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ON AN UPPER BOUND FOR THE HEAT KERNEL 
ON SU*(2n)/ Sp(n) 

P. SAWYER 

ABSTRACT. Jean-Philippe Anker made an interesting conjecture in [2] about the 
growth of the heat kernel on symmetric spaces of noncompact type. For any symmetric 
space of noncompact type, we can write 

Pt(x) = CéHMI V*/V^A4'VoOc)V,(;c) 

where <J>Q is the Legendre function and q, "the dimension at infinity", is chosen such that 

lim,_KXJ Vt(x) = 1 for all x. Anker's conjecture can be stated as follows: there exists a 

constant G > 0 such that 

where ZJ is the set of positive indivisible roots. The behaviour of the function <J>Q is 
well known (see [1]). 

The main goal of this paper is to establish the conjecture for the spaces 
SU*(2n)/ Sp(n). 

Introduction. In [2], Jean-Philippe Anker proves his conjecture for the spaces 
U(p, q)/U(p) x \J(g) and points out that it is also true for all symmetric spaces of rank 1. 
The conjecture is immediately verified in the complex case since Vt(x) is then identically 
equal to 1 (see [7]). 

a) ^ ) < c n ( i + ^ ) K + f f l 2 ^ 

We proved in [13] that for the space Pos(3,R), Vt(x) is bounded above and below by 
constant multiples of the right hand side of (1). The corresponding results for the heat 
kernels of the real hyperbolic spaces have been obtained by E. B. Davies and N. Man-
douvalos (see Theorem 5.7.2 in [6]). These last results, and the fact that this upper bound 
is the sharpest suggested for such spaces, make the conjecture particularly interesting. 

The space SU*(In)/ Sp(«) can be realized as the space of positive definite matrices of 
determinant 1 over the quaternions (Posi(rc, H)V We will instead work with Pos(n,H), 
the space of positive definite matrices over the quaternions. It is simple to translate our 
results from one space to the other. The Riemannian structure will be induced by the 
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THE HEAT KERNEL ON SU*(2n)/ Sp(/i) 409 

bilinear form (X, Y) = 5ft tr XY (a scalar multiple of the Killing form). Similar remarks 
apply to the other symmetric spaces of noncompact type that correspond to An-\. 

It is known that Pt = fl~l(Wt) where A is the Abel transform and Wt 

— céHMI2rr/z/2
é?~'2/(4'). We will devote a good part of the paper in showing that %TX 

is a differential operator with appropriate properties. The work of O. A. Chalykh and 
A. P. Veselov in [14] is particularly relevant here. They arrive at an explicit expression 
for the inverse of the Abel transform for the space SU*(2n)/ Sp(«). The focus of their 
paper is to find a shift operator (as explained in [3]). The aim is to reduce the problem 
of finding J4rl for the root system An-\ with multiplicities m = 4 to the case m = 2. 
We, on the other hand, shift the problem to the root system An-\ with m = — 2 and go on 
from there (Lemma 1.3 explains what the shift is). Moreover, the inverse is expressed in 
a different manner. We will point out the similarities and differences in our approaches 
in the conclusion. We would like to thank Jean-Philippe Anker for drawing our attention 
to this recent development. 

We take the opportunity to thank Carl S. Herz for his suggestion that showing Vt has 
a finite expansion in t~l would be a good starting point. 

1. The inverse of the Abel transform for the root system An-\. In what follows, 
the root system under study is An-\ and m is any complex number (the "multiplicity" of 
the roots). The Abel transform of/ is 3Mf\ eH) = ep{H) JNf(ehn) dn (also denoted Ff(e

H) 
in [8]). It is natural, using the usual Hilbert space structure on L2 spaces, to define the 
dual or adjoint of the Abel transform (see [9] and [13]) for functions invariant under the 
Weyl group W: 

{ft(h\ '\f)L2(A/W) = (h, JF(f; •) WyV*) -

Using the definition of A and the integral formulas corresponding to the 
Iwasawa and the Cartan decompositions (refer to [8]), we find that fl*(f;eH) = 
JKe-p(H(eHk))f(eH(e"k))dk. In particular, the spherical functions are <j>x = A*(eiX; •)• This 
is valid for any symmetric space of noncompact type G/K. 

In [12], we gave a recursive integral equation for the dual of the Abel transform for 
the spaces of positive definite matrices over the real numbers, the complex numbers and 
over the quaternion numbers (Theorem 1.1). It allows us to discuss the generalized Abel 
transform (or rather its dual) on the root system An-\ as long as 9tm > 0. 

