
Compositio Math. 140 (2004) 613–630
DOI: 10.1112/S0010437X03000848

Double Dirichlet series over function fields

Benji Fisher and Solomon Friedberg

Abstract

We construct a finite-dimensional vector space of functions of two complex variables
attached to a smooth algebraic curve C over a finite field Fq, q odd, and a level. These func-
tions collect the analytic information about the cohomology of the curve and its quadratic
twists that is encoded in the corresponding L-functions; they are double Dirichlet series
in two independent complex variables s and w. We prove that these series satisfy a finite,
non-abelian group of functional equations in the two complex variables (s,w) and are
rational functions in q−s and q−w with a specified denominator. The group is D6, the
dihedral group of order 12.

Introduction

The aim of this paper is to exhibit a new, natural, finite-dimensional vector space of functions of two
complex variables attached to a smooth algebraic curve C over a finite field Fq, q odd, and a level (in
a sense to be defined below). These functions collect the analytic information about the cohomology
of the curve and its quadratic twists that is encoded in the corresponding L-functions. The functions
are double Dirichlet series in two independent complex variables s and w. We prove that these series
satisfy a finite, non-abelian group of functional equations in the two complex variables (s,w) and
are rational functions in q−s and q−w with a specified denominator. The group is in fact D6, the
dihedral group of order 12.

Let C be a smooth projective curve over a finite field Fq, q odd. Let K be the function field
of C. Suppose that Fq is algebraically closed in K. We obtain the rational functions mentioned
above by studying the family of quadratic twists of an arbitrary GL(1) (Hecke) L-function L(s, ρ1)
defined over K. To study this family, we attach to each effective divisor D on C, prime to a fixed
sufficiently large finite set S of places, a quadratic character χD. Consistent with class field theory,
this map is necessarily not canonical, but depends on choices of representatives for a certain ray
class group modulo squares. Then we introduce a second complex variable w and form the sum of
L-series (initially defined for Re(s),Re(w) > 1)

Z(s,w; ρ1, ρ2) =
∑

0�D∈Div(C−S)

L(s, ρ1χD) a(s, ρ1,D) ρ2(D)
|D|w . (0.1)

Here L(s, ρ1χD) is the twisted L-function with the primes in S and in the conductor of χD removed;
the sum is over effective divisors D of C prime to S; |D|w = q(deg D)w; ρ2 is another Hecke character;
and the ‘correction factor’ a(s, ρ1,D) is a polynomial in q−s that is 1 if D is square-free, i.e. if
ordv(D) � 1 for all places v of C. This correction factor arises in the calculation of the Fourier
coefficients of Eisenstein series on the double cover of GL(2); its role in our arguments will be

Received 9 November 2001, accepted in final form 17 September 2002.
2000 Mathematics Subject Classification 11M38 (primary), 11G20, 11L05, 11L07, 11R47, 11R58, 14H05 (secondary).
Keywords: algebraic curve, L-function, quadratic twist, rational function, sum of L-functions.

Research supported by NSF grant DMS-9970118 (Friedberg).
This journal is c© Foundation Compositio Mathematica 2004.

https://doi.org/10.1112/S0010437X03000848 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X03000848


B. Fisher and S. Friedberg

described below. For a complete definition see § 1 below. Note that we use |D| for what is sometimes
denoted N(D).

The sum of L-functions may also be expressed as a double Dirichlet series. We shall show in
Lemma 3.1 that

Z(s,w; ρ1, ρ2) = L(2s + 2w − 1, ρ1
2ρ2

2)
∑

D1,D2

ρ1(D1)ρ2(D2)
|D1|s|D2|w χD2(D1), (0.2)

where the sum is over disjoint, effective divisors in Div(C − S), and the L-function once again has
the Euler factors in S removed.

Recall that the partial zeta-function of a curve is of the form ζK,S(s) = P (q−s)/(1− q1−s); here
the polynomial P is given by the characteristic polynomial of Frobenius acting on a first cohomology
and ‘partial’ indicates that we have removed the Euler factors corresponding to the places in S.
A non-trivial GL(1) partial L-function L(s, ρ1) is similarly a polynomial in q−s. In studying such
L-functions, it is common to restrict to quasicharacters ρ1 that factor through the idèles of norm 1
(see [Wei74, p. 134]), since more general quasicharacters give shifts of these L-functions. In our
work, however, it is helpful to weaken this restriction slightly, considering these functions with a
shift in s that corresponds to replacing q−s by ωq−s where ω is an nth root of unity, for some fixed
positive even n. We consider the vector space spanned by such L-functions as one varies ρ1 and ρ2

with fixed level F . This finite-dimensional vector space V (F, n) does not depend on the choices of
representatives used to define χD above: it is canonical (Proposition 1.2); see also Remark 1.3 for
a definition of V (F, n) which does not depend on choices. Then we show the main theorem of this
paper (Theorem 4.1 below).

Theorem. Let Z(s,w) be in V (F, n). Then Z(s,w) has meromorphic continuation to all (s,w) in
C2 and is a rational function in q−s and q−w. In fact,

(1 − qn(1−s))(1 − qn(1−w))(1 − qn(3/2−s−w))Z(s,w)

is a polynomial of degree at most 2 deg(F ) + 2n + 4g − 4 in each of q−s and q−w, where g is the
genus of C.

Let us outline the proof. The meromorphic continuation is obtained by establishing two sepa-
rate functional equations for the double Dirichlet series in V (F, n). The first functional equation
(Theorem 2.6) sends (s,w) → (1 − s, s + w − 1

2). This is obtained from the functional equations
for the L-functions in the numerators in the sum (0.1). The main ingredient here is control of the
epsilon-factors that arise in such a functional equation (Lemma 2.2). (Since the numerators have
analytic continuations, this also enlarges the region on which Z(s,w) is defined.) The second func-
tional equation sends (s,w) → (w, s). This is obtained by an interchange of summation and by
using quadratic reciprocity; compare (0.2). In essence this second functional equation states that
the double Dirichlet series, originally a sum of Euler products in s with functional equation, is also a
sum of Euler products in w with functional equation! This is not true unless one modifies the L-series
slightly; this is the role of the factors a(s, ρ1,D) introduced above. In fact, Bump, Friedberg, and
Hoffstein [BFH04] have shown that the correction factors a(s, ρ1,D) are uniquely determined by this
condition. Once we have these functional equations, we use them to obtain continuation to a larger
region whose convex hull is all of C2. Then invoking the convexity principle for tube domains, the
meromorphicity follows. The rationality then follows by a variation on the one-variable argument.

There is a subtle point here: In order to achieve the symmetry (s,w) → (w, s), we must define
a quadratic character χD of Div(C) for each divisor D of C prime to S; however, such quadratic
characters correspond naturally to elements a ∈ K×/(K×)2 (they are given by the quadratic residue
symbols). Thus this difficulty is analogous to extending results in algebraic number theory from
class number one number fields to the general case. In the present situation, though the individual
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L-functions are obtained from adelic objects, Z(s,w) is an infinite sum of such, and such a difficulty
appears intrinsic to the situation. We solve this problem by choosing a coset representative and a
quadratic character for each element of the ray class group modulo squares. With these choices, we
can define χD for all D (see Equation (1.1) and Lemma 1.1 below for details). As mentioned above,
though an individual sum of the form (0.1) depends on these choices, the span of such sums for
fixed level does not.

As a consequence of the main theorem above, one can control the size of sums of L-functions,
simply by studying the coefficients of the resulting rational function. For example, fix a congruence
class j mod n. We show in Proposition 5.1 that for each pair (ρ1, ρ2) as above there are certain
rational functions Cj(s), Dj(s) in q−s, determined from Z(s,w; ρ1, ρ2), such that for R ≡ j mod n,
R � 0, ∑

0�D∈Div(C−S)
deg(D)=R

L(s, ρ1χD)a(s, ρ1,D)ρ2(D) = Cj(s)qR + Dj(s)(q3/2−s)R.

In particular, for Re(s) > 1/2 the sum of L-functions times correction factors grows like Cj(s)qR as
R → ∞ in the arithmetic progression R ≡ j mod n, provided Cj(s) �= 0.

