
� |� � φ′[t1/r1][t2/r2]⇒ φ[t1/r1][t2/r2]
The proof is simply applying [⇒E].

Case [LETREC]. The rule is

Def (f1, x1, e1) Def (f2, x2, e2)
�, x1 : I1, x2 : I2, f1 : I1 → σ , f2 : I2→ σ2 |�, φ′,

∀m1m2.(|m1|, |m2|)< (|x1|, |x2|)⇒ φ′[m1/x1][m2/x2]⇒
φ[m1/x1][m2/x2][f1 m1/r1][f2 m2/r2]�

e1 : σ1 ∼ e2 : σ2 | φ
� |� � letrec f1 x1 = e1 : I1 → σ2 ∼ letrec f2 x2 = e2 : I2 → σ2 |

∀x1x2.φ′ ⇒ φ[r1 x1/r1][r2 x2/r2]

As an example, we prove the list and nat case, but for other datatypes the proof is similar.
Applying the inductive hypothesis on the premise, we have

�, l1, n2, f1, f2 |�, ∀m1m2.(|m1|, |m2|)< (|l1|, |n2|)⇒ φ[f1m1/r1][f2m2/r2]�
φ[e1/r1][e2/r2]

By [∀I], we derive

� |� � ∀f1, f2, l1, n2.(∀m1m2.(|m1|, |m2|)< (|l1|, |n2|)⇒
φ[f1m1/r1][f2m2/r2])⇒ φ[e1/r1][e2/r2]

(�)

We want to prove

� |� � ∀l1n2.φ[F1 l1/r1][F2 n2/r2]

where we use the abbreviations

F1 := letrec f1 x1 = e1

F2 := letrec f2 x2 = e2

We will use strong double induction over natural numbers and lists. We need to prove
four premises. Since we can prove (�) from �,�, we can add it to the axioms:

(A) � |�,�� φ[F1 []/r1][F2 0/r2]
(B) �, h1, t1 |�,�, ∀m1.|m1|≤|t1|⇒φ[F1 m1/r1][F2 0/r2]�φ[F1(h1 :: t1)/r1][F2 0/r2]
(C) �, x2 |�,�, ∀m2.|m2| ≤ |x2|⇒ φ[F1 []/r1][F2 m2/r2]� φ[F1 []/r1][F2 (Sx2)/r2]
(D) �, h1, t1, x2 |�,�, ∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |Sx2|)⇒

φ[F1 m1/r1][F2 m2/r2]� φ[F1 (h1 :: t1)/r1][F2 (Sx2)/r2].

To prove them, we will instantiate the quantifiers in � with the appropriate variables.
To prove (A), we instantiate � at F1, F2, [], 0:

(∀m1m2.(|m1|, |m2|)< (|[]|, |0|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[e1/r1][e2/r2][[]/l1][0/n2][F1/f1][F2/f2]

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

56 A. Aguirre et al.

and, since (|m1|, |m2|)< (|[]|, |0|) is trivially false, then

φ[e1/r1][e2/r2][[]/l1][0/n2][F1/f1][F2/f2]

and by β-expansion and [CONV]:

φ[F1 []/r1][F2 0/r2].

To prove (B), we instantiate � at F1, F2, h1 :: t1, 0

(∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |0|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[e1/r1][e2/r2][h1 :: t1/l1][0/n2][F1/f1][F2/f2]

by β-expansion:

(∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |0|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[F1 h1 :: t1/r1][F2 0/r2]

Since (|m1|, |m2|)< (|h1 :: t1|, |0|) is only satisfied if |m1| ≤ |t1| ∧m2 = 0, we can write it
as:

(∀m1m2.(|m1| ≤ |t1| ∧m2 = 0)⇒ φ[F1m1/r1][F2m2/r2])⇒ φ[F1 h1 :: t1/r1][F2 0/r2]

Meanwhile, one of the antecedents of (B) is ∀m1.|m1| ≤ |t1|⇒ φ[F1 m1/r1][F2 0/r2], so
by [⇒E] we prove φ[F1 h1 :: t1/r1][F2 0/r2], which is the consequent of (B).

The proof of (C) is symmetrical to the proof of (B).
To prove (D), we instantiate � at F1, F2, h1 :: t1, Sx2

(∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |Sx2|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[e1/r1][e2/r2][h1 :: t1/l1][Sx2/n2][F1/f1][F2/f2]

by β-expansion:

(∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |Sx2|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[F1 h1 :: t1/r1][F2 (Sx2)/r2]

One of the antecedents of (D) is exactly ∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |Sx2|)⇒
φ[F1 m1/r1][F2 m2/r2], so by [⇒E] we prove φ[F1 h1 :: t1/r1][F2 (Sx2)/r2], which is the
consequent of (D).

Proof of [LETREC-L] (and [LETREC-R]) is analogous and uses simple strong
induction.

Case [CASE]. The rule:

� |� � l1 : listτ1 ∼ l2 : listτ2 | r1 = []⇔ r2 = []
� |�, l1 = [], l2 = []� u1 : σ1 ∼ u2 : σ2 | φ

� |� � v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |
∀h1h2t1t2.l1 = h1 :: t1 ⇒ l2 = h2 :: t2 ⇒ φ[r1 h1 t1/r1][r2 h2 t2/r2]

� |� � case l1 of [] �→ u1; _ :: _ �→ v1 : σ1 ∼ case l2 of [] �→ u2; _ :: _ �→ v2 : σ2 | φ
We prove the rule for natural numbers. Applying the induction hypothesis to the

premises of the rule, we have

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 57

(A) � |� � t1 = 0⇔ t2 = 0
(B) � |�, t1 = 0, t2 = 0� φ[u1/r1][u2/r2]
(C) � |� � ∀x1, x2.t1 = Sx1 ⇒ t2 = Sx2 ⇒ φ[v1 x1/r1][v2 x2/r2].

We want to prove:

� |� � φ[(case t1 of 0 �→ u1; S �→ v1)/r1][(case t2 of 0 �→ u2; S �→ v2)/r2]

By applying [DESTR-NAT] twice, we get four premises:

1. � |�, t1=0, t2 = 0� φ[(case t1 of 0 �→ u1; S �→ v1)/r1][(case t2 of 0 �→ u2; S �→
v2)/r2]

2. �,m2 |�, t1 = 0, t2= Sm2 � φ[(case t1 of 0 �→ u1; S �→ v1)/r1][(/r2]case t2 of 0 �→
u2; S �→ v2)

3. �, m1 |�, t1 = Sm1, t2 = 0� φ[(case t1 of 0 �→ u1; S �→ v1)/r1][(case t2 of 0 �→
u2; S �→ v2)/r2]

4. �, m1, m2 |�, t1 = Sm1, t2 = Sm2 � φ[(case t1 of 0 �→ u1; S �→ v1)/r1][(case t2 of
0 �→ u2; S �→ v2)/r2].

We can prove (2) and (3) by deriving a contradiction with [NC] and (A). After
β-reducing in (1) and (4), we can easily derive them from (B) and (C), respectively.

Proof of [CASE-L] (and [CASE-R]) is analogous.

C.2 Proof of Lemma 10

By the embedding into HOL, we have

• � |� � φ[t1/r]
• � |� � φ′[t2/r]

and by the [∧I] rule,

� |� � φ[t1/r]∧ φ′[t2/r]

Finally, by undoing the embedding:

� |� � t1 : σ1 ∼ t2 : σ2 | φ

C.3 Proof of Theorem 11

By induction on the derivation:

Case. x : τ , � � x : τ .
To prove: x : |τ |, |�| � �τ�(x), ��� � x : |τ | | �τ�(r). Directly by [VAR].

Case.
�, x : τ � t : σ

� � λx.t :�(x : τ).σ
.

To prove: |�| | ��� � λx.t : |�(x : τ).σ | | ��(x : τ).σ�(r).
Expanding the definitions:
|�| | ��� � λx.t : |τ |→ |σ | | ∀x.�τ�(x)⇒�σ�(rx)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

58 A. Aguirre et al.

By induction hypothesis on the premise:
|�|, x : |τ | | ���, �τ�(x)� t : |σ | | �σ�(r)
Directly by [ABS].

Case.
� � t :�(x : τ).σ � � u : τ

� � t u : σ [u/x]
.

To prove: |�| | ��� � t u : |σ [u/x]| | �σ [u/x]�(r).
Expanding the definitions:
|�| | ��� � t e2 : |σ | | �σ�(r)[u/x]
By induction hypothesis on the premise:
|�| | ��� � t : |τ |→ |σ | | ∀x.�τ�(x)⇒�σ�(rx)
and
|�| | ��� � u : |τ | | �τ�(r)
We get the result directly by [APP].

Case.
� � t : listτ � � u : σ � � v : τ→ listτ → σ

� � case t of [] �→ u; _ :: _ �→ v : σ
.

To prove: |�| | ��� � case t of [] �→ u; _ :: _ �→ v : |σ | | �σ�(r).
By induction hypothesis on the premises:

|�| | ��� � t : |listτ | | �listτ �(r) (C7)

|�| | ��� � u : |σ | | �σ�(r) (C8)

and

|�| | ��� � v : |τ→ listτ → σ | | �τ→ listτ → σ�(r) (C9)

Expanding the definitions on (C9), we get:

|�| | ��� � v : |τ |→ |listτ |→ |σ | | ∀x.�τ�(x)⇒∀y.�listτ �(y)⇒�σ�(r x y) (C10)

And from (C7), (C8), and (C10), we apply [LISTCASE*] and we get the result. Notice
that (C8) and (C10) are stronger than the premises of the rule, so we will first need to
apply [SUB] to weaken them.