DEFINITION 1.1. Let us fix m (dim > 0). For H e a+, the diagonal matrices with 
strictly decreasing entries, we can define the dual of the generalized Abel transform Jï(m) 

for the root system on An-\ : 

(.0L(m))*(l,/;e") = / (e") and,forrc > 2, 

(2) 

r n n-\ -\m/2-\ 

• ±nn>inh(&-tfy) d(Od£ 
1 y'=l /=! J 
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410 P. SAWYER 

where /tr//(diag[xi,...,xn_i]) = /(diag[*i,.. . ,*n_i,tr// - E?"/*,-]), d(H) = 
UKJ sinh(#; — Hj) and ± is chosen so that ±11"= 111"=/ sinh(£; — Hj) > 0 whenever 
Hi+\ < & < H, for all i. 

Note that p(m) = \ £,-<,• ra(//; — ///) and the radial part of the generalized Laplace-
Beltrami operator is defined as 

<3) ^-t^^^Mm-a) 
We will see that (J#m))*(l, ^ (m); eH) = 1 for all H. 

The following result is a consequence of Theorem 1.1 in [12] if the space in question 
is PosOz, F) where F = R, C or H and m = dimR F. 

THEOREM 1.2. Suppose SJtm > 0 andf is a smooth Weyl invariant function. Then, 
{A^m))*{nJ\ •) is smooth on a+ and 

llm\S#m))*(n9f\ •) = C#(m))*(n, r(L(m))/; •) 

fT(LW) = LA - | |pW| | 2 ; . 

PROOF. The result can be proven by induction on n. The idea is to take dim large 
enough in order to use integration by parts without adding new terms. By analytic con
tinuation, the result is true for dim > 0. The proof is similar, but simpler (the integration 
being here on a bounded set), to that of Theorem 2.5 in [13]. • 

We extended the definition of (Jl(m))* to complex values of m other than 1, 2, 4 and 8 
(n = 3) in order to exploit the following fact: 

LEMMA 1.3. 

(L(m) + ||p(m)||2) o dl~m = dl~m(L(2-m) + ||p(2-m)||2). 

In the language Opdam uses in [10], this says that multiplication by dl~m shifts from 
m to 2 — m. In particular, the situation that concerns us mostly, m = 4, shifts to m = —2. 
We will see in Corollary 1.7, that (J#m>)* corresponds to a differential operator when 
m < 0 is an even integer. 

The expression in (2) reminds one of fractional integrals. We will want to exploit this. 

LEMMA 1.4. Let n > 2 be an integer and assume thatf is a smooth complex valued 
function on R. Consider 

r((n-\)p)T(p)JoJy> 

for ftp >0. 
Ff is an analytic function ofp and possesses an analytic continuation in the region 

S = C — {—- : r > 0 is an integer not a multiple of n}. Iff depends smoothly or 
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THE HEAT KERNEL ON SU*(2«)/ Sp(n) 411 

analytically on parameters, the same is true of Ff. Furthermore, when p < 0 is an 
integer, Ff is a linear combination of the values off and of its derivatives at 0 and at 1. 

PROOF. 

T(np) 
, Knp\— f f{t)f-\\ - tf-vr-1 dt 

T(np) 
T(p) r((n - \)p) h/* 

f2(f{t)f-l){\-tt-^-{dt 

+-^[ïi>/.'><•-'^'K-14 r((n-l)p)\ 

Note that T(z) = r (1 Tsin7r̂  if z is not an integer. The rest follows from the theory of 
Riemann-Liouville integrals (see [11]). • 

LEMMA 1.5. Let n > 2 be an integer. Assume thatf is a smooth function ofRn and 
consider 

Jpf = T ^ M T fc , „=i. /(Ofo h • • • tnf-1 dt {Tip)) J^0 

forïflp>0. 
Jpf is an analytic function ofp and possesses an analytic continuation in the region 

%^ = C — {—j : s = 2,3,..., n and r > 0 is an integer not a multiple of s}. Iff 
depends smoothly or analytically on parameters, the same is true ofPf. Furthermore, 
when p < 0 is an integer, Ff is a linear combination of partial derivatives off at the 
points t = (t\,...,t„) where one of the U is 1 and all the others are 0. Moreover, Jp 1 = 1 
for all pE^. 