Let us put this work in context. In the rational number field case, Siegel [Sie56] observed that
a sum of quadratic L-functions, which is roughly of the form

∑
L(z, χm)a(s,m)|m|−s, may be

obtained by taking the Mellin transform of a truncated half-integral weight Eisenstein series in s.
In fact, Siegel writes that this series is

eine meromorphe Funktion der zwei Veränderlichen s, z, welche für z = 0 in ζ(s) übergeht
und sowohl in s als auch in z je einer Funktionalgleichung genügt.

The present paper may be regarded as further development of this viewpoint; see also Bump,
Friedberg, and Hoffstein [BFH96]. In a pair of important papers, Goldfeld and Hoffstein [GH85]
and Goldfeld, Hoffstein, and Patterson [GHP82] used the theory of half-integral weight Eisenstein
series over the rationals (respectively over a totally imaginary number field of class number one)
along with sieve methods and the study of hypergeometric functions to estimate the average of
twisted L-values over fundamental discriminants. In the number field case we know of no work
estimating the analogous sum for a general number field. However, the present paper indicates the
natural way to formulate this problem for arbitrary class number, and either metaplectic Eisenstein
series or the methods of this paper could be used to give such estimates.

Sums of quadratic twists of the zeta-function for the rational function field K = Fq(T ) with q ≡
1 mod 4 were considered by Hoffstein and Rosen [HR92], once again using the theory of metaplectic
Eisenstein series. For this situation, all relevant epsilon-factors are 1; see Remark 2.1. However,
they stopped short of showing that the series so obtained is a rational function in two variables.
(In fact, their method produced extraneous poles; compare their Proposition 4.1 to the calculation
in § 6 below.) The Mellin transform of one metaplectic Eisenstein series for such K was noted
to be rational in [Hof93]. As outlined above, our methods are different: we construct the group
of functional equations directly, avoiding the use of metaplectic Eisenstein series. In our work,
the functional equation obtained in [HR92, Hof93] by the Mellin transform and the automorphic
properties of the Eisenstein series is a consequence of a functional equation obtained simply by an
interchange of the order of summation. More precisely, the methods based on metaplectic Eisenstein
series give a group of four functional equations which is a subgroup of the group of 12 functional
equations we present here (see [Hof93, pp. 84–85]). The method of generating functional equations
for double Dirichlet series by an interchange of summation was introduced in [BFH96, pp. 167–168].
The approach outlined there may be used to establish a subgroup of six functional equations in our
instance, but does not give the symmetry (s,w) → (w, s).
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It would be interesting to have an intrinsic geometric interpretation for the series Z(s,w), but
the approaches to date are analytic and do not yield this. Also, as Goldfeld and Hoffstein already
suggest for the number field case [GH85], it is natural to look at twists of higher-rank objects.
See Bump, Friedberg, and Hoffstein [BFH90a, BFH90b, BFH96, FH95] for some results and a
further development of this theme. Analogously to the results in this paper, one expects sums of the
quadratic twists L(s, π ⊗ χD) in the function field case to be rational functions for π automorphic
on GL(r), r � 3. We will present such results separately (there is an extra symmetry which we
establish in the present case that is not available in the others; note that the correction factors for
GL(3) have only recently been written down [BFH04]). Included here are sums involving more than
two variables, provided the total degree of the L-functions being summed is at most 3. Higher-order
twists can probably also be summed to give rational functions, at least for rank 1 (nth-order twists)
and rank 2 (cubic twists), cf. [FHL03, Lie94].

The remainder of this paper is organized as follows. Section 1 introduces the notation and defines
the vector space of double sums we are considering. This vector space is also shown to be canonical.
Section 2 gives the first functional equation, Theorem 2.6, and § 3 the second, Theorem 3.3. Section 4
gives the proof of the main result, Theorem 4.1. In § 5 we use this to estimate the size of sums of
L-functions. Finally, § 6 presents two examples: we compute the sums explicitly in low level when
C = P

1 and when C is the elliptic curve y2 = x3 − x − 1 over F3.

1. Definition of the double Dirichlet series

Throughout the remainder of this paper, let C be a smooth projective curve over a finite field Fq,
q odd. Let K be the function field of C, and assume that Fq is algebraically closed in K.

The double Dirichlet series is a sum of GL(1) automorphic L-series. Let us recast these objects
in the language of divisors. Let Div(C) be the group of Fq-rational divisors on C, deg the degree
map deg : Div(C) → Z, Div0(C) the divisors of degree 0, DivP (C) the subgroup of Div0(C)
consisting of the principal divisors (f), f ∈ K×, Pic(C) = Div(C)/DivP (C) the Picard group, and
Pic0(C) = Div0(C)/DivP (C). Given a finite or cofinite set of places T of K, we write Div(T ) for
the subgroup of divisors whose support is contained in T . Similarly we introduce the subgroups
Div0(T ) and DivP (T ).

Let S ⊆ C be a finite set of places of K such that Div(S) represents all classes in Pic(C). (For
example, if C = P

1 then S may be any set containing a place of degree 1.) Let F =
∑

v∈S nvv be
an effective divisor, with nv � 1 for all v ∈ S. The divisor F will play the role of conductor. Let
DivP,F (C − S) be the subgroup of principal divisors (f) with f ∈ K× congruent to 1 modulo F ;
that is, ordv(f − 1) � nv for all places v ∈ S. Let PicF (C) = Div(C − S)/DivP,F (C − S) be the
ray class group modulo F and PicF,0(C) = Div0(C − S)/DivP,F (C − S) be the degree 0 subgroup.
Choose a divisor B1 ∈ Div(C − S) of degree 1 and a positive integer n. Then we define

X(F, n) = Div(C − S)/〈nB1〉 + DivP,F (C − S).

This is a finite group. Let ρ be a character of X(F, n). Then in an obvious way ρ corresponds to a
pair: a character on PicF,0(C) and a value ρ(B1) = ω, where ω is an nth root of unity. Since ρ is
trivial on DivP,F (C − S) one says that ρ has conductor F ; the exact conductor Fρ is by definition
the smallest divisor Fρ � F such that ρ is trivial on DivP,Fρ(C − S). If Fρ = F then ρ is primitive.

Let T be a finite set of places of C; almost always, we will take T ⊇ S. Let ρ be an automorphic
character of Div(C − T ), so that the conductor Fρ is supported on T . We define the L-series

L(s, ρ;C − T ) =
∏
v/∈T

(1 − ρ(v)|v|−s)−1,
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where |v| is the norm of the prime corresponding to v. Extend | · | multiplicatively to effective
divisors. Then the Euler product is also a sum over effective divisors:

L(s, ρ;C − T ) =
∑

0�D∈Div(C−T )

ρ(D)|D|−s.

The above expressions are valid for Re(s) > 1. By the theory of GL(1) L-functions, these series have
analytic continuation and functional equation; see for example [Wei74] or [Mor91]. (Note that our
partial L-function L(s, ρ;C −T ) differs from the complete L-function by at most a finite number of
Euler factors.) In particular, if ρ is not trivial on Div0(C − T ) then L(s, ρ;C − T ) is entire [Wei74,
ch. VII, Theorem 6], while if ρ is trivial on Div0(C − T ) and ρ(B1) = ω (so ρ(D) = ωdeg(D)) then
(1 − ωq1−s)L(s, ρ;C − T ) is entire. (See [Wei74, ch. VII, Theorem 4]. Note that in this situation
L(s, ρ;C − T ) = ζK,T (s − logq(ω)), where ζK,T denotes the zeta-function with the Euler factors at
places in T removed.) Also, if ρ is a character of X(F, n), and χ is any Hecke character, whose
conductor has support Sχ, we shall form the twisted L-function L(s, ρχ;C − S − Sχ). We do not
assume that the exact conductor of ρχ has support S ∪ Sχ; it may be smaller.