Case.
� � τ

� � [] : listτ
.

To prove: |�| | ��� � [] : |listτ | | �listτ �(r).
Expanding the definitions: |�| | ��� � [] : list|τ | |All(r, x, �τ�(x)).
And by the definition of All for the empty case, trivially All([], x, �τ�(x)), so we apply the
[NIL] rule and we get the result.

Case.
� � h : τ � � t : listτ

� � h :: t : listτ
.

To prove: |�| | ��� � h :: t : |listτ | | �listτ �(r).
Expanding the definitions: |�| | ��� � h :: t : list|τ | |All(r, λx.�τ�(x)).
By induction hypothesis on the premises, we have

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 59

|�| | ��� � h : |τ | | �τ�(r)
and
|�| | ��� � t : list|τ | |All(r, λx.�τ�(x))
We complete the proof by the [CONS] rule and the definition of All in the inductive case.

Case.
� � τ � σ � � t : τ

� � t : σ
.

To prove: |�| | ��� � t : |σ | | �σ�(r)
and, since |σ | ≡ |τ |, it is the same as writing.
|�| | ��� � t : |τ | | �τ�(r)
By induction hypothesis on the premises:
|�|, x : |τ | | ���, �τ�(x)� �σ�(x)
and
|�| | ��� � t : |τ | | �τ�(r)
The proof is completed by applying [⇒I] to the first premise, and then [SUB].

Case.
�, x : τ , f :�(y : {r : τ | y< x}).σ [y/x]� t : σ Def (f , x, t)

� � letrec f x= t :�(x : τ).σ
.

To prove: |�| | ��� � letrec f x= t : |�(x : τ).σ | | ��(x : τ).σ�(r).
By induction hypothesis on the premise:
|�|, x : |τ |, f : |τ |→ |σ | | ���, �τ�(x), ∀y.�τ�(y)∧ y< x⇒�σ [y/x]�(fy)� t : |σ | | �σ�(r)
Directly by [LETREC].

C.4 Proof of Theorem 12

We will use without proof the following results:

Lemma 30. If � � τ � σ in refinement types, then |τ | ≡ |σ |.

Proof. By induction on the derivation. �

Lemma 31. For every type τ and expression e and variable x �∈ FV (τ , e), �τ�(e)=
�τ�(x)[e/x].

Proof. By structural induction. �

Now we proceed with the proof of the theorem.
By induction on the derivation:

Case.
� � τ

� � τ � τ .

To show: |�|, x : |τ | | �τ�(x)� �τ�(x). Directly by [AX].

Case.
� � τ1 � τ2 � � τ2 � τ3

� � τ1 � τ3

.

To show: |�|, x : |τ1| | ���, �τ1�(x)� �τ3�(x).

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

60 A. Aguirre et al.

By induction hypothesis on the premises,
|�|, x : |τ1| | ���, �τ1�(x)� �τ2�(x)
and
|�|, x : |τ2| | ���, �τ2�(x)� �τ3�(x).
We complete the proof by [CUT]. Notice that |τ1| ≡ |τ2| ≡ |τ3|.

Case.
� � τ1 � τ2

� � listτ1 � listτ2
.

To show: |�|, x : |listτ1 | | ���, �listτ1�(x)� �listτ2�(r).
Expanding the definitions: |�|, x : list|τ1| | ���,���,
which is trivial.

Case.
� � {r : τ | φ}

� � {r : τ | φ} � τ .

To show: |�|, x : |{r : τ | φ}| | �{r : τ | φ}�(x)� �τ�(x).
Expanding the definitions: |�|, x : |{r : τ | φ}| | �τ�(x)∧ φ[x/r]� �τ�(x)
and now the proof is completed trivially by [∧E] and [AX].

Case.
� � τ � σ �, r : τ � φ

� � τ � {r : σ | φ} .

To show: |�|, r : |τ | � ���, �τ�(r)� �{r : σ | φ}�(r).
Expanding the definition: |�|, r : |τ | | ���, �τ�(r)� �σ�(r)∧ φ.
By induction hypothesis on the premises, we have
|�|, r : |τ | | ���, �τ�(r)� �σ�(r)
and:
|�|, r : |τ | | ���, �τ�(r)� φ
We complete the proof by applying the [∧I] rule.

Case.
� � σ2 � σ1 �, x : σ2 � τ1 � τ2

� ��(x : σ1).τ1 ��(x : σ2).τ2

.

To show: |�|, f : |�(x : σ1).τ1| | ���, ��(x : σ1).τ1�(f)� ��(x : σ2).τ2�(f).
Expanding the definitions:
|�|, f : |�(x : σ1).τ1| | ���, ∀x.�σ1�(x)⇒�τ1�(fx)� ∀x.�σ2�(x)⇒�τ2�(fx)
By the rules [∀I] and [⇒I], it suffices to prove:

|�|, f : |�(x : σ1).τ1|, x : |σ2| | ���, ∀x.�σ1�(x)⇒�τ1�(fx), �σ2�(x)� �τ2�(fx) (C11)

On the other hand, by induction hypothesis on the premises:

|�|, x : |σ2| | ���, �σ2�(x)� �σ1�(x) (C12)

and

|�|, x : |σ2|, y : |τ1| | ���, �σ2�(x), �τ1�(y)� �τ2�(y) (C13)

which we can weaken, respectively, to:

|�|, x : |σ2|, f : |�(x : σ1).τ1| | |�|, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)� �σ1�(x) (C14)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 61

and

|�|, x : |σ2|, y : |τ1|, f : |�(x : σ1).τ1| | |�|, �σ2�(x), �τ1�(y), ∀x.�σ1�(x)⇒�τ1�(fx)� �τ2�(y)
(C15)

From (C14), by doing a cut with its own premise ∀x.�σ1�(x)⇒�τ1�(fx), we derive

|�|, x : |σ2|, f : |�(x : σ1).τ1| | ���, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)� �τ1�(fx) (C16)

From (C15), by [⇒I] and [∀I] we can derive
|�|, x : |σ2|, f : |�(x : σ1).τ1| | ���, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)� ∀y.�τ1�(y)⇒�τ2�(y)
And by [∀E]

|�|, x : |σ2|, f : |�(x : σ1).τ1| | ���, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)�
�τ1�(fx)⇒�τ2�(fx)

(C17)

Finally, from (C16) and (C17) by [⇒E] we get
|�|, x : |σ2|, f : |�(x : σ1).τ1| | ���, �σ2�(x), ∀x.�σ1�(x)⇒�τ1�(fx)� �τ2�(fx)
and by one last application of [⇒I] we get what we wanted to prove.

C.5 Proof of Theorem 14

We can recover the lemma from the unary case:

Lemma 32. For every type τ , expressions t1, t2 and variables x1, x2 �∈ FV (τ , t1, t2),

�τ�(t1, t2)= �τ�(x1, x2)[t1/x1][t2/x2]

Most cases are very similar to the unary case, so we will only show the most interesting
ones:

Case.
� � T

� � []∼ [] :: listT
.

To show: |�| | ���� [] : |listT | ∼ [] : |listT | | �listT�(r1, r2).
There are two options. If T is a unary type, we have to prove:
|�| | ���� [] : |listT | ∼ [] : |listT | |∧i∈{1,2} All(ri, λx.�τ�(x))
And by the definition of All, we can directly prove:
∅ | ∅ �All([], λx.�τ�(x))∧All([], λx.�τ�(x))
If T is a relational type, we have to prove:
|�| | ���� [] : |listT | ∼ [] : |listT | |All2(r1, r2, λx1.λx2.�T�(x1, x2))
And by the definition of All2, we can directly prove:
∅ | ∅ �All2([], [], λx1.λx2.�T�(x1, x2))

Case.
� � h1 ∼ h2 :: T � � t1 ∼ t2 :: listT

� � h1 :: t1 ∼ h2 :: t2 :: listT
.

To show: |�| | ���� h1 :: t2 : |listT | ∼ h2 :: t2 : |listT | | listT .
There are two options. If T is a unary type, we have to prove:
|�| | ���� h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |∧i∈{1,2} All(ri, λx.�T�(x))
By induction hypothesis, we have

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

62 A. Aguirre et al.

|�| | ���� h1 : |T | ∼ h2 :: t2 : |T | |∧i∈{1,2}�T�(ri)
and
|�| | ���� t1 : |listT | ∼ t2 : |listT | |∧i∈{1,2} All(ri, λx.�T�(x))
And by the definition of All, we can directly prove:∧

i∈{1,2}�T�(hi)⇒∧
i∈{1,2} All(ti, λx.�T�(x))⇒∧

i∈{1,2} All(hi :: ti, λx.�T�(x))
So by the [CONS] rule, we prove the result. If T is a relational type, we have to prove:
|�| | ���� h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |All2(r1, r2, λx1.λx2.�T�(x1, x2))
By induction hypothesis, we have
|�| | ���� h1 : |T | ∼ h2 :: t2 : |T | | �T�(r1, r2)
and
|�| | ���� t1 : |listT | ∼ t2 : |listT | |All2(r1, r2, λx1.λx2.�T�(x1, x2))
And by the definition of All2, we can directly prove:
�T�(h1, h2)⇒All2(t1, t2, λx1.λx2.�T�(x1, x2))⇒All(h1 :: t1, h1 ::
h2, λx1.λx2.�T�(x1, x2))
So by the [CONS] rule, we prove the result.