PROOF. The proof relies on induction on n > 2. The case n = 2 is a special case of 
Lemma 1.4. The inductive step is as follows: 

T(np) 

^ ^ ^ ^ ^ - f c r I * 
T{np) 

T((n-\)p)T(p) 

T((n - \)p) 
I [ K J / S £ . , ^ . /GXfe • • • tnr

ldt2 • • • dtn. 
(m) 
T(np) 

Fx dt\ 

r((n - i)P)r(p) 

r 
Jo 

r((n — l)p) r , \ _i 
I "7 ^=i /En i *=i fvi>(1 ~ ' i t o j t e '"Snf lds2 • • • dsn-x 
L (r(p)j '̂ >o 

-fr\i-hT •(n- l ) - l du. 

It suffices to apply Lemma 1.4 another time. 
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These lemmas are of interest to us since 

(rtm))*(nJ;eH) = ^(n-l)/2tr///m/2^-mn/2tr^)(^(m))*(n _ l , / ^ ; ^ ' ) ) ) 

T[n-l(e2ti-e2HJ) 

where ft = ii'=1 ,„'—w1. Moreover, if t = {t\,..., tn) is such that one of the f, is 1 and 
\h^e l~e J) 

all the others are 0, then diag[£(Y), tr H — tr 4(0] corresponds to the image of H by an 
element of the Weyl group. 

THEOREM 1.6. Letf be a smooth function on A. Then, (J3.(m))*(n,/; eH) is a smooth 
function on a+ and, by analytic continuation, is an analytic function of m in the region 
¥ = C — {—— : s = 2 , 3 , . . . , n and r > 0 is an integer not a multiple ofs}. For m € 
T, we have L{m\&m)T(n,f\eH) = {^m)f{nS0m))f\eH) and (Jl(m))*(/i,^(m);^) = 
1 for all H 6 a+. Furthermore, if m < 0 is an even integer, then (J3.(m))*{n,f\H) = 
^2se^(D^)(sH) where the Ds are differential operators of the form 

a jeJ 

where N is an integer, J a finite set of indices j = (/i » • • • Jn-i)> Qsj is a polynomial in the 
exponentials of the roots for each j and, ifj = (/i> • • • Jn-\)> thend = 11̂ =} ( ̂ — ^— V* • 

PROOF. Much of the result has been proven above. That L{m\A{m)T(n,f\eH) = 
(J^(m)W/i, r(L(m))/; eH>j, follows from Theorem 1.2 and from analytic continuation. 

Let us assume now that m < 0 is an even integer. We verify the form of the operators 
Ds using induction. For n = 1, the result is clear since Ds = 1 (| W\ = 1). Assume that 
the result is true for n — 1, n > 2. Take any smooth function/. To avoid confusion, we 
will use the subscript n — 1 to refer to objects corresponding to the case n — 1. 

We have 

(Aim)nnJ;eH) = ern(n-l)/2uHjm/2^e-mn/2trat){R(m)y(n _ 1 ^ ; ^ ) ) ) 

(4) =em(n-l)/2«H £ rlHe-™'1"^^)^). 

sewn-i 

It is clear from Lemma 1.5 that im/2(^"mAl/2trC(0(Dn-i)/ t r / /) depends only on the 
values of e~mnl2iY^t\Dn-\)sftXH in the neighbourhoods of the points t = (t\,...,tn) 
where one of the t[ is 1 and all the others are 0. In these neighbourhoods, we can write 
(Ai-O/tr// = g(pu. •. ,Pn-\) wherepk = E/1</2<..</, e2^+ "'+2*i* (the elementary sym
metric polynomials in the variables e2^). 11"=/(e2^ — e2HJ) = Ui^j(e2Hl — e2HJ)tj for 
1 <j < n is equivalent to T!^[-e2Hjf~x~qpq = U^j(e2Hi - e2H0tj for \<j<n. This 
in turn implies that/^ = £yLi pj

qtj wherep^q = pq(e
2H\..., e2HJ~\ e2HJ+\ . . . , e2Hn). Now, 

Recall that Jml2 is a linear combination of partial derivatives with respect to the ft at 
the points t = (t\,..., tn) where one of the U is 1 and all the others are 0. These points, 
in terms of the function/, correspond to points on the orbit of eH under the action of the 
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Weyl group. /m/2(e~mn/2tt*(r)(A,_i)/trff) is then a linear combination of partial deriva
tives of g with respect to the variables/^. The coefficients of these derivatives are poly
nomial functions of e±Hi. On the other hand, for each q, j - = Y%Z\ (pqr(e2^1, • • •, e2**-1 ) / 