In this paper we wish to consider a sum of such twisted L-series, the twists given by quadratic
characters. These characters correspond naturally to classes of K×/(K×)2. It is well known how
to write such a sum in the case of trivial Picard group Pic(C) ∼= Z (‘class number 1’); compare
[HR92]. To do so in the case of non-trivial Picard group, we first choose certain representatives
essentially parametrizing the divisor classes modulo squares; then the remaining divisor classes are
parametrized by a similar set of field elements. Alternatively, one may describe the construction
below as allowing twisting by the (not-necessarily-quadratic) characters obtained by extending the
natural quadratic character on principal divisors up to the full group of divisors, then summing
these objects, the extensions chosen compatibly so that the sum satisfies functional equations: see
Remark 1.3 below. Though the divisor class representatives and extensions are not canonical, the
vector space of twisted sums is finite-dimensional, and is canonical. We proceed as follows.

For m ∈ K× and D ∈ Div(C), let (m
D ) be the usual quadratic residue symbol(m

D

)
=

∏
v,ordv(m)=0

(m

v

)ordv(D)
,

where the right-hand side is a product of standard Legendre symbols (cf. [CF67, Exercise 1]). Let
χm denote the character associated to K(

√
m)/K by class field theory: χm(D) = (m

D ) if D is
disjoint from (m), and χm((n)) = 1 if n ≡ 1 modulo the square-free part of (m). Choose a set
E ⊆ Div�0(C − S) of coset representatives for the quotient

Div(C − S)/2Div(C − S) + DivP,F (C − S) ∼= PicF (C) ⊗ Z/2Z.

(We shall simply identify these two groups from now on.) Also, for each E ∈ E choose mE so that
E − (mE) ∈ Div(S).

Let D = E + (m) + 2G ∈ Div(C − S), with E ∈ E , G ∈ Div(C − S) and m ≡ 1 (mod F ).
Let mD = mmE and define

χD = χmD
. (1.1)

(For convenience, we assume that 0 ∈ E and that m0 = 1, so that χ(m) is the same as χm if m ≡ 1
(mod F ).) Then χD is well defined, according to the following lemma.

Lemma 1.1. Let D ∈ Div(C − S). Write

D = E + (m) + 2G

with E ∈ E , G ∈ Div(C−S), and m ≡ 1 (mod F ). If D = E′+(m′)+2G′ is another such expression
then E′ = E and m′/m ∈ (K×)2.
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Proof. Let E ∈ E be the coset representative corresponding to D. Then we may write D = E +
(m) + 2G as above. If D = E′ + (m′) + 2G′, then since E is a set of coset representatives, E = E′.
Let n = m′/m and let S1 denote the support of the divisor G − G′, so that (n) = 2(G − G′) ∈
DivP,F (C − S) ∩ 2Div(S1). Then χn(H) = 1 for all H ∈ Div(S) since n ≡ 1 (mod F ), while
χn((n′)) = χ(n)((n′)) = 1 by quadratic reciprocity for all (n′) ∈ DivP (C −S1) since (n) ∈ 2Div(S1).
It follows that by quadratic reciprocity χn(H) = 1 for all H ∈ Div(S)+DivP (C−S1) = Div(C−S1),
whence n is a square by class field theory.

Note that χD depends on the choice of mE but not on the choice of m, thanks to Lemma 1.1.
Also, if D0 ∈ Div(C − S), then χD+2D0 = χD. It is these quadratic characters that we shall sum in
the double Dirichlet series.

Next let us define the correction factor, which must multiply the L-functions in the double sum.
Fix F and n as above (these will play the role of conductor), and let ρ be a character of X(F, n).
Let µ be the Möbius function on Div(C). Let 0 � D ∈ Div(C − S), and let SD denote the support
of the conductor of χD. Define the finite sum

a(s, ρ,D) =
∑

0�d1∈Div(C−S−SD)
0�d2∈Div(C−S)

2(d1+d2)�D

µ(d1)χD(d1)ρ(d1 + 2d2)|d1|−s|d2|1−2s. (1.2)

In the rational function field case, this function arises in the Whittaker expansion of the metaplectic
Eisenstein series. Also define

L(s, ρ,D) = L(s, ρχD;C − S − SD)a(s, ρ,D). (1.3)

Finally, we define the double Dirichlet series of concern to us in this paper. Let ρ1 and ρ2 be
characters of X(F, n). Define

Z(s,w; ρ1, ρ2) =
∑

0�D∈Div(C−S)

ρ2(D)L(s, ρ1,D)|D|−w. (1.4)

It is not difficult to check that the series converges absolutely in the tube domain Re(s) > 1,
Re(w) > 1. Note that the definition of the characters χD depends on the choice of the representatives
E ⊆ Div(C−S), and the field elements mE , E ∈ E . Accordingly, this sum of L-functions also depends
on these choices. The definition also makes use of a degree 1 divisor B1 ∈ Div(C − S). However,
varying over characters ρ1, ρ2 gives a finite-dimensional vector space, which depends only on F
and n. That is, the following proposition holds.

Proposition 1.2. Let n be even and let V (F, n) be the span of Z(s,w; ρ1, ρ2) for ρ1, ρ2 ∈ X̂(F, n).
Then V (F, n) is a finite-dimensional vector space of functions, which is independent of the choices
of the representatives E and the field elements mE, E ∈ E . If in addition the exponent of the group
PicF,0(C) divides n then the vector space is independent of the choice of the degree 1 divisor B1.

We give the proof of this proposition in the next paragraph, but first it is convenient to extend the
notation to linear combinations of characters. That is, let R(F, n) be the vector space of functions
on X(F, n) with values in C. Since X(F, n) is a finite abelian group, its characters form a basis of
R(F, n). If σj ∈ R(F, n), j = 1, 2 and σj =

∑
ci,jρi with the ρi characters of X(F, n) and ci,j ∈ C,

then define

Z(s,w;σ1, σ2) =
∑
i1,i2

ci1,1ci2,2Z(s,w; ρi1 , ρi2). (1.5)

In particular, for x ∈ X(F, n), let δx denote the function on Div(C − S) given by δx(D) = 1 if the
class of D in X(F, n) is x, δx(D) = 0 otherwise. Then the δx, for x ∈ X(F, n), give another basis of
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R(F, n), and Z(s,w; ρ, δx) is a partial Dirichlet series, the sum over all effective divisors of the form
D = E + (m) + njB1 with m ≡ 1 (mod F ) and j an integer, where E is a fixed representative of x.

Proof of Proposition 1.2. Let n be even. Then the vector space V (F, n) is spanned by the partial
sums

Z(s,w; ρ, δx) =
∑

L(s, ρ,D)|D|−w, (1.6)

x ∈ X(F, n), where the sum is over D as in (1.4) with the additional condition that D projects
to x in X(F, n). Let us consider the effect of changing the choices on these sums. Since n is even
there is a natural projection from X(F, n) to PicF (C) ⊗ Z/2Z. Let E ∈ E be the representative for
the class of x. First, suppose that E − (m′

E) ∈ Div(S) and one chooses m′
E in place of mE in this

construction. In view of (1.1), (1.2), and (1.3), it follows that each character χD in the sum (1.6) is
replaced by χDχm′

E/mE
. Thus with this choice, the sum (1.6) is replaced by Z(s,w; ρχm′

E/mE
, δx).

Since (m′
E/mE) ∈ Div(S), the character χm′

E/mE
∈ X̂(F, 2). Thus the span of the new sums is

identical to the span of the original ones.
Next we turn to the choice of representatives. Suppose that D,E,E′ are in the same class in

PicF (C) ⊗ Z/2Z. Let us compare the character χD obtained by using E as a representative to
the character obtained using E′. Write E′ = E + (m′) + 2G′ as in Lemma 1.1, and further write
G′ = G0 + (m0) with G0 ∈ Div(S), m0 ∈ K×. (Here we use that Div(S) maps onto Pic(C).) Then
E′− (mEm′m2

0) = E− (mE)+2G0 ∈ Div(S). So we may choose mE′ = mEm′m2
0 (cf. the paragraph

above). Further, if D = E′ +(m)+2G as in Lemma 1.1, then D = E +(mm′)+2(G+G′). Thus the
character χD using E as representative gives χmm′mE

while using E′ as representative we obtain
χmmE′ = χmmEm′m2

0
. These are equal, and the independence follows.