Case.

� � t1 ∼ t2 :: listT
� � t1 = []⇔ t2 = [] � � u1 ∼ u2 :: U � � v1 ∼ v2 ::�(h :: T).�(t :: listT). U

� � case t1 of [] �→ u1; _ :: _ �→ v1 ∼ case t2 of [] �→ u2; _ :: _ �→ v2 :: U
.

To show:
|�| | ���� case t1 of [] �→ u1; _ :: _ �→ v1 : |U | ∼ case t2 of [] �→ u2; _ :: _ �→ r2 : |U | |
�U�(r1, r2)
By induction hypothesis, we have
|�| | ���� t1 = []⇔ t2 = [],
|�| | ���� u1 : |U | ∼ u2 : |U | | �U�(r1, r2)
and
|�| | ���� v1 : T → listT →U ∼ v2 : T → listT →U | ∀h1h2.�T�(h1, h2)⇒
∀t1t2.�listT�(t1, t2)⇒ �U�(r1h1t1, h2t2r2)
By applying the [LISTCASE*] rule to the three premises, we get the result.

Case.

�, x :: T , f ::�(y :: {y :: T | (y1, y2)< (x1, x2)}). U[y/x]� t1 ∼ t2 :: U
� ��(x :: T). U Def (f1, x1, t1) Def (f2, x2, t2)

� � letrec f1 x1 = t1 ∼ letrec f2 x2 = t2 ::�(x :: T). U
.

To show:
|�| | ���� letrec f1 x1 = t1 : |�(x :: T). U | ∼ letrec f2 x2 = t2 : |�(x :: T). U | | ��(x :: T).
U�(r1, r2)
Expanding the definitions:
|�| | ���� letrec f1 x1 = t1 : |T |→|U | ∼ letrec f2 x2 = t2 : |T |→|U | | ∀x1x2.�T�(x1, x2)⇒
�U�(r1x1, r2x2)
By induction hypothesis on the premise:
|�|, x1, x2 : |T |, f1, f2 : |T |→ |U | | ���, �T�(x1, x2), ∀y1, y2.(�T�(y1, y2)∧ (y1, y2)<
(x1, x2))⇒ �U�(f1x1, f2x2)� t1 : |U | ∼ t2 : |U | | �U�(r1, r2)
And we apply the [LETREC] rule to get the result.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 63

C.6 Proof of Lemma 16

By induction on the derivation of τ ↘ �.

Case.
�� �′

T�′ (τ)↘ �
.

Since � �� a (given) and �� �′ (premise), it must be the case that �′ �� a. Hence, by
definition, �T�′ (τ)�a(x, y)=�.

Case.
τ ↘ �

T�′ (τ)↘ �
.

We consider two cases:

If �′ �� a, then �T�′ (τ)�a(x, y)=� by definition.

If �′ � a, then �T�′ (τ)�a(x, y)= �τ�a(x, y) by definition. By i.h. on the premise, we have
�τ�a(x, y)≡�. Composing, �T�′ (τ)�a(x, y)≡�.

Case.
τ1 ↘ � τ2 ↘ �

τ1 × τ2 ↘ �
.

By i.h. on the premises, we have �τi�a(x, y)≡� for i= 1, 2 and all x, y. Therefore,
�τ1 × τ2�a(x, y) � �τ1�a(π1(x), π1(y))∧ �τ2�a(π2(x), π2(y))≡�∧�≡�.

Case.
τ2 ↘ �

τ1 → τ2 ↘ �
.

By i.h. on the premise, we have �τ2�a(x, y)≡� for all x, y. Hence, �τ1 → τ2�a(x, y) �
(∀v, w. �τ1�a(v, w)⇒�τ2�a(x v, y w))≡ (∀v, w. �τ1�a(v, w)⇒�)≡�.

C.7 Proof of Theorem 17

By induction on the given derivation of � � e : τ .

Case.
� � tt : B

.

To show: |�| | ���a � tt : B∼ tt : B | (r1 = tt∧ r2 = tt)∨ (r1 = ff∧ r2 = ff).
By rule TRUE, it suffices to show (tt= tt∧ tt= tt)∨ (tt= ff∧ tt= ff) in HOL, which is
trivial.

Case.
� � e : B � � et : τ � � ef : τ

� � case e of tt �→ et; ff �→ ef : τ
.

To show: |�| | ���a � (case |e|1 of tt �→ |et|1; ff �→ |ef |1) : |τ | ∼ (case |e|2 of tt �→ |et|2;
ff �→ |ef |2) : |τ | | �τ�a(r1, r2).
By i.h. on the first premise:
|�| | ���a � |e|1 : B∼ |e|2 : B | (r1 = tt∧ r2 = tt)∨ (r1 = ff∧ r2 = ff)
By i.h. on the second premise:
|�| | ���a � |et|1 : |τ | ∼ |et|2 : |τ | | �τ�a(r1, r2)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

64 A. Aguirre et al.

By i.h. on the third premise:
|�| | ���a � |ef |1 : |τ | ∼ |ef |2 : |τ | | �τ�a(r1, r2)
Applying rule BOOLCASE to the past three statements yields the required result.

Case.
�, x : τ � x : τ

.

To show: |�|, x1 : |τ |, x2 : |τ | | ���a, �τ�a(x1, x2)� x1 : |τ | ∼ x2 : |τ | | �τ�a(r1, r2).
This follows immediately from rule VAR.

Case.
�, x : τ1 � e : τ2

� � λx.e : τ1 → τ2

.

To show: |�| | ���a � λx1.|e|1 : |τ1|→ |τ2| ∼ λx2.|e|2 : |τ1|→ |τ2| | ∀x1, x2. �τ1�a(x1, x2)⇒
�τ2�a(r1 x1, r2 x2).
By i.h. on the premise: |�|, x1 : |τ1|, x2 : |τ2| | ���a, �τ1�a(x1, x2)� |e|1 : |τ2| ∼ |e|2 : |τ2| |
�τ2�a(r1, r2).
Applying rule ABS immediately yields the required result.

Case.
� � e : τ1 → τ2 � � e′ : τ1

� � e e′ : τ2

.

To show: |�| | ���a � |e|1 |e′|1 : |τ2| ∼ |e|2 |e′|2 : |τ2| | �τ2�a(r1, r2).
By i.h. on the first premise:
|�| | ���a � |e|1 : |τ1|→ |τ2| ∼ |e|2 : |τ1|→ |τ2| | ∀x1, x2. �τ1�a(x1, x2)⇒
�τ2�a(r1 x1, r2 x2)
By i.h. on the second premise:
|�| | ���a � |e′|1 : |τ1| ∼ |e′|2 : |τ1| | �τ1�a(r1, r2)
Applying rule APP immediately yields the required result.

Case.
� � e : τ � � e′ : τ ′

� � 〈e, e′〉 : τ × τ ′ .

To show: |�| | ���a � 〈|e|1, |e′|1〉 : |τ | × |τ ′| ∼ 〈|e|2, |e′|2〉 : |τ | × |τ ′| | �τ�a(π1(r1) ,
π1(r2))∧ �τ ′�a(π2(r1), π2(r2)).
By i.h. on the first premise:
|�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | �τ�a(r1, r2)
By i.h. on the second premise:
|�| | ���a � |e′|1 : |τ ′| ∼ |e′|2 : |τ ′| | �τ ′�a(r1, r2)
The required result follows from the rule PAIR. We only need to show the third premise
of the rule, that is, the following in HOL:

∀x1x2y1y2.�τ�a(x1, x2)⇒�τ ′�a(y1, y2)⇒ (�τ�a(π1〈x1, y1〉, π1〈x2, y2〉)
∧ �τ ′�a(π2〈x1, y1〉, π2〈x2, y2〉))

Since π1〈x1, y1〉 = x1, etc., this implication simplifies to:

∀x1x2y1y2.�τ�a(x1, x2)⇒�τ ′�a(y1, y2)⇒ (�τ�a(x1, x2)∧ �τ ′�a(y1, y2))

which is an obvious tautology.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 65

Case.
� � e : τ × τ ′
� � π1(e) : τ

.

To show: |�| | ���a � π1(|e|1) : |τ | ∼ π1(|e|2) : |τ | | �τ�a(r1, r2).
By i.h. on the premise:
|�| | ���a � |e|1 : |τ | × |τ ′| ∼ |e|2 : |τ | × |τ ′| | �τ�a(π1(r1), π1(r2))∧ �τ ′�a(π2(r1), π2(r2))
By rule SUB:
|�| | ���a � |e|1 : |τ | × |τ ′| ∼ |e|2 : |τ | × |τ ′| | �τ�a(π1(r1), π1(r2))
By rule PROJ1, we get the required result.

Case.
� � e : τ

� � η�(e) : T�(τ)
.

To show: |�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | �T�(τ)�a(r1, r2).
By i.h. on the premise:

|�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | �τ�a(r1, r2) (C18)

If �� a, then �T�(τ)�a(r1, r2) � �τ�a(r1, r2), so the required result is the same as (C18).
If � �� a, then �T�(τ)�a(r1, r2) �� and the required result follows from rule SUB applied
to (C18).

Case.
� � e : T�(τ) �, x : τ � e′ : τ ′ τ ′ ↘ �

� � bind(e, x.e′) : τ ′
.