[Ui<j(e2^ — e2^)])-£r where thcpqr are polynomials. 
Using the integral formula given in (2) and analytic continuation, we find that for 

m E 7 , (J%W)*(n,(g o tr) -f;eH) = g(irH){^m)f(nJ\eH) and, for any rj e R, 
(^l (m))*(n,/;^ ( / / )) = (A^TinJoT^e") where r„(fl) = diag[#i + rj,...,Hn + ij]. 
These observations allow us to conclude the proof. • 

COROLLARY 1.7. If m < 0 is an even integer andf is a smooth Weyl invariant 
function then (j^[(m))*(«,/; •) = D(m)/ w/iere D(m) is a differential operator. Moreover, 

a jeJ 

where N > 0 is an integer, J a finite set of indices j = (j\,... j n _ i ), Qj is polynomial in the 
exponentials of the roots for each j and, ifj = (/i,... jn-i)> thend = IT̂ ~J ( ̂ — ^^—y*. 

PROOF. It follows directly from the theorem. • 

THEOREM 1.8. Iff is a smooth function on A+ and m < 0 is an even integer then 

PROOF. The result is true when/ is Weyl invariant (Corollary 1.7). Equality of dif
ferential operators is a local property, so the result follows. • 

To identify further the operator D(m), we need to discuss the eigenfunctions of the 
operator L(m). We adapt here the terminology of Chapter IV, §5 in Helgason's [8]. 

THEOREM 1.9. Let A be the set of all linear combinations of the positive roots having 
non-negative integer coefficients. We define 'a* to be the set of complex-valued linear 
functionals on a such that i(s\—t\) fi A (the set of all linear combinations of the positive 
roots having integer coefficients) for s ^ tinW and{\i,\i) ^ 2i{^,X)forallp> G A—{0} 
and s EW. 'a£ is a dense open connected subset of &Q, the set of complex-valued linear 
functionals on a. For A € 'a^, let 

(5) <bf\H) = e^-^Xfl) £ Tf\X)e-^ 
neA 

where 

(6) {(M, M) - 2<iA, n)}lf\X) = 2m £ £ ( / i - 2ka + p<"> - /A, a)I<^2ka(X) 
a>0k>l 

andTo(X) = 1. { O ^ : 5 E W } w a linearly independent set of eigenvectors of lSm) for 
the eigenvalue -((A, A) + (p(m), p(m)». 

PROOF. It suffices to adapt the proof given in [8] for the "usual" functions O^. • 
Note that I^m)(A) = 0 unless \i 6 2A. 
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LEMMA 1.10. For X e 'a£, there exists a constant p{™\X) such that D{m)eiX = 
^ m ) ( A ) 0 ^ . 

PROOF. According to Corollary 1.7, D(mVA will have an expansion of the form given 
in (5), except that the sum will be on Â. Denote by f^m)(A) the coefficient of e~^ in that 
expansion. We claim that f^m)(A) = 0 for all À unless \i G A. Suppose that is not the 
case. There can be only finitely many \i exhibiting that statement. Let /io be the smallest 
of them (we use the lexicographic order on A = {£a>o naa : na integers}). Our choice 
of /i0 implies that f ^}_^(A) = 0 for all a > 0, all k > 1 and for all A. The coefficients 
f ^m)(A) must satisfy (6). In particular, {(/i0, Mo)} - 2(/A, Mo)}^(A) must be 0 for all A. 
This means that /io = 0. The rest follows easily. • 

COROLLARY 1.11. If m < 0 is an even integer, then 

D ( m ) = ^ e _ £ Q]{e-iH,-H2)^ _ e-(Hn^-Hn))dJ 
d jeJ 

where N is an integer, J a finite set of indices j = (j\,... Jn-\), Qj is a polynomial for 

each] and, if) = (/i,... Jn-\), then d = WkZ\(wk ~ â/t^'*' 

PROOF. Just compute D(mVA using Corollary 1.7. • 

COROLLARY 1.12. /^m)(A) is a nonzero polynomial in A of degree at most that of 
D(m). Moreover, 0(m)(A) is a meromorphic function ofX 6 a£ whose poles are zeros of 

PROOF. Since (ii(m))*(rc, e^\ •) = 1, £>(m) cannot be 0 and, consequently, £>(mVA 

is not identically equal to 0. This, together with the lemma and the previous corol
lary, implies that/?(m)(A) is a nonzero polynomial (actually, if iX(H) = X^=1 axH^ then 
/?om)(A) = E/e/ Qj(0,..., 0) Un

kZ\ (ak - ak+ly*). The rest follows easily from the fact that 
D(mVA is analytic in A. • 

DEFINITION 1.13. The c-function for the root system An-\ and complex multiplicity 

m is 
W / n _ 2(i-»i)(n-2Xn-i)n TT F(mk/2) T((iX9ao)) 

V } £À r(m/2) a
1

>
1

0r(m/2 + (/A,ao)) 

(a0 = a/(a, a)). 
c(m)(A) corresponds to the usual c-function when m = 1,2,4 and 8 (n = 3). 