Finally, suppose that n is divisible by the exponent of PicF,0(C). If B′
1 is another degree 1 divisor,

then B′
1 − B1 ∈ Div0(C − S). Under this divisibility hypothesis, n(B′

1 − B1) projects to the trivial
class in PicF (C). It follows that 〈nB1〉+ DivP,F (C −S) = 〈nB′

1〉+ DivP,F (C −S). Thus X(F, n) is
independent of the choice of B1. (See also Remark 1.5 below.)

Remark 1.3. Associating quadratic characters χD to divisors D in this way is in fact equivalent to
choosing a compatible system of extensions of quadratic characters defined on principal divisors
to the full divisor group. This allows one to give a canonical definition of the vector space V (F, n),
as follows.

Let D ∈ Div(C − S). For this remark only, let SD denote the support of the square-free part
of D. Then the standard quadratic symbol gives a character of DivP,F (C − S − SD) which we shall
denote λD. That is, if m ∈ K×, m ≡ 1 mod F , then define λD((m)) = (m

D ). It is not difficult to check
that λD is the restriction of χD to DivP,F (C − S − SD). For each effective divisor D ∈ Div(C − S)
let λ̃D denote a Hecke character whose restriction to DivP,F (C − S − SD) matches λD. (Note that
the induced space IndDiv0(C−S−SD)

DivP,F (C−S−SD) λD naturally decomposes into a direct sum of characters each
of which extends the character λD; the Hecke characters λ̃D, restricted to the degree 0 divisors, are
precisely the characters in this induced space.) Let us say that a family of extensions λ̃ = {λ̃D}, D
ranging over the effective divisors in Div(C − S), is compatible if, whenever D = D′ + (m) + 2G
with m ≡ 1 mod F , then the extensions λ̃D, λ̃D′ satisfy

λ̃D = λ̃D′χm

on Div(C −S −SD −SD′). Then the space V (F, n) may also be described as the span of the double
Dirichlet series ∑

0�D∈Div(C−S)

ρ2(D)L(s, ρ1λ̃D;C − S − SD)a(s, ρ1λ̃D,D)|D|−w
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formed from all compatible families of extensions λ̃ and all ρ1, ρ2 ∈ X̂(F, n). This space is also
obtained from any fixed λ̃ and all ρ1, ρ2 ∈ X̂(F, n).

Remark 1.4. It is possible to make choices in such a way that χD+D′ = χD · χD′ for all D, D′ ∈
Div(C−S). To do this, choose a basis {e1, . . . , ek} of PicF (C)⊗Z/2Z. For each j, choose an effective
divisor Ej ∈ Div(C − S) representing ej , and choose mj = mEj so that Ej − (mj) ∈ Div(S). Let E
be the set of all E =

∑
j cjEj with cj ∈ {0, 1}. For each such E, choose mE =

∏
j mj

cj . With these
choices, χE+E′ = χE · χE′ whenever E, E′ ∈ E , which implies the claim.

Remark 1.5. Let σ be a character of PicF,0(C). For any nth root of unity ω, we extend σ to a
character σ(ω) of X(F, n) by declaring σ(ω)(B1) = ω. For any D ∈ Div(C − S) of degree d, we then
have σ(ω)(D) = σ(D − dB1) · ωd. Next, for j ∈ Z/nZ, define σ[j] = (1/n)

∑
ωn=1 ω−jσ(ω), so that

σ[j](D) = σ(D−dB1) if d ≡ j (mod n), and σ[j](D) = 0 if d �≡ j (mod n). We can also express σ(ω)

as
∑

j ωjσ[j]. Thus Z(s,w; ρ, σ[j]) is exactly the sum of the terms in Z(s,w; ρ, σ(1)) involving q−as−bw

with b ≡ j (mod n). Theorem 3.3 implies a similar interpretation of Z(s,w;σ[j], ρ). In particular,
the series of the form Z(s,w;σ(1), τ(1)) determine all of the Z(s,w; ρ1, ρ2).

Suppose now that n · PicF,0(C) = 0, and let B′
1 be another divisor of degree 1. If we extend

σ to σ′
(ω) by defining σ′

(ω)(B
′
1) = ω, then σ′

(ω)(D) = σ(B1 − B′
1)

deg(D) · σ(ω)(D), whence σ′
[j] =

σ(B1 − B′
1)

j · σ[j]. Thus, except for the constant factor σ(B1 − B′
1)

j , Z(s,w; ρ, σ[j]) is independent
of the choice of B1.

2. The first functional equation

The goal of this section is to derive a functional equation for the double Dirichlet series from that
of the L-functions L(s, ρ1χD;C − S − SD) that are summed in Z(s,w). This functional equation
describes the action of an element of V (F, n) under the involution (s,w) → (1 − s,w + s − 1/2).
The main ingredient here is a detailed study of the epsilon-factor for L(s, ρ1) under twisting by a
quadratic character. We begin by recalling the functional equation, especially the definition of the
epsilon-factor. A convenient reference is [Mor91, Theorem 3.4].

Let ρ be a character of exact conductor Fρ =
∑

v evv. Then the functional equation is given by

L(s, ρ;C − Fρ) = ε(ρ)|(Ω) + Fρ|1/2−sL(1 − s, ρ−1;C − Fρ), (2.1)

where (Ω) is a canonical divisor, so that |(Ω)| = q2g−2, where g is the genus of K, and ε(ρ) has
absolute value 1. The epsilon-factor may be computed as follows. Let Ω be a meromorphic differential
on C such that (Ω)+ Fρ is disjoint from Fρ and let e : Fq → C× be the standard additive character.
Define normalized local and global Gauss sums by

Gv(ρ,Ω) = q−ev deg(v)/2
∑

x∈(Ov/(πv
ev ))×

ρv(x)e(Resv(xΩ))

and
G(ρ,Ω) =

∏
v

Gv(ρ,Ω),

where the product is over v ∈ Supp(Fρ). Then

ε(ρ) = ρ((Ω) + Fρ)/G(ρ,Ω). (2.2)

(In [Mor91], conditions are imposed on Ω that determine not only the epsilon-factor but also its
numerator and denominator.)

Remark 2.1. If m ∈ K×, then the quadratic character χm has epsilon-factor ε(χm) = 1. This
property follows from (2.2), but is easier to see from the functional equation: we can express L(s, χm)
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as a ratio of zeta-functions, each of which has a functional equation with ε = 1. Note also that the
Gauss sum G(ρ) depends only on ρ restricted to principal divisors.

We shall apply the following lemma only in the case that σ and τ are quadratic characters, but
it is just as easy to prove this more general version.

Lemma 2.2. Let ρ, σ, and τ be characters of Div(C) such that the conductors Fσ/τ and Fρ have
disjoint supports. Then

ε(ρσ) = ε(ρτ) · ε(σ)/ε(τ) · ρ(Fσ − Fτ ) · (σ/τ)(Fρσ − Fσ).

Proof. Let T = Supp(Fρ+Fσ+Fτ ). In order to compute the epsilon-factors, first choose a differential
Ω and choose ξ, η ∈ K× with ξ ≡ 1 (mod Fρ) and η ≡ 1 (mod Fσ/τ ) such that

(Ω) + Fρτ , (ξ) + Fσ − Fτ , (η) + Fτ − Fρτ ∈ Div(C − T ).

As the hypothesis of disjoint supports implies that Fρσ − Fρτ = Fσ − Fτ , we may use Ω, ξΩ, ηΩ,
and ξηΩ to compute the epsilon-factors for ρτ , ρσ, τ , and σ, respectively.

We can now calculate the ratio of epsilon-factors

ε(ρσ)ε(τ)
ε(ρτ)ε(σ)

=
G(ρτ,Ω)G(σ, ξηΩ)
G(ρσ, ξΩ)G(τ, ηΩ)

· (ρσ)((ξΩ) + Fρσ)τ((ηΩ) + Fτ )
(ρτ)((Ω) + Fρτ )σ((ξηΩ) + Fσ)

. (2.3)

Writing the Gauss sums as products of local terms, the first fraction on the right-hand side of (2.3)
is 1. Since Fρσ − Fρτ = Fσ − Fτ , we can rewrite (2.3) as

ε(ρσ)ε(τ)
ε(ρτ)ε(σ)

= ρ((ξ) + Fσ − Fτ ) · (σ/τ)(−(η) + Fρσ − Fσ). (2.4)

The conditions on ξ and η imply that ρ((ξ)) = (σ/τ)((η)) = 1, so the lemma now follows from
(2.4).