To show: |�| | ���a � (λx.|e′|1) |e|1 : |τ ′| ∼ (λx.|e′|2) |e|2 : |τ ′| | �τ ′�a(r1, r2).
By i.h. on the first premise:

|�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | �T�(τ)�a(r1, r2) (C19)

By i.h. on the second premise:

|�|, x1 : |τ |, x2 : |τ | | ���a, �τ�a(x1, x2)� |e′|1 : |τ ′| ∼ |e′|2 : |τ ′| | �τ ′�a(r1, r2) (C20)

We consider two cases:
Subcase. �� a. Here, �T�(τ)�a(r1, r2) � �τ�a(r1, r2), so (1) can be rewritten to:

|�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | �τ�a(r1, r2) (C21)

Applying rule ABS to (C20) yields:

|�| | ���a � λx1.|e′|1 : |τ |→ |τ ′| ∼ λx2.|e′|2 : |τ |→ |τ ′| | ∀x1x2.�τ�a(x1, x2)

⇒�τ ′�a(r1 x1, r2 x2) (C22)

Applying rule APP to (C22) and (C21) yields:

|�| | ���a � (λx1.|e′|1) |e|1 : |τ ′| ∼ (λx2.|e′|2) |e|2 : |τ ′| | �τ ′�a(r1, r2)

which is what we wanted to prove.
Subcase. � �� a. Here, �T�(τ)�a(r1, r2) � �τ�a(r1, r2), so (C19) can be rewritten to:

|�| | ���a � |e|1 : |τ | ∼ |e|2 : |τ | | � (C23)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

66 A. Aguirre et al.

Applying rule ABS to (C20) yields

|�| | ���a � λx1.|e′|1 : |τ |→ |τ ′| ∼ λx2.|e′|2 : |τ |→ |τ ′| | ∀x1x2.�τ�a(x1, x2)

⇒�τ ′�a(r1 x1, r2 x2)

By Lemma 16 applied to the subcase assumption � �� a and the premise τ ′ ↘ �, we have
�τ ′�a(r1 x1, r2 x2)≡�. So, by rule SUB:

|�| | ���a � λx1.|e′|1 : |τ |→ |τ ′| ∼ λx2.|e′|2 : |τ |→ |τ ′| | ∀x1x2.�τ�a(x1, x2)⇒�
Since (∀x1x2.�τ�a(x1, x2)⇒�)≡�≡ (∀x1, x2.�⇒�), we can use SUB again to get:

|�| | ���a � λx1.|e′|1 : |τ |→ |τ ′| ∼ λx2.|e′|2 : |τ |→ |τ ′| | ∀x1, x2.�⇒� (C24)

Applying rule APP to (C24) and (C23) yields

|�| | ���a � (λx1.|e′|1) |e|1 : |τ ′| ∼ (λx2.|e′|2) |e|2 : |τ ′| | �
which is the same as our goal since �τ ′�a(r1, r2)≡�.

C.8 Proof of Theorem 18

By induction on the derivation of �;�;��l
k t : A. We will show few cases.

Case.
�;�a;�, x : A�0

0 x : A
.

We can conclude by the following derivation:

�|�|�, x : �|A|�v ,� |�a, ���, �A�v(x)� x : �|A|�v | �A�v(r)
VAR

�|�|�, x : �|A|�v ,� |�a, ���, �A�v(x)� 0 : N | 0≤ r≤ 0
NAT

�|�|�, x : �|A|�v ,� |�a, ���, �A�v(x)� (x, 0) : �|A|�v ×N | �A�v(π1r)∧ 0≤ π2r≤ 0
PAIR-L

where the additional proof conditions that are needed for the [PAIR-L] rule can be easily
proved in HOL.

Case.
�;�a;��0

0 n : int .
Then we can conclude by the following derivation:

�|�|�,� |�a, ��� � n : N | � NAT
�|�|�,� |�a, ��� � 0 : N | 0≤ r≤ 0

NAT

�|�|�,� |�a, ��� � (n, 0) : N×N | 0≤π2r≤0
PAIR-L

where the additional proof conditions that are needed for the [PAIR-L] rule can be easily
proved in HOL.

Case.
�;�a; x : A1,��l

k t : A2

�;�a;��0
0 λx.t : A1

exec(k,l)−−−−→ A2 .
By induction hypothesis, we have �|�|�, x : �|A1|�v ,� |�, ���, �A1�v(x)� �t� : �|A2|�e |
�A�k,l

e (r) and we can conclude by the following derivation:

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 67

�|�|�, x : �|A1|�v ,� |�, ���, �A1�v(x)� �t� :

�|A2|�e | �A2�k,l
e (r)

�|�|�,� |�, ��� � λx.�t� : �|A1|�v→ �|A2|�e |
∀x.�A1�v(x)⇒�A2�k,l

e (rx)

ABS

�|�|�,� |�, ��� � 0 : N | 0≤ r≤ 0

�|�|�,� |�, ��� � (λx.�t�, 0) : (�|A1|�v→ �|A2|�e)×N | ∀x.�A1�v(x)⇒�A2�k,l
e ((π1r)x)∧ 0≤ π2r≤ 0

PAIR-L

where the additional proof conditions that are needed for the [PAIR-L] rule can be easily
proved in HOL.

Case
�;�a;��l1

k1
t1 : A1

exec(k,l)−−−−→ A2 �;�a;��l2
k2

t2 : A1

�;�a;��l1+l2+l+capp
k1+k2+k+capp

t1 t2 : A2

.

By induction hypothesis and unfolding some definitions, we have

�|�|�,� |�a, ��� � �t1� : (�|A1|�v→ (�|A2|�v ×N))×N |
∀h.�A1�v(h)⇒ (�A2�v(π1((π1(r))h))∧ k ≤ π2((π1(r))h)≤ l)∧ k1 ≤ π2(r)≤ l1

and �|�|�,� |�a, ��� � �t2� : �|A1|�v ×N | �A1�v(π1(r))∧ k2 ≤ π2(r)≤ l2. So, we can
prove:

�|�|�,� |�a, ��� � let x= �t1� in let y= �t2� in π1(x) π1(y) : �|A2|�v ×N |
�A2�v(π1(r))∧ k ≤ π2(r)≤ l ∧ k1 ≤ π2(x)≤ l1 ∧ k2 ≤ π2(y)r≤ l2

This combined with the definition of the cost-passing translation �t1 t2�� let x=
�t1� in let y= �t2� in let z= π1(x) π1(y) in (π1(z), π2(x)+ π2(y)+ π2(z)+ capp) allows us to
prove as required the following:

�|�|�,� |�a, ��� � �t1 t2� : �|A2|�v ×N |
�A2�v(π1(r))∧ k + k1 + k2 + capp ≤ π2(r)≤ l+ l1 + l2 + capp

C.9 Proof of Theorem 19

To prove Theorem 19, we need three lemmas.

Lemma 33. Suppose �;�� τ wf.4 Then, the following hold:

1. � |�� ∀xy. �τ�v(x, y)⇒�τ�v(x)∧ �τ�v(y)
2. � |�� ∀xy. �τ�t

e(x, y)⇒�τ�0,∞
e (x)∧ �τ�0,∞

e (y)

Also, (3) ���⇒��1� ∧ ��2� where �1 and �2 are obtained by replacing each variable x
in � with x1 and x2, respectively.

Proof. (1) and (2) follow by a simultaneous induction on the given judgment. (3) follows
immediately from (1). �

4 This judgment simply means that τ is well-formed in the context �;�. It is defined in the original RelCost

paper (Çiçek et al., 2017).

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

68 A. Aguirre et al.

Lemma 34. If �;�a; � � e1 e2 � t : τ in RelCost, then �;�; � �∞0 ei : τ for i ∈ {1, 2}
in RelCost.

Proof. By induction on the given derivation. �

Lemma 35. If �;� |= τ1 � τ2, then �;�� ∀xy. �τ1�v(x, y)⇒ �τ2�v(x, y).

Proof. By induction on the given derivation of �;� |= τ1 � τ2. �

Proof. [Proof of Theorem 19] The proof is by induction on the given derivation of
�;�; � � t1 t2 � k : τ . We show only a few representative cases here.

Case:

i :: S,�;�a; � � e e′ � t : τ i �∈ FIV(�a; �)

�;�a; � ��e �e′ � 0 : ∀i
diff(t)
:: S. τ

R-ILAM

To show: ‖�‖,� |�a, ���� (λ_.�e�1, 0) : (N→ �|τ |�e)×N | (λ_.�e′�2, 0)(N→ �|τ |�e)×
N�∀i

diff(t)
:: S. τ�0

e(r1, r2).

Expand �∀i
diff(t)
:: S. τ�0

e(r1, r2) to �∀i
diff(t)
:: S. τ�v(π1 r1, π1 r2)∧ π2r1 − π2 r2 ≤ 0, and

apply the rule [PAIR] to reduce to two proof obligations:

(A) ‖�‖,� |�a, ���� λ_.�e�1 : N→�|τ |�e ∼ λ_.�e′�2 : N→ �|τ |�e | �∀i
diff(t)
:: S. τ�v(r1, r2)

(B) ‖�‖,� |�a, ���� 0 : N∼ 0 : N | r1 − r2 ≤ 0

(B) follows immediately by rule [ZERO]. To prove (A), expand �∀i
diff(t)
:: S. τ�v(r1, r2),

and apply rule [∧I]. We get three proof obligations.