Corollary 2.3. Let ρ be a character of Div(C) and let m, n ∈ K× such that m/n ≡ 1 (mod Fρ).
Then ε(ρχm) = ε(ρχn) · ρ(Fm − Fn), where Fm and Fn denote the conductors of χm and χn,
respectively.

Proof. This follows from Remark 2.1 and Lemma 2.2, taking σ = χm and τ = χn. The hypothesis
m/n ≡ 1 (mod Fρ) implies both that Fσ/τ is disjoint from Fρ and that (σ/τ)(Fρσ − Fσ) = 1.

Lemma 2.4. Let ρ be a character of X(F, n) and let D = D0 +2D1 ∈ Div(C −S), with D0, D1 � 0
and D0 square-free. Let Fρ,D denote the conductor of ρχD and Sρ,D denote the support of Fρ,D.
Then

L(s, ρ,D)
L(1 − s, ρ−1,D)

= ε(ρχD)ρ(2D1)|(Ω) + Fρ,D + 2D1|1/2−s
∏
v

1 − ρχD(v)|v|−s

1 − ρ−1χD(v)|v|s−1
,

where the product is over v ∈ S − Sρ,D, and (Ω) is a canonical divisor.

Note that |(Ω) + F + 2D1| = q2g−2+deg(F+2D1), where F = Fρ,D and g is the genus of K.

Proof. Letting SD denote the support of χD, (1.3) gives

L(s, ρ,D) = L(s, ρχD;C − S − SD)a(s, ρ,D)

= L(s, ρχD;C − Sρ,D)a(s, ρ,D)
∏
v

(1 − ρχD(v)|v|−s),
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with the product as described above. There is a simple functional equation for the correction factors.
Indeed,

a(s, ρ,D) =
∑

d1,d2,d3�0
d1∈Div(C−S−SD)

d1+d2+d3=D1

µ(d1)χD(d1)ρ(d1 + 2d2)|d1|−s|d2|1−2s

= ρ(2D1)|D1|1−2s
∑

d1,d2,d3

µ(d1)χD(d1)ρ−1(d1 + 2d3)|d1|s−1|d3|2s−1.

Thus
a(s, ρ,D) = ρ(2D1)|D1|1−2sa(1 − s, ρ−1,D).

Combining this with the functional equation (2.1) for L(s, ρχD;C − Sρ,D) gives the result.

Corollary 2.5. Let n be even and let ρ1, ρ2 be characters of X(F, n). Let

φ(s, ρ1) =

{
1 − ρ2

1(B1)q2−2s if ρ2
1 = 1 on Div0(C − S),

1 otherwise.

Then the series for φ(s, ρ1)Z(s,w; ρ1, ρ2) given via (1.4) converges absolutely and uniformly on
compacta and is uniformly bounded away from the boundary of the tube domain described by the
condition Re(w) > max{1, 3

2 − Re(s), 3
2 − 1

2 Re(s)}.
Proof. Let s = σ + it. For Re(s) > 1, it is immediate that |L(s, ρ1χD;C − S − SD)| � ζK,S(σ).
From (1.2) and (1.3) it follows that |L(s, ρ1,D)| = O(ζK,S(σ)|D|δ) for every δ > 0, the implied
constant depending only on K, and the statements of the corollary follow. Suppose next that
Re(s) < 0. Then the functional equation given by Lemma 2.4 implies that, for all δ > 0,

|L(s, ρ1,D)| = O(F (σ)ζK,S(1 − σ)|D|1/2+δ−σ),

where F (σ) is a power of q1−σ depending on the genus g and the primes in S. Once again the implied
constant depends only on K. This estimate implies the result for Re(s) < 0, Re(s + w − 1/2) > 1.
Since φ(s, ρ1)L(s, ρ1,D) is always holomorphic, applying standard convexity methods one may fill
in the region 0 � Re(s) � 1. The corollary follows.

Theorem 2.6. Assume that n is even, and let x ∈ X(F, n). Let δx denote the corresponding
characteristic function on Div(C − S): δx(D) = 1 if x is the class of D, δx(D) = 0 otherwise. Let
E ∈ E represent the class of x in X(F, n) ⊗ Z/2Z = PicF (C) ⊗ Z/2Z. Then for any character ρ of
X(F, n)

Z(s,w; ρ, δx) =
L(s, ρ,E)

L(1 − s, ρ−1, E)
· ρ(x − E)|E|s−1/2Z

(
1 − s, s + w − 1

2
; ρ−1, δx

)

on the tube domain described by the condition Re(w) > max{1, 3
2 − Re(s), 3

2 − 1
2 Re(s)}.

Proof. From the definitions (1.4) and (1.5), Z(s,w; ρ, δx) =
∑

D δx(D)L(s, ρ,D)|D|−w, where the
sum is over 0 � D ∈ Div(C −S). By Corollary 2.5, φ(s, ρ) times this series converges in the domain
we are considering. Assume that δx(D) = 1, so that D contributes to the sum. Then we can write
D = E + (m) + 2G as in Lemma 1.1, with E ∈ E as above. In particular, ρχD(v) = ρχE(v) for any
v ∈ S − Sρ,D = S − Sρ,E. Applying Lemma 2.4 to D and to E, we obtain

L(s, ρ,D)/L(1 − s, ρ−1,D)
L(s, ρ,E)/L(1 − s, ρ−1, E)

=
ε(ρχD)
ε(ρχE)

· ρ(2D1 − 2E1) · |Fρ,D − Fρ,E + 2D1 − 2E1|1/2−s,

where D = D0 + 2D1 and E = E0 + 2E1, with D0 and E0 square-free. According to Corollary 2.3,
the ratio of epsilon-factors gives ρ(FD−FE), where FD and FE denote the conductors of χD and χE,
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respectively. Since Fρ,D − Fρ,E = FD − FE = D0 − E0, we get

L(s, ρ,D)/L(1 − s, ρ−1,D)
L(s, ρ,E)/L(1 − s, ρ−1, E)

= ρ(D − E) · |D − E|1/2−s.

Now we note that ρ(D − E) = ρ(x − E), solve for L(s, ρ,D), multiply by δx(D)|D|−w, and sum
over D. The result follows.

Remark 2.7. In § 4, we shall need another form of the factors in Theorem 2.6. Let us write E =
E0 + 2E1, with E0 effective and square-free. Let F0 = Fρ,E − E0 be the part of Fρ,E supported on
S, and let F1 =

∑
v v, the sum over v ∈ S − Sρ,E. It follows from Lemma 2.4 that

L(s, ρ,E)
L(1 − s, ρ−1, E)

· ρ(x − E)|E|s−1/2

= ε(ρχE)ρ(x − E0)qg−1|F0|1/2|F1|(q−s)2g−2+deg(F0+F1)
∏

v∈S−Sρ,E

1 − ρχE(v)|v|−s

|v|1−s − ρ−1χE(v)
.

Note that 0 � F0 + F1 � F , and that the product has finite, non-zero limits as Re(s) → ±∞.

3. The second functional equation
The second functional equation, Theorem 3.3, describes the action of V (F, n) under the involution
(s,w) → (w, s). The first step, Lemma 3.1, describes the double Dirichlet series in terms of a double
sum that is symmetric except for the factor χD2(D1). We then analyze the relation between χD1(D2)
and χD2(D1) for two effective divisors D1, D2 ∈ Div(C − S). This relation, given in Lemma 3.2,
follows from quadratic reciprocity and the definitions in § 1. Once we have these two lemmas, the
proof of Theorem 3.3 is easily obtained.

Lemma 3.1. If ρ1 and ρ2 are characters of X(F, n) and Re(s), Re(w) > 1, then

Z(s,w; ρ1, ρ2) = L(2s + 2w − 1, ρ1
2ρ2

2;C − S)
∑

D1,D2

ρ1(D1)ρ2(D2)
|D1|s|D2|w χD2(D1),

where the sum is over disjoint, effective divisors in Div(C − S).