(C) ‖�‖,� |�a, ���� λ_.�e�1 : N→�|τ |�e ∼ λ_.�e′�2 : N→�|τ |�e | �∀i
exec(0,∞)

:: S. τ�v(r1)

(D) ‖�‖,� |�a, ���� λ_.�e�1 : N→�|τ |�e ∼ λ_.�e′�2 : N→�|τ |�e | �∀i
exec(0,∞)

:: S. τ�v(r2)
(E) ‖�‖,� |�a, ���� λ_.�e�1 : N→ �|τ |�e ∼ λ_.�e′�2 : N→ �|τ |�e | ∀z1z2.�⇒∀i.�τ�t

e

(r1 z1, r2 z2)
To prove (C), apply Lemma 34 to the given derivation (not just the premise), obtain-

ing a RelCost derivation for �;�a; � �∞0 �e : (∀i
exec(0,∞)

:: S. τ). Applying Theorem 18

to this yields ���,� |�a, ��� � (λ_.�e�, 0) : (N→ �|τ |�e)×N | �∀i
exec(0,∞)

:: S. τ�0,∞
e (r) in

UHOL, which is the same as ���,� |�a, ��� � (λ_.�e�, 0) : (N→ �|τ |�e)×N | �∀i
exec(0,∞)

::
S. τ�v(π1 r)∧ 0≤ π2 r≤∞. Applying rule [PROJ1], we get ���,� |�a, ��� �
π1(λ_.�e�, 0) : N→ �|τ |�e | �∀i

exec(0,∞)
:: S. τ�v(r). By subject conversion, ���,� |�a,

��� � λ_.�e� : N→ �|τ |�e | �∀i
exec(0,∞)

:: S. τ�v(r). Renaming variables, we get ���1,� |
�a, ��1� � λ_.�e�1 : N→ �|τ |�e | �∀i

exec(0,∞)
:: S. τ�v(r).

Now note that by definition, ‖�‖ ⊇ ���1 and by Lemma 33(3), ���⇒��1�. Hence,

we also get ‖�‖,� |�a, ���� λ_.�e�1 : N→ �|τ |�e | �∀i
exec(0,∞)

:: S. τ�v(r). (C) follows
immediately by rule [UHOL-L].

(D) has a similar proof.
To prove (E), apply the rule [ABS], getting the obligation:

‖�‖,�, z1, z2 : N |�a, ���� �e�1 : �|τ |�e ∼ �e′�2 : �|τ |�e | ∀i.�τ�t
e(r1, r2)

Since z1, z2 do not appear anywhere else, we can strengthen the context to remove them,
thus reducing to: ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e′�2 : �|τ |�e | ∀i.�τ�t

e(r1, r2).

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 69

Next, we transpose to HOL using Theorem 6. We get the obligation:
‖�‖,� |�a, ���� ∀i.�τ�t

e(�e�1, �e′�2)
This is equivalent to:
‖�‖,�, i : S |�a, ���� �τ�t

e(�e�1, �e′�2)
The last statement follows immediately from i.h. on the premise, followed by transposition
to HOL using Theorem 6.

Case:

�;�a; � � e e � t : τ ∀x ∈ dom(�). �;�a |= �(x)�� �(x)

�;�a; �, �′;�� e e � 0 : � τ
NOCHANGE.

To show: ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �� τ�0
e(r1, r2).

Expanding the definition of �� τ�0
e , this is equivalent to:

‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �τ�v(π1 r1, π2 r2)∧ (π1 r1 = π1 r2) ∧
(π2 r1 − π2 r2 ≤ 0)
Using rule [∧I], we reduce this to two obligations:
(A) ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �τ�v(π1 r1, π2 r2)
(B) ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | (π1 r1 = π1 r2)∧ (π2 r1 − π2 r2 ≤ 0).

By i.h. on the first premise,
‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �τ�v(π1 r1, π2 r2)∧ (π2 r1 − π2 r2 ≤ t)
By rule [SUB],
‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | �τ�v(π1 r1, π2 r2)
which is the same as (A).

To prove (B), apply Lemma 35 to the second premise to get for every x ∈ dom(�)
that� |�a � ��(x)�v(x1, x2)⇒ �� �(x)�v(x1, x2). Since �� �(x)�v(x1, x2)⇒ x1 = x2 and
from ��� we know that ��(x)�v(x1, x2), it follows that ‖�‖,� |�a, ���� x1 = x2. Since
this holds for every x ∈ dom(�), it follows immediately that ‖�‖,� |�a, ���� �e�1 =
�e�2. By Theorem 6, ‖�‖,� |�a, ���� �e�1 : �|τ |�e ∼ �e�2 : �|τ |�e | r1 = r2. (B) follows
immediately by rule [SUB]. �

Appendix D: Examples

D.1 Factorial

This example shows that the two following implementations of factorial, with and without
accumulator, are equivalent:

fact1 � letrec f1 n1 = case n1 of 0 �→ 1; S �→ λx1.Sx1 ∗ (f1 x1)

fact2 � letrec f2 n2 = λacc.case n2 of 0 �→ acc; S �→ λx2.f2 x2 (Sx2 ∗ acc)

Our goal is to prove that:

∅ | ∅ � fact1 : N→N∼ fact2 : N→N→N | ∀n1n2.n1 = n2 ⇒∀acc.(r1 n1) ∗ r2 n2 acc

Since both programs do the same number of iterations, we can do synchronous reason-
ing for the recursion at the head of the programs. However, the bodies of the functions
have different types since fact2 receives an extra argument, the accumulator. Therefore,
we will need a one-sided application of [ABS-R], before we can go back to reasoning

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

70 A. Aguirre et al.

synchronously. We will then apply the [CASE] rule, knowing that both terms reduce to
the same branch, since n1 = n2. On the zero branch, we will need to prove the trivial equal-
ity 1 ∗ acc= acc. On the successor branch, we will need to prove that Sx ∗ (fact x) ∗ acc=
fact2 x2 (Sx2 ∗ acc), knowing by induction hypothesis that such a property holds for every
m less than x.

Now we will expand on the details. We start the proof applying the [LETREC] rule,
which has two premises:

1. Both functions are well-defined
2. n1 = n2, ∀y1y2.(y1, y2)< (n1, n2)⇒ y1 = y2 ⇒∀acc.(f1 y1) ∗ acc= f2 y2 acc� case

n1 of 0 �→ 1; S �→ λx1.Sx1 ∗ (f1 x1)∼ λacc.case n2 of 0 �→ acc; S �→ λx2.f2 x2 (Sx2 ∗
acc) | n1 = n2 ⇒∀acc.r1 ∗ acc= r2 acc.

We assume that the first premise is provable.
To prove the second premise, we start by applying ABS-R, which leaves the following

proof obligation:

n1 = n2, ∀y1y2.(y1, y2)< (n1, n2)⇒ y1 = y2 ⇒∀acc.(f1 y1) ∗ acc= f2 y2 acc, n1 = n2 �
case n1 of 0 �→ 1; S �→ λx1.Sx1 ∗ (f1 x1)∼ case n2 of 0 �→ acc; S �→ λx2.f2 x2(Sx2 ∗ acc) |
r1 ∗ acc= r2

Now we can apply [CASE], and we have three premises, where � denotes the axioms
of the previous judgment:

• � � n1 ∼ n2 | r1 = 0⇔ r2 = 0
• �, n1 = 0, n2 = 0� 1∼ acc | r1 ∗ acc= r2

• � � λx1.Sx1 ∗ (f1 x1)∼ λx2.f2 x2 (Sx2 ∗ acc) | ∀x1x2.n1 = Sx1 ⇒ n2 = Sx2 ⇒
(r1 x1) ∗ acc= r2 x2.

Premise 1 is a direct consequence of n1 = n2. Premise 2 is a trivial arithmetic identity. To
prove premise 3, we first apply the ABS rule:

�, n1 = Sx1, n2 = Sx2 � Sx1 ∗ (f1 x1)∼ f2 x2 (Sx2 ∗ acc) | r1 ∗ acc= r2

and then by Theorem 6, we can finish the proof in HOL by deriving.

�, n1 = Sx1, n2 = Sx2 � Sx1 ∗ (f1 x1) ∗ acc= f2 x2 (Sx2 ∗ acc)

From the premises, we can first prove that (x1, x2)< (n1, n2) so by the inductive
hypothesis from the [LETREC] rule, and the [⇒E] rule, we get

∀acc.(f1 x1) ∗ acc= f2 x2 acc

which we then instantiate with Sx1 ∗ acc to get

(f1 x1) ∗ Sx1 ∗ acc= f2 x2 (Sx1 ∗ acc)

On the other hand, from the hypotheses we also have x1 = x2, so by [CONV] we finally
prove

(f1 x1) ∗ Sx1 ∗ acc= f2 x2 (Sx2 ∗ acc)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 71

D.2 List reversal

A related example for lists is the equivalence of reversal with and without accumulator.
The structure of the proof is the same as in the factorial example, but we will briefly show
it to illustrate how the LISTCASE rule is used. The functions are written:

rev1 � letrec f1 l1 = case l1 of [] �→ []; _ :: _ �→ λh1.λt1.(f1 t1)++[x1]
rev2 � letrec f2 l2 = λacc.case l2 of [] �→ acc; _ :: _ �→ λh2.λt2.f2 t2 (h2 :: acc)

We want to prove they are related by the following judgment:

∅ | ∅ � rev1:listτ→listτ ∼ rev2 :listτ→listτ | ∀l1,l2.l1=l2⇒∀acc. (r1 l1)++acc= r2 l2 acc

By the [LETREC] rule, we have to prove two premises:

1. Both functions are well-defined.
2. l1 = l2, ∀m1m2.(|m1|, |m2|) < (|l1|, |l2|) ⇒ m1 = m2 ⇒ ∀acc.(f1 m1)++acc =

f2 m2 acc� case l1 of [] �→ []; _ :: _ �→ λh1.λt1.(f1 t1)++[x1] ∼ λacc.case l2 of
[] �→ acc; _ :: _ �→ λh2.λt2.f2 t2 (h2 :: acc) | ∀acc. r1 ++acc= r2 acc.

For the second premise, similarly as in factorial, we apply ABS-R. We have the following
premise, where � denotes the axioms in the previous judgment:

� � case l1 of [] �→ []; _ :: _ �→ λh1.λt1.(f1 t1)++[x1]∼
case t2 of [] �→ acc; _ :: _ �→ λh2.λt2.f2 t2 (h2 :: acc) |

r1 ++acc= r2

and then LISTCASE, which has three premises:

• � � l1 ∼ l2 | r1 = []⇔ r2 = []
• �, l1 = [], l2 = []� []∼ acc | r1 ++acc= r2

• � � λh1.λt1.(f1 t1)++[x1]∼ λh2.λt2.f2 t2 (h2 :: acc) |
∀h1t1h2t2.l1 = h1 :: t1 ⇒ l2 = h2 :: t2 ⇒ r1 ++acc= r2.

We complete the proof in a similar way as in the factorial example.

D.3 Proof of Theorem 23

We will use without proof two unary lemmas:

Lemma 36. • | • � take : listN→N→ listN | ∀ln.|r l n| =min(n, |l|)

Lemma 37. • | • �map : listN→ (N→N)→ listN | ∀lf .|r l f | = |l|

Now we proceed with the proof of the theorem
We want to prove

l1 = l2, n1 = n2, g1 = g2 �map (take l1 n1) g1 ∼ take (map l2 g2) n2 |
r1 � r2 ∧ |r1| =min(n1, |l1|)∧ |r2| =min(n2, |l2|)

where r1 � r2 is the prefix ordering and is defined as an inductive predicate:

∀l.[]� l ∀hl1l2.l1 � l2 ⇒ h :: l1 � h :: l2

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

72 A. Aguirre et al.

By the helping lemmas and Lemma 10, it suffices to prove just the first conjunct:

l1 = l2, n1 = n2, g1 = g2 �map (take l1 n1) g1 ∼ take (map l2 g2) n2 | r1 � r2

The derivation begins by applying the APP-R rule. We get the following judgment on n2:

l1 = l2, n1 = n2, g1 = g2 � n2 | r≥ |take l1 n1| (D1)

and a main premise:

l1 = l2, n1 = n2, g1 = g2 �map (take l1 n1) g1 ∼ take (map l2 g2) |
∀x2.x2 ≥ |take l1 n1|⇒ r1 � (r2 x2)

(D2)

Notice that we have chosen the premise x2 ≥ |take l1 n1| because we are trying to prove
r1 � (r2 x2), which is only true if we take a larger prefix on the right than on the left.
The judgment (D1) is easily proven from the fact that |take l1 n1| =min(n1, |l1|)≤ n1 =
n2, which we get from the lemmas. To prove (D2), we first apply APP-L with a trivial
condition g1 = g2 on g1. Then we apply APP and we have two premises:

(A) � � take l1 n1 ∼map l2 g2 | r1 �g2 r2

(B) � �map∼ take |
∀m1m2.m1 �g2 m2 ⇒ (∀g1.g1 = g2 ⇒∀x2.x2 ≥ |m1|⇒ (r1 m1 g1)� (r2 m2 x2))

where �g is defined as an inductive predicate parametrized by g:

∀l.[]�g l ∀hl1l2.l1 �g l2 ⇒ h :: l1 �g (gh) :: l2

We first show how to prove (A). We start by applying APP with a trivial condition for
the arguments to get:

� � take l1 ∼map l2 | ∀x1g2.(r1 x1)�g2 (r2 g2)

We then apply APP, which has two premises, one of them equating l1 and l2. The other
one is

� � take∼map | ∀m1m2.m1 =m2 ⇒∀x1g2.(r1 m1 x1)�g2 (r2 m2 g2)

To complete this branch of the proof, we apply LETREC. We need to prove the
following premise:

�, m1 =m2, ∀k1k2.(k1, k2)< (m1, m2)⇒ k1 = k2 ⇒∀x1g2.(f1 k1 x1)�g2 (f2 k2 g2)�
λn1.e1 ∼ λg2.e2 | ∀x1g2.(r1 x1)�g2 (r2 g2)

where e1, e2 abbreviate the bodies of the functions:

e1 � case m1 of [] �→ []
; _ :: _ �→ λh1t1.case x1 of 0 �→ []

; S �→ λy1.h1 :: f1 t1 y1

e2 � case m2 of [] �→ []
; _ :: _ �→ λh2t2.(g2 h2) :: (f2 t2 g2)

If we apply ABS, we get a premise:

�, m1 =m2, ∀k1k2.(k1, k2)< (m1, m2)⇒ k1 = k2 ⇒
∀x1g2.(f1 k1 x1)�g2 (f2 k2 g2)� e1 ∼ e2 | r1 �f r2

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 73

And now we can apply a synchronous CASE rule, since we have a premise m1 =m2.
This yields three proof obligations, where� ′ is the set of axioms in the previous judgment:

(A.1) � ′ �m1 ∼m2 | r1 = []⇔ r2 = []
(A.2) � ′ � []∼ [] | r1 �f r2

(A.3) � ′ � λh1t1.case x1 of 0 �→ []; S �→ λy1.h1 :: f1 t1 y1 ∼
λh2t2.(g2 h2) :: (f2 t2 g2) | ∀h1t1h2t2.m1 = h1 :: t1 ⇒m2 = h2 :: t2 ⇒ (r1 h1 t1)�g2

(r2 h2 t2)

Premises (A.1) and (A.2) are trivial. To prove (A.3), we first apply ABS twice:

� ′, m1 = h1 :: t1, m2 = h2 :: t2 �
case n1 of 0 �→ []; S �→ λy1.h1 :: f1 t1 y1 ∼ (g2 h2) :: (f2 t2 g2) | r1 �g2 r2

Next, we apply CASE-L, which has the following two premises:

(A.3.i) � ′, m1 = h1 :: t1, m2 = h2 :: t2, n1 = 0� []∼ (g2 h2) :: (f2 t2 g2) | r1 �g2 r2

(A.3.ii) � ′, m1 = h1 :: t1, m2 = h2 :: t2 � λy1.h1 :: f1 t1 y1 ∼ (g2 h2) :: (f2 t2 g2) |
∀y1.n1 = Sy1 ⇒ (r1 y1)�g2 r2

Premise (A.3.i) can be directly derived in HOL from the definition of �g2 . To prove
(A.3.ii), we need to make use of our inductive hypothesis:

∀k1k2.(k1, k2)< (m1, m2)⇒ k1 = k2 ⇒∀x1g2.(f1 k1 x1)�g2 (f2 k2 g2)

In particular, from the premises m1 = h1 :: t1 and m2 = h2 :: t2 we can deduce (t1, t2)<
(m1, m2). Additionally, from the premise m1 =m2 we prove t1 = t2. Therefore, from the
inductive hypothesis we derive ∀x1g2.(f1 t1 x1)�g2 (f2 t2 g2), and by definition of �g2 ,
and the fact that h1 = h2, for every y we can prove h1 :: (f1 t1 y) �g2 (g2 h2) :: f2 t2. By
Theorem 6, we can prove (A.3.ii).

We will now show how to prove (B) :

� �map∼ take | ∀m1m2.m1 �g2 m2 ⇒
(∀g1.g1 = g2 ⇒∀x2.x2 ≥ |m1|⇒ (r1 m1 g1)� (r2 m2 x2))

On this branch, we will also use LETREC. We have to prove a premise:

�,�� λg1.e2 ∼ λx2.e1 | ∀g1.g1 = g2 ⇒∀x2.x2 ≥ |m1|⇒ (r1 g1)� (r2 x2)

where

� �

⎧⎪⎨
⎪⎩

m1 �g2 m2,

∀k1k2.(k1, k2)< (m1, m2)⇒ k1 �g2 k2 ⇒
(∀g1.g1 = g2 ⇒∀x2.x2 ≥ |k1|⇒ (r1 k1 g1)� (r2 k2 x2))

⎫⎪⎬
⎪⎭

We start by applying ABS. Our goal is to prove:

�,�, x2 ≥ |m1|, g1 = g2 �

case m1 of [] �→ []
; _ :: _ �→ λh1t1.(g1 h1) :: (f1 t1 g1)

∼
case m2 of [] �→ []
; _ :: _ �→ λh2t2.case x2 of 0 �→ []
; S �→ λy2.h2 :: f2 t2 y2

| r1 � r2

Notice that we have α-renamed the variables to have the appropriate subscript. Now we
want to apply a CASE rule, but the lists over which we are matching are not necessarily

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

74 A. Aguirre et al.

of the same length. Therefore, we use the asynchronous LISTCASE-A rule. We have to
prove four premises:

(B.1) �,�, x2 ≥ |m1|, g1 = g2, m1 = [], m2 = []� []∼ [] | r1 � r2

(B.2) �,�, x2 ≥ |m1|, g1 = g2, m1 = []� []∼
λh2t2.case x2 of 0 �→ []; S �→ λy2.h2 :: f2 t2 y2 | ∀h2t2.m2 = h2 :: t2 ⇒ r1 � (r2 h2 t2)

(B.3) �,�, x2 ≥ |m1|, g1 = g2, m2 = []� λh1t1.(g1 h1) :: (f1 t1 g1)∼ [] | ∀h1t1.m1 = h1 ::
t1 ⇒ (r1 h1 t1)� r2

(B.4) �,�, x2 ≥ |m1|, g1 = g2 � λh1t1.(g1 h1) :: (f1 t1 g1)∼
λh2t2.case x2 of 0 �→ []; S �→ λy2.h2 :: f2 t2 y2 |
∀h1t1h2t2.m1 = h1 :: t1⇒m2 = h1 :: t1 ⇒ (r1 h1 t1)� (r2 h2 t2)

Premises (B.1) and (B.2) are trivially derived from the definition of the � predicate. To
prove premise (B.3), we see that we have premises m1 �g2 m2, m2 = [], and m1 = h1 :: t2,
from which we can derive a contradiction.