Proof. All divisors below are effective and in Div(C − S), with additional conditions as noted. In
the region we are considering, all sums under consideration converge absolutely, so we can rearrange
at will. Write Z(s,w; ρ1, ρ2) as a sum over D2, and use (1.3) and (1.2) to get

Z(s,w; ρ1, ρ2) =
∑
D2

ρ2(D2)|D2|−wL(s, ρ1χD2;C − S − SD2)a(s, ρ1,D2)

=
∑
D2

ρ2(D2)
|D2|w

∑
D1

ρ1χD2(D1)
|D1|s

∑
2d1+2d2�D2

µ(d1)χD2(d1)ρ1(d1 + 2d2)
|d1|s|d2|2s−1

,

where D1 and d1 are disjoint from the conductor of χD2. Let us write D2 = D′
2 + 2D′′

2 , with D′
2

square-free. Since all these divisors are supported away from S, the divisors D1 and d1 are disjoint
from D′

2. The condition 2d1 + 2d2 � D2 becomes d1 + d2 � D′′
2 .

Next, let us replace D1 with a new variable, D′
1 = D1 + d1. The sum over D1 and d1 becomes∑

D′
1,d1

ρ1χD2(D
′
1)|D′

1|−sµ(d1), with D′
1 disjoint from D′

2 and d1 � D′
1, d1 � D′′

2 − d2. The sum of
µ(d1) therefore vanishes unless D′

1 and D′′
2 − d2 are disjoint, in which case it gives 1. We now have

Z(s,w; ρ1, ρ2) =
∑

D2=D′
2+2D′′

2

ρ2(D2)
|D2|w

∑
d2�D′′

2

ρ1(2d2)
|d2|2s−1

∑
D′

1

ρ1χD2(D
′
1)

|D′
1|s

,

where D′
1 is disjoint from D′

2 and from D′′
2 − d2.
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Now, replace D2 with the new variable D′′′
2 = D2 − 2d2 = D′

2 + 2(D′′
2 − d2), and note that

χD2 = χD′′′
2

. This gives a sum over three variables, D′′′
2 , D′

1, and d2, which are independent except
that the first two are disjoint. The sum over d2 gives L(2s + 2w − 1, ρ1

2ρ2
2;C − S), and the sum

over the other two variables gives the double sum in the statement of the lemma (after dropping
the primes from D′′′

2 and D′
1).

Lemma 3.2. Suppose that D, D′ ∈ Div(C − S) have disjoint supports. Let

α(D,D′) = χD(D′)/χD′(D).

Then α(D,D′) depends only on the images of D and D′ in PicF (C) ⊗ Z/2Z.

We use this lemma to define α(D,D′) even when D and D′ do not have disjoint supports:
choose D1 disjoint from D′ and representing the same class in PicF (C) ⊗ Z/2Z as D, and define
α(D,D′) = α(D1,D

′).

Proof. Let D1 = D+(m)+2G with m ≡ 1 (mod F ) and G ∈ Div(C−S). Assume, for now, that the
support of D1 is disjoint from that of D′. If T is a sufficiently large finite set disjoint from the support
of D′ and from S, then Div(T ) maps onto PicF (C). If G = (m1)+G0 with m1 ≡ 1 mod F and G0 ∈
Div(T ) then we also have D1 = D + (mm2

1)+ 2G0. We may thus assume that both (m) and G have
supports disjoint from that of D′. Then χD1(D

′) = χD(D′)χm(D′) and χD′(D1) = χD′(D)χD′((m)).
If D′ = E′ + (m′)+ 2G′ as in Lemma 1.1 then D′− (mD′) = E′ − (mE′)+ 2G′ ∈ Div(S)+ 2Div(C).
Since m ≡ 1 (mod F ), this implies that χm(D′) = χm((mD′)). Arguing as above, we can choose m′

and G′ so that the support of (mD′) = (m′) + (mE′) is disjoint from that of (m). Then quadratic
reciprocity implies that χm(D′) = χmD′ ((m)) = χD′((m)), so α(D,D′) = α(D1,D

′) in this case.
Either arguing similarly, or using the symmetry α(D,D′) = α(D′,D)−1, it follows that α(D,D′)

= α(D,D′
1) if D′ and D′

1 represent the same element of PicF (C) ⊗ Z/2Z and both have supports
disjoint from that of D.

For the general case, suppose that D1 − D, D′
1 − D′ ∈ DivP,F (C − S) + 2Div(C − S) and only

assume that D1 and D′
1 have disjoint supports. Choose an auxiliary divisor D2, with support disjoint

from all divisors just mentioned, representing the same class as D. From the cases we have already
considered, α(D,D′) = α(D2,D

′) = α(D2,D
′
1) = α(D1,D

′
1).

Theorem 3.3. Let η1 and η2 be functions on X(F, n). For E ∈ E , let δE denote the characteristic
function δE(D) = 1 if D and E represent the same class in PicF (C) ⊗ Z/2Z, δE(D) = 0 otherwise.
Assume that n is even, so that δE can be thought of as a function on X(F, n). Assume that Re(s),
Re(w) > 1. Then

Z(s,w; η1, η2) =
∑

E1,E2∈E
α(E2, E1)Z(w, s; δE2η2, δE1η1).

In particular, for any x, y ∈ X(F, n),

Z(s,w; δx, δy) = α(x, y)Z(w, s; δy , δx).

Proof. For the final statement, note that for x ∈ X(F, n), there is only one value of E ∈ E for which
δEδx �= 0. For the general statement, it is enough to consider the case that η1 and η2 are characters,
by linearity. We will write ρj instead of ηj from now on.

We start with the result of Lemma 3.1. Replace χD2(D1) with α(D2,D1)χD1(D2) and multiply
by 1 =

∑
E1,E2∈E δE1(D1)δE2(D2):

Z(s,w; ρ1, ρ2) = L(2s + 2w − 1, ρ1
2ρ2

2;C − S)

×
∑

E1,E2∈E

∑
D1,D2

δE1ρ1(D1)δE2ρ2(D2)
|D1|s|D2|w α(D2,D1)χD1(D2),
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where the inner sum is over disjoint, effective divisors D1, D2 ∈ Div(C − S). Because of the factor
δE1(D1)δE2(D2), and Lemma 3.2, we can replace α(D2,D1) with α(E2, E1) and move it out of the
inner sum.

Next, express δE1 and δE2 as sums of characters: δEj = (1/h̄)
∑

σj
σj(Ej)−1σj, where h̄ denotes

the order of PicF (C) ⊗ Z/2Z and σj runs over the characters of this group. Since (σjρj)2 = ρj
2,

Lemma 3.1 gives

Z(s,w; ρ1, ρ2) =
∑

E1,E2∈E
α(E2, E1) · (1/h̄)2

∑
σ1,σ2

L(2s + 2w − 1, (σ1ρ1)2(σ2ρ2)2;C − S)
σ1(E1)σ2(E2)

×
∑

D1,D2

σ1ρ1(D1)σ2ρ2(D2)
|D1|s|D2|w χD1(D2)

=
∑

E1,E2∈E
α(E2, E1) · (1/h̄)2

∑
σ1,σ2

σ1(E1)−1σ2(E2)−1Z(w, s;σ2ρ2, σ1ρ1).

The theorem now follows from the definition (1.5) of Z(w, s; δE2ρ2, δE1ρ1).

4. Proof of the rationality of the double Dirichlet series

Let n be even, and let

φn(s) = 1 − qn(1−s), Φn(s,w) = φn(s)φn(w)φn(s + w − 1
2 ).

The main theorem of this paper is the following.

Theorem 4.1. Let Z(s,w) ∈ V (F, n) be a double Dirichlet series. Then Z(s,w) has meromorphic
continuation to all of C2 and is a rational function in q−s and q−w. In fact, Φn(s,w)Z(s,w) is a
polynomial of degree at most 2 deg(F ) + 2n + 4g − 4 in each of q−s and q−w.