It remains to prove (B.4). To do so, we apply ABS twice and then NATCASE-R, which
has two premises:

(B.4.i) �,�, x2 ≥ |m1|, g1 = g2, m1 = h1 :: t1, m2 = h1 :: t1, x2 = 0� (g1 h1) ::
(f1 t1 g1)∼ [] | r1 � r2

(B.4.ii) �,�, x2 ≥ |m1|, g1 = g2, m1 = h1 :: t1, m2 = h1 :: t1 � (g1 h1) :: (f1 t1 g1)∼
λy2.h2 :: f2 t2 y2 |
∀y2.x2 = Sy2 ⇒ r1 � (r2 y2)

To prove (B.4.i), we derive a contradiction between the premises. From x2 = 0 and
the premise x2 ≥ |m1| we derive m1 = [] and, together with m1 = h1 :: t1 we arrive at a
contradiction by applying NC.

To prove (B.4.ii), we need to use the induction hypothesis. From m1 = h1 :: t1, m2 =
h1 :: t1, we can prove that |t1|< |m1| and |t2|< |m2|, so we can do a CUT with the i.h. and
derive:

t1 �g2 t2⇒ (∀g1.g1 = g2 ⇒∀x2.x2 ≥ |t1|⇒ (f1 t1 g1)� (f2 t2 x2))

By assumption, m1 �g2 m2, so t1 �g2 t2. Moreover, also by assumption g1 = g2, and Sy2 =
x2 ≥ |m1| = S|t1|, so y2 ≥ |t1|. So if we instantiate the i.h. with g1 and y2, and apply CUT
again, we can prove

(f1 t1 g1)� (f2 t2 y2)

On the other hand, since h1 :: t1 �g2 h2 :: t2, then (by elimination of �g2) we can derive
g1h1 = h2 and by definition of �, (g1 h1) :: (f1 t1 g1)� h2 :: (f2 t2 y2). So we can apply
Theorem 6 and prove (B.4.ii). This ends the proof.

D.4 Proof of Theorem 24

We start by proving the key property of restmin, that is,

Lemma 38. Let restmin1 and restmin2 denote two α-renamings of restmin where every
bound variable gets a subindex 1 or 2, respectively. Then,

� restmin1∼restmin2 | ∀l1l2.d(l1, l2)≤ δ⇒∀h1h2.|h1 − h2| ≤ δ⇒D(r1 l1 h1, r2 l2 h2)≤ δ

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 75

Proof. The proof is a simple synchronous derivation. We start by applying [LETREC],
which gives us the inductive hypothesis:

∀m1m2.(|m1|, |m2|)≤ (|l1|, |l2|)⇒ d(l1, l2)≤ δ⇒∀h1h2.|h1 − h2| ≤ δ⇒
D(r1 l1 h1, r2 l2 h2)≤ δ

and we apply [ABS] immediately after. Then, we do a synchronous case analysis with the
[CASE] rule. In the empty list case, we simply instantiate the premise that |a1 − a2| ≤ δ.
Since d([], [])= 0≤ δ, we can conclude that D(([], a1), ([], a2))≤ δ.

In the h :: t case, we start by applying the [LET] rule three times. On the first two, we
need to use the lemma about max and min to prove that |M1 −M2| ≤ δ and |m1 −m2| ≤ δ
and introduce them in the logical context.

On the third one, to introduce the hypothesis on (rest, min), we instantiate the inductive
hypothesis for restmin. Here, we need to prove three facts: (1) (t1, t2)≤ (l1, l2), (2) |m1 −
m2| ≤ δ and d(t1, t2)≤ δ. Numbers (1) and (3) follow from the fact that l1 = h1 :: t1 and
l2 = h2 :: t2. Number (2) follows from the let binding of m1 and m2. This introduces in the
logical context the premises d(rest1, rest2)≤ δ and |min1 −min2| ≤ δ.

Finally, we need to show that d(M1 :: rest1, M1 :: rest2)≤ δ. and that |min1 −min2| ≤
δ. The latter follows directly from the logical context, and the former follows from the
inductive definition of the distance. �

Now we need to prove for ssort′ that:

� ssort′1 ∼ ssort′2 | ∀l1l2.d(l1, l2)≤ δ⇒∀n1n2.|l1| = n1 ∧ |l2| = n2 ≤ δ
⇒ d(r1 l1 n1, r2 l2 n2)≤ δ

The derivation is entirely synchronous and routinary. The only interesting point is
instantiating the lemma above for restmin. This concludes the proof of the theorem.

D.5 Proof of Theorem 26

We need two straightforward lemmas in UHOL. The lemmas state that sorting preserves
the length and minimum element of a list.

Lemma 39. Let τ � listN→ listN. Then, (1) • | • � insert : N→ τ | ∀x l. |π1(r x l)| = 1+
|l|, and (2) • | • � isort : τ | ∀x. |π1(r x)| = |x|.

Lemma 40. Let τ � listN→ listN. Then, (1) • | • � insert : N→ τ | ∀x l. lmin(π1(r x l))=
min(x, lmin(l)), and (2) • | • � isort : τ | ∀x. lmin(π1(r x))= lmin(x).

Proof. [Proof of Theorem 26] We prove the theorem using LETREC. We actually show
the following stronger theorem, which yields a stronger induction hypothesis in the proof.

• | • � isort : τ ∼ isort : τ | ∀x1 x2. (sorted(x1)∧ |x1| = |x2|)⇒
(π2(r1 x1)≤ π2(r2 x2))∧ (r1 x1 = isort x1)∧ (r2 x2 = isort x2)

Let ι denote the inductive hypothesis:

ι� ∀m1 m2. (|m1|, |m2|)< (|x1|, |x2|)⇒ (sorted(m1)∧ |m1| = |m2|)
⇒ π2(isort1 m1)≤ π2(isort2 m2)∧
(isort1 m1 = isort m1)∧ (isort2 m2 = isort m2)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

76 A. Aguirre et al.

and e denote the body of the function isort:

e � case l of [] �→ ([], 0);
_ :: _ �→ λh t. let s= isort t

let s′ = insert h (π1 s) in
(π1 s′, (π2 s)+ (π2 s′))

By LETREC, it suffices to prove the following (we omit simple types for easier reading;
they play no essential role in the proof).

isort1, isort2, x1, x2 | sorted(x1), |x1| = |x2|, ι�

e[isort1/isort][x1/l]∼ e[isort2/isort][x2/l] |
⎛
⎝π2 r1 ≤ π2 r2

∧ r1 = isort x1

∧ r2 = isort x2

⎞
⎠

Following the structure of e, we next apply the rule LISTCASE. This yields the follow-
ing two main proof obligations, corresponding to the two case branches (the third proof
obligation, x1 = []⇔ x2 = [] follows immediately from the assumption |x1| = |x2|).

isort1, isort2, x1, x2 | sorted(x1), |x1| = |x2|, ι, x1 = x2 = []� ([], 0)∼ ([], 0) |
(π2 r1 ≤ π2 r2)∧ (r1 = isort x1)∧ (r2 = isort x2)

(D3)

isort1, isort2, x1, x2, h1, t1, h2, t2 | sorted(x1), |x1| = |x2|, ι, x1 = h1 :: t1, x2 = h2 :: t2 �
let s= isort1 t1
let s′ = insert h1 (π1 s) in
(π1 s′, (π2 s)+ (π2 s′))

∼
let s= isort2 t2
let s′ = insert h2 (π1 s) in
(π1 s′, (π2 s)+ (π2 s′))

∣∣∣∣
π2 r1 ≤ π2 r2

∧ r1 = isort x1

∧ r2 = isort x2

(D4)
Equation (D3) is immediate: By Theorem 6, it suffices to show that (π2([], 0)≤

π2([], 0))∧ (([], 0)= isort x1)∧ (([], 0)= isort x2). Since x1 = x2 = [] by assumption here,
this is equivalent to (π2([], 0)≤ π2([], 0))∧ (([], 0)= isort [])∧ (([], 0)= isort []), which
is trivial by direct computation.

To prove (D4), we expand the outermost occurrences of let in both to function applica-
tions using the definition let x= e1 in e2 � (λx.e2) e1. Applying the rules APP and ABS, it
suffices to prove the following for any φ of our choice.

isort1, isort2, x1, x2, h1, t1, h2, t2 | sorted(x1), |x1| = |x2|, ι, x1 = h1 :: t1, x2 = h2 :: t2 �
isort1 t1 ∼ isort2 t2| φ (D5)

isort1, isort2, x1, x2, h1, t1, h2, t2, s1, s2 |
sorted(x1), |x1| = |x2|, ι, x1 = h1 :: t1, x2 = h2 :: t2φ[s1/r1][s2/r2]�

let s′ = insert h1 (π1 s1) in
(π1 s′, (π2 s1)+ (π2 s′))

∼ let s′ = insert h2 (π1 s2) in
(π1 s′, (π2 s2)+ (π2 s′))

∣∣∣∣
π2 r1 ≤ π2 r2

∧ r1 = isort x1

∧ r2 = isort x2

(D6)

We choose φ as follows:

φ � π2 r1 ≤ π2 r2∧r1 = isort(t1)∧r2 = isort(t2)∧|π1 r1| = |π1 r2|∧lmin(t1)= lmin(π1 r1)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 77

Proof of (D5): By Theorem 6, it suffices to prove the following five statements in HOL
under the context of (D5). These statements correspond to the five conjuncts of φ.

π2(isort1 t1)≤ π2(isort2 t2) (D7)

isort1 t1 = isort t1 (D8)

isort1 t2 = isort t2 (D9)

|π1(isort1 t1)| = |π1(isort2 t2)| (D10)

lmin(t1)= lmin(π1(isort1 t1)) (D11)

Equations (D7)–(D9) follow from the induction hypothesis ι instantiated with m1 :=
t1, m2 := t2. Note that because x1 = h1 :: t1 and x2 = h2 :: t2, we can prove (in HOL) that
(|t1|, |t2|)< (|x1|, |x2|). Since, |x1| = |x2|, x1 = h1 :: t1 and x2 = h2 :: t2, we can also prove
that |t1| = |t2|. Finally, from the axiomatic definition of sorted and the assumption
sorted(x1) it follows that sorted(t1). These together allow us to instantiate the i.h. ι and
immediately derive (D7)–(D9).

To prove (D10), we use (D8) and (D9), which reduces (D10) to |π1(isort t1)| =
|π1(isort t2)|. To prove this, we apply Theorem 3 to Lemma 39, yielding ∀x. |π1(isort x)| =
|x|. Hence, we can further reduce our goal to proving |t1| = |t2|, which we already did
above.

To prove (D11), we use (D8), which reduces (D11) to lmin(t1)= lmin(π1(isort t1)). This
follows immediately from Theorem 3 applied to Lemma 40.
This proves (D5).

Proof of (D6): We expand the definition of let and apply the rules APP and ABS to reduce
(D6) to proving the following for any φ′.

isort1, isort2, x1, x2, h1, t1, h2, t2, s1, s2 |
sorted(x1), |x1| = |x2|, ι, x1 = h1 :: t1, x2 = h2 :: t2, φ[s1/r1][s2/r2]�
insert h1 (π1 s1)∼ insert h2 (π1 s2) | φ′

(D12)

isort1, isort2, x1, x2, h1, t1, h2, t2, s1, s2, s′1, s′2 |
sorted(x1), |x1| = |x2|, ι, x1 = h1 :: t1, x2 = h2 :: t2φ[s1/r1][s2/r2], φ′[s′1/r1][s′2/r2]�

(π1 s′1, (π2 s1)+ (π2 s′1))∼ (π1 s′2, (π2 s2)+ (π2 s′2))

∣∣∣∣
π2 r1 ≤ π2 r2

∧ r1 = isort x1

∧ r2 = isort x2

(D13)
We pick the following φ′:

φ′ � π2 r1 ≤ π2 r2 ∧ r1 = insert h1 (π1 s1)∧ r2 = insert h2 (π1 s2)

Proof of (D12): We start by applying Theorem 6. This yields three subgoals in HOL,
corresponding to the three conjuncts in φ′:

π2(insert h1 (π1 s1))≤ π2(insert h2 (π1 s2)) (D14)

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

78 A. Aguirre et al.

insert h1 (π1 s1)= insert h1 (π1 s1) (D15)

insert h2 (π1 s2)= insert h2 (π1 s2) (D16)

Equations (D15) and (D16) are trivial, so we only have to prove (D14). Since s1 =
isort t1 and s2 = isort t2 are conjuncts in the assumption φ[s1/r1][s2/r2], (D14) is
equivalent to:

π2(insert h1 (π1(isort t1)))≤ π2(insert h2 (π1(isort t2))) (D17)

To prove this, we split cases on the shapes of π1(isort t1) and π1(isort t2). From the con-
juncts in φ[s1/r1][s2/r2], it follows immediately that |π1(isort t1)| = |π1(isort t2)|. Hence,
only two cases apply:
Case: π1(isort t1) = π1(isort t2) = []. In this case, by direct computation, π2(insert
h1 (π1(isort t1))) = π2(insert h1 []) = π2([h1], 0) = 0. Similarly, and π2(insert h2

(π1(isort t2)))= 0. So, the result follows trivially.
Case: π1(isort t1)= h′1 :: t′1 and π1(isort t2)= h′2 :: t′2. We first argue that h1 ≤ h′1.
Note that from the second and fifth conjuncts in φ[s1/r1][s2/r2], it follows that
lmin(t1)= lmin(π1(isort t1)). Since π1(isort t1)= h′1 :: t′1, we further get lmin(t1)=
lmin(π1(isort t1))= lmin(h′1 :: t′1)=min(h′1, lmin(t′1))≤ h′1. Finally, from the axiomatic
definition of sorted(x1) and x1 = h1 :: t1, we derive h1 ≤ lmin(t1). Combining, we get
h1 ≤ lmin(t1)≤ h′1.

Next, π2(insert h1 (π1(isort t1)))= π2(insert h1 (h′1 :: t′1)). Expanding the defini-
tion of insert and using h1 ≤ h′1, we immediately get π2(insert h1 (π1(isort t1)))=
π2(insert h1 (h′1 :: t′1))= π2(h1 :: h′1 :: t′1, 1)= 1. On the other hand, it is fairly easy to
prove (by case analyzing the result of h2 ≤ h′2) that π2(insert h2 (π1(isort t2)))=
π2(insert h2 (h′2 :: t′2))≥ 1. Hence, π2(insert h1 (π1(isort t1)))= 1≤ π2(insert h2(π1

(isort t2))).
This proves (D17) and, hence, (D14) and (D12).

Proof of (D13): By Theorem 6, it suffices to show the following in HOL, under the
assumptions of (D13):

π2(π1 s′1, (π2 s1)+ (π2 s′1))≤ π2(π1 s′2, (π2 s2)+ (π2 s′2)) (D18)

(π1 s′1, (π2 s1)+ (π2 s′1))= isort x1 (D19)

(π1 s′2, (π2 s2)+ (π2 s′2))= isort x2 (D20)

By computation, (D18) is equivalent to (π2 s1)+ (π2 s′1)≤ (π2 s2)+ (π2 s′2). Using
the definition of φ, it is easy to see that π2 s1 ≤ π2 s2 is a conjunct in the assumption
φ[s1/r1][s2/r2]. Similarly, using the definition of φ′, π2 s′1 ≤ π2 s′2 is a conjunct in the
assumption φ′[s′1/r1][s′2/r2]. Equation (D18) follows immediately from these.

To prove (D19), note that since x1 = h1 :: t1, expanding the definition of isort, we get

isort x1 = (π1(insert h1 (π1(isort t1))), π2(isort t1)+ π2(insert h1 (π1(isort t1))))

Matching with the left side of (D19), it suffices to show that s′1 = insert h1 (π1(isort t1))
and s1 = isort t1. These are immediate: s1 = isort t1 is a conjunct in the assumption

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 79

φ[s1/r1][s2/r2], while s′1 = insert h1 (π1(isort t1)) follows trivially from this and the
conjunct s′1 = insert h1 (π1 s1) in φ′[s′1/r1][s′2/r2]. This proves (D19).

The proof of (D20) is similar to that of (D19).
This proves (D13) and, hence, (D6). �

Appendix E: Full RHOL rules

The full set of RHOL rules is in the following figures:

Fig. E.1. Core two-sided rules.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

80 A. Aguirre et al.

Fig. E.2. One-sided rules.

Fig. E.3. Core one-sided rules.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 81

Fig. E.4. Synchronous case rules.

Fig. E.5. One-sided case rules.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

82 A. Aguirre et al.

Fig. E.6. Asynchronous case rules (selected).

Fig. E.7. Alternative case rules.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

Relational logic for higher-order programs 83

Fig. E.8. Recursion rules.

https://doi.org/10.1017/S0956796819000145 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000145

	Nonlinear parameter estimation of airship using modular neural network
	INTRODUCTION
	MATHEMATICAL MODEL
	Equations of motion
	Aerodynamic model

	GENERATION OF SIMULATED FLIGHT DATA
	PARAMETER ESTIMATION METHOD
	Modular neural network
	Training of network
	Estimation of longitudinal parameters
	Estimation of lateral parameters

	RESULTS AND DISCUSSIONS
	CONCLUSIONS
	Geometric and other data for the considered airship
	Centrally pivoted five-point algorithm
	Constraints in actuator dynamics