Proof. Let T1 ⊆ C2 be the tube domain defined by the condition Re(w) > max{1, 3
2 − Re(s), 3

2 −
1
2 Re(s)}. Let T2 be the image of T1 under the involution (s,w) → (w, s), and let T3 be the image of
T2 under the involution (s,w) → (1−s, s+w− 1

2). Explicitly, T2 is defined by the condition Re(s) >
max{1, 3

2 −Re(w), 3
2 − 1

2 Re(w)} and T3 by the conditions Re(s) < 0 and Re(w) > max{1, 3
2 +Re(s)}.

Let Z(s,w) ∈ V (F, n) be given. By Corollary 2.5, the series for φn(s)Z(s,w) converges absolutely
and uniformly on compacta in T1, so it is an analytic function there. The factor φn(s) =

∏
ωn=1(1−

ωq1−s) here accounts for every possible φ(s, ρ1) in Corollary 2.5. Applying the two involutions,
φn(w)Z(w, s) represents an analytic function on T2 and φn(s + w− 1

2)Z(s + w− 1
2 , 1− s) represents

an analytic function on T3.
Choose a basis of V (F, n) and let Z(s,w) be the row vector consisting of basis elements. Then

Theorem 3.3 can be expressed as a matrix equation:

Z(s,w) = Z(w, s)B, (4.1)

where B is a matrix of constants and (s,w) ∈ T1 ∩T2, i.e. Re(s), Re(w) > 1. Similarly, Theorem 2.6
can be written Z(s,w) = Z(1 − s, s + w − 1

2 )A(q−s), for (s,w) ∈ T1. Remark 2.7 shows that the
entries in A(t) are rational functions in t, whose only poles are at |t| = 0 or 1/q. Combine this with
(4.1) to obtain

Z(s,w) = Z(s + w − 1
2 , 1 − s)BA(q−s) (4.2)

for (s,w) ∈ T1 ∩ T3.
We can now extend Z(s,w) to a vector of meromorphic functions on T1∪T2∪T3, using Z(w, s)B

on T2 and Z(s+w− 1
2 , 1− s)BA(q−s) on T3. Since A(q−s) has no poles in T3, the second paragraph

of the proof shows that Φn(s,w)Z(s,w) extends to a vector of analytic functions on the tube domain
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T1∪T2∪T3. The convexity principle for analytic functions on tube domains [Hor90, Theorem 2.5.10]
then gives the analytic continuation of this function to all of C2. In particular, (4.2) holds on C2,
by the persistence of analytic relations. Applying this relation three times gives

Z(s,w) = Z(1 − s, 1 − w)BA(q−w)BA(q1/2−s−w)BA(q−s). (4.3)

Now, express Φn(s,w)Z(s,w) in terms of t = q−s and u = q−w: Φn(s,w)Z(s,w) = P(t, u). Then
P(t, u) is analytic on (C − {0})2. For s in a compact set, it is clear that both Φn(s,w) and the
series for Z(s,w) converge, absolutely and uniformly, as Re(w) → ∞. Similarly, using Z(w, s)B,
we get convergence as Re(s) → ∞. In terms of t and u, this means that we can extend P(t, u)
to C2 − {(0, 0)}. By Hartogs’s Extension Theorem [Hor90, Theorem 2.3.2], P(t, u) extends to an
analytic function on all of C2. To show that P(t, u) is a polynomial of the stated degree it suffices,
by Cauchy’s integral formula, to show that each entry is O(|tu|2n+4g−4+2 deg(F )).

In order to bound P(t, u), multiply (4.3) by Φn(s,w)Φn(1− s, 1−w) and express it in terms of
t and u:

Ψn

(
1
qt

,
1
qu

)
·P(t, u) = Ψn(t, u) ·P

(
1
qt

,
1
qu

)
BA(u)BA(

√
q tu)BA(t),

where Ψn(t, u) = (1 − qntn)(1 − (q3/2tu)n)(1 − qnun), so that Φn(s,w) = Ψn(q−s, q−w). As |t|,
|u| → ∞, Ψn(t, u) = O(|tu|2n), whereas Ψn(1/qt, 1/qu) and P(1/qt, 1/qu) are bounded. Remark 2.7
shows that A(t) = O(t2g−2+deg(F )), so the factors A(t), A(u), and A(

√
q tu) contribute at most

|tu|4g−4+2deg(F ). It follows that P(t, u) = O(|tu|2n+4g−4+2 deg(F )), as claimed.

5. The size of sums of twisted L-functions

Fix F, n as in § 1, and let ρ1, ρ2 ∈ X̂(F, n). Since by Theorem 4.1 the double Dirichlet series
Z(s,w; ρ1, ρ2) is a rational function

Z(s,w; ρ1, ρ2) =

∑
i,j ci,jq

−isq−jw

Φn(s,w)
, (5.1)

where the coefficients ci,j depend only on ρ1 and ρ2, one obtains a formula for the sum∑
0�D∈Div(C−S)

deg(D)=R

L(s, ρ1,D)ρ2(D)

simply by taking the coefficient of q−Rw in the right-hand side of (5.1). To state this, let M be the
degree in w of the numerator of the right-hand side of (5.1); thus M � 2 deg(F )+2n+4g−4. After
some manipulations with geometric series one obtains the following proposition.

Proposition 5.1. Let ρ1, ρ2 ∈ X̂(F, n), and suppose that Z(s,w; ρ1, ρ2) is given by (5.1). Let
t = q−s. Fix a congruence class j mod n, and let

Cj(s) = (1 − qntn)−1(1 − qn/2tn)−1
∑
i,k

k≡j mod n

ci,kt
iq−k,

Dj(s) = (1 − qntn)−1(1 − q−n/2t−n)−1
∑
i,k

k≡j mod n

ci,kt
i(q3/2t)−k.

Then for R � M , R ≡ j mod n, one has∑
0�D∈Div(C−S)

deg(D)=R

L(s, ρ1,D)ρ2(D) = Cj(s)qR + Dj(s)(q3/2t)R. (5.2)
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In particular, suppose that Re(s) > 1/2. Then |q3/2t| < q. Thus, provided Cj(s) �= 0, the sum
of L-functions times correction factors grows like Cj(s) qR as R → ∞ in the arithmetic progression
R ≡ j mod n.

The problem of estimating sums of twisted L-functions was formulated by Goldfeld and Viola
[GV79]. Additional results over Q are due to Jutila [Jut81], Takhtadzhyan and Vinogradov [TV81],
and Goldfeld and Hoffstein [GH85]. For a historical survey see the introduction to [GH85]. In the
present situation, one should also be able to separate out the square-free divisors and remove
the correction factors by carrying out the sieve used by Goldfeld and Hoffstein [GH85, p. 204] and
Hoffstein and Rosen [HR92, p. 142]. (Since we have a rational function and are able to compare
coefficients, one should be able to avoid much of the analysis such as estimating the contour integral
[HR92, p. 146].) However, we do not do so here, since this would take us far from our main focus.

6. Some examples

In this section we consider two curves: P
1 over Fq (q odd) and the elliptic curve y2 = x3 − x − 1

over F3. For the moment, let us work more generally. Suppose that C is a curve over Fq, q odd, such
that Pic0(C) is trivial, i.e. C has class number one. (It is known [LMQ75] that, besides P

1 over any
finite field Fq, there are finitely many such curves.) Suppose also that C has a rational point; choose
one, and denote it ∞.

Take F = ∞, so that S = {∞}, and take n to be even. Choose some B1 ∈ Div(C−S) of degree 1,
so that B1 = ∞−(π∞), for some uniformizing parameter π∞. Write B1 = B0+2G, with B0 effective
and square-free. Since DivP,F (C − S) = Div0(C − S), the group X(F, n) is isomorphic to Z/nZ,
generated by the image of B1. The characters on X(F, n) are all of the form ωdeg, with ωn = 1.
Similarly, PicF (C) is infinite cyclic, generated by the image of B1, and PicF (C) ⊗ Z/2Z can be
identified with X(F, 2). Let us choose E = {0, B0} as the coset representatives for PicF (C)⊗Z/2Z.
If E = 0 then choose χE to be the trivial character, and if E = B0 then choose χE = χπ∞ . With
these choices, if D is any divisor in Div(C − S), and we write D = (deg D)∞ + (m) with m monic
(with respect to π∞), then χD = χm.

We now turn to the first functional equation, starting with the epsilon-factor. Since ρ = ωdeg is
unramified, only the numerator of ε(ρχE) depends on ρ (cf. (2.2)), so ε(ρχE) = ρ((Ω)+Fρ,E) ·ε(χE).
Since χE is trivial or quadratic, its epsilon-factor is 1. The degree of (Ω) is 2g−2, and Fρ,E = FE = 0
if E = 0, Fρ,E = FE = B0+∞ if E = B0. Thus ε(ρχE) = ω2g−2 if E = 0, and ε(ρχE) = ω2g−1+deg B0

if E = B0. Let δj(D) = 1 if deg D ≡ j mod 2, δj(D) = 0 otherwise. Then Theorem 2.6 and
Remark 2.7 now give

Z(s,w;ωdeg, δj)
Z(1 − s, s + w − 1

2 ;ω− deg, δj)
= (−ω)2g−1+j(q−s)2g−1




qg 1 − ωq−s

1 − ωq1−s
if j ≡ 0 (mod 2),

qg−1/2 if j ≡ 1 (mod 2).

Next, consider the second functional equation. We start by calculating α(E1, E2) for E1, E2 ∈ E ,
as defined in Lemma 3.2. If E1 = 0 or E2 = 0 then α(E1, E2) = 1, so let E1 = E2 = B0. In order to
compute α(B0, B0), choose another divisor of degree 1, say D′ = ∞− (π′), disjoint from B0 + ∞.
Choose π′ to be monic: that is, π′/π∞ ≡ 1 (mod ∞). Then quadratic reciprocity gives

α(B0, B0) = α(B0,D
′) =

(π∞
π′

)(
π′

π∞

)−1

=
(−1

q

)
= (−1)(q−1)/2.

Theorem 3.3 now gives

Z(s,w; δi, δj) =
(−1

q

)ij

Z(w, s; δj , δi).
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We may regard Z(s,w; ρ, δj) as a power series in t = q−s and u = q−w. By definition, it only
involves powers ub with b ≡ j (mod n). Furthermore, if j is odd then the first functional equation
shows that the coefficient of ub is a polynomial in t of degree at most b+2g−1, and the coefficient of
ta in this polynomial determines that of tb+2g−1−a. The same remarks hold for linear combinations
of such series, such as Z(s,w; δi, δj). The second functional equation then shows that this series only
involves powers ta with a ≡ i (mod n); and if i is odd then there is a non-zero coefficient of taub only
if b � a+2g− 1. Finally, Theorem 4.1 tells us that (1− qntn)(1− qnun)(1− q3n/2tnun)Z(s,w; δi, δj)
is a polynomial in t and u, of degree at most 2n + 4g − 2 in each variable.

We turn now to specific examples. First let us take C = P
1 and n = 2, and let ∞ denote the usual

rational point. The remarks above imply that Z(s,w; δ1, δ1) = 0, so Z(s,w; δ0, δ1) = Z(s,w; 1, δ1) =
Z(s,w; (−1)deg, δ1), and the numerator of this rational function has the form (α+βt2)u. It is enough
to calculate α =

∑
D L(s, 1,D), where D runs over the effective divisors of degree 1. Any such

divisor is square-free, and there are no missing Euler factors, so L(s, 1,D) = L(s, χD; P1 −{∞}).
This L-series is a polynomial in t of degree g = 0, so it is equal to its constant term, 1. Thus α = q,
which leads to Z(s,w; 1, δ1) ≡ qu (mod u3) and

Z(s,w; δ0, δ1) =
qu

(1 − q2u2)(1 − q3t2u2)
=

q(1 − q2t2)u
(1 − q2t2)(1 − q2u2)(1 − q3t2u2)

.

Next, the second functional equation gives

Z(s,w; δ1, δ0) =
qt

(1 − q2t2)(1 − q3t2u2)
=

qt(1 − q2u2)
(1 − q2t2)(1 − q2u2)(1 − q3t2u2)

.

The first functional equation for this series gives a linear combination of Z(1 − s, s + w − 1
2 ; δ0, δ0)

and Z(1 − s, s + w − 1
2 ; δ1, δ0); solving for the former (a moderate calculation) leads to

Z(s,w; δ0, δ0) =
1 − q4t2u2

(1 − q2t2)(1 − q2u2)(1 − q3t2u2)
.

Adding these up yields

Z(s,w; 1, 1) =
1 + qt + qu − q3t2u − q3tu2 − q4t2u2

(1 − q2t2)(1 − q2u2)(1 − q3t2u2)
=

1 − q2tu

(1 − qt)(1 − qu)(1 − q3t2u2)
.

By Remark 1.5, this single power series determines Z(s,w; δi, δj) for any even n and all i and j.
Applying Proposition 5.1 to Z(s,w; 1, 1) gives, for R � 2,

∑
deg(D)=R

L(s, 1,D) =




1 + 2qt − q2t2

(1 − q2t2)(1 − qt2)
qR − qt + (q − q2)t2 + q2t3

(1 − q2t2)(1 − qt2)
(q3/2t)R if R ≡ 0 mod 2,

1
(1 − qt2)

qR −
√

q t

(1 − qt2)
(q3/2t)R if R ≡ 1 mod 2,

where t = q−s, and the sum is over effective divisors supported on A
1 = P

1 −{∞}. If we write
D = (m) + R∞ then we can think of this as a sum over monic m ∈ Fq[x] of degree R.

Next we turn to the case that C is an elliptic curve (genus 1 with a rational point). Then
Pic0(C) ∼= C(Fq). Since the number, N , of rational points satisfies |1 + q − N | � 2

√
q, we can have

N = 1 only if q � 4. Since we are avoiding characteristic 2 (for quadratic characters) we take for our
second example n = 2 and q = 3, and C given by y2 = x3−x−1. This affine Weierstrass equation has
no rational points, so C(Fq) = {∞}. The second functional equation implies that Z(s,w; δ1, δ1) = 0
again, so Z(s,w; δ0, δ1) = Z(s,w; 1, δ1) = Z(s,w; (−1)deg , δ1) as before. This time, the numerator of
this rational function has degree at most 6 in t and u.

In order to compute Z(s,w; 1, δ1) it suffices to compute this up to terms in t and u of degree 6.
Since only odd powers of u occur, we only need the coefficients of u1, u3, and u5. This does not
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allow room for any square factors (since there are no rational points except ∞) so the correction
terms do not enter into this calculation. The coefficient of ub is a polynomial in t of degree at most
b + 1. Using the two functional equations, it suffices to calculate the coefficients of t0u1, t0u3, t2u3,
t0u5, and t2u5.

An effective divisor of degree d on C −S has the form D = (f) + d∞, where ord∞(f) = −d and
f has no other poles. Since we are interested in the case d � 5, we can take f = a5xy +a4x

2 +a3y +
a2x + a0, where x and y are the coordinate functions on the elliptic curve, and the coefficients lie
in Fq. Then χD(D′) = ( f

D′ ), and it is convenient to interpret this as zero if f ≡ 0 (mod D′). (For the
degrees we are considering, this comes up only when deg D′ = 2 and deg D = 5.)

It is not hard now to compute Z(s,w; 1, δ1). As before, the two functional equations then give
Z(s,w; δ1, δ0) and Z(s,w; δ0, δ0). Here are the results:

Z(s,w; δ0, δ1) =
[q2 − q2t2 + q4t4]u3 + [(q4 − q5)t2 + (q5 − q6)t4]u5

(1 − q2u2)(1 − q3t2u2)
,

Z(s,w; δ1, δ0) =
q2t3 + [(−q2)t3 + (q4 − q5)t5]u2 + [q4t3 + (q5 − q6)t5]u4

(1 − q2t2)(1 − q3t2u2)
,

Z(s,w; δ0, δ0) = Φ2(s,w)−1([1 + (q − q2)t2]

+ [(q − q2) + (−q + q2 − 3q3 + q4)t2 + (q3 − 2q4 + q5)t4]u2

+ [(q3 − 2q4 + q5)t2 + (q4 − q5 + 3q6 − q7)t4]u4 − q8t6u6).
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