LEMMA 1.14. Let m < 0 be an even integer. Then, there exists a constant K ^ 0 
independent of X such thatp^iX) = Kc{m\X). 

PROOF. Suppose iX(H) = Y%=\ akHk is such that a\ > a^ > • • • > an and 
{ai — aj)/2 = k for some / > j and 1 < k < —m/2. Let /i E A be defined by 
/i(//) = 2k(Hi — Hj). Equation (6) becomes 

o 

M [k - {at - aj)/2] Tf\X) = 2 m ^ ^ ( / i - 2 k + p(w) - /A, a ) I ^ a ( A ) . 
a>0k>\ 
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It is not difficult to see (using the conditions on À) that for a > 0 and k > 1, T^"1}^ (X) > 

0 (r^2Jka(A) > 0 for at least one of them), and, consequently, that the right hand side 

is a positive number. By Corollary 1.12, we conclude that/?Qm)(A) = 0 for such A. 

This implies that k — (at — aj) divides the polynomial p^XX). Hence, p{™\\) = 

q(m\Xmi<jUZ/2{k - (ai - aj)/2)9 deg/?<w)(A) < degD<*> < (-m/2)/i(/i - l ) /2 . 

From this, we conclude that #(m)(A) is a constant. • 

LEMMA 1.15. If m is an even integer then there exists a constant Am =£ 0 independent 
ofX such that cim\X) = Am[7r(-A)c(2~m)(-A)]-1 where TT(A) = na>o('A, a0). 

PROOF. The result follows from applying the formula r(z)T(l — z) = n/ sin nz to 
the expression given in Definition 1.13. • 

THEOREM 1.16. Ifm> Ois an even integer then ( J^m )) - 1 is a differential operator. 

PROOF. We will show that (A{m)Tl is a multiple of dl~mD(2-m)d(iT) where d(n) is 
the differential operator with constant coefficients such that d(n)elX = n(X)elX. 

Note first that dl~m®f~m) = 0^m): the left hand side has the right expansion and 
satisfies the appropriate differential equation (Lemma 1.3). 

Using Lemmas 1.14 and 1.15, we have dl-mD^2-m)d(n)eiX = 7r(A)^-mD(2-w)^A = 
Am7r(A)c(2-m)(A)<D^) = ^ [ ^ ( - A ) ] " 1 0 ^ m ) . The result follows (see [3]). • 

LEMMA 1.17. If X is a complex-valued linear functional on a and m < 0 is an even 
integer, then 

(7) D(mV'A = e-pim) £ p{™XX)e-» 
neA 

where p{™\X) = JBm[7r(-A)c(2_m)(-A)]~1r|i
m)(A) is a polynomial in Xfor each p (Bm is 

a constant independent of \i and X). 

PROOF. We already know that the sum in (7) is valid for À G ' a j . If we use Corol
lary 1.11 to compute D(wVA, we see immediately that for every A there is an expansion 
D(mVA = e-P

m{H) ZneAP^Me-^W where pf\X) is a polynomial. The result follows 
since for each p we must have/?^m)(A) = p^\X) whenever À 6 'a^. • 

2. The heat kernel of the symmetric space SU*(2«)/ Sp(«): Anker's conjecture. 
SU*(2rc)/ Sp(n) corresponds to the root system An-\ with m = 4. We will omit the 
superscript (m) when it is equal to (4). 

THEOREM 2.1. We can write the heat kernel for the space Pos(rc, H) as 

Pt(e
H) = Ce-IWlV»2 /V/ ( 4%(e")V,(eW) 

where <t>0(e
H) = sKe~<*fi(-'f'k)) dk is the Legendre function, V,(eH) > 0 for all H and 
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lim̂ -KX) Vt(e
H) = I for all H. There exists a constant O 0 such that if H E a+ then, 

1+Hi-Hj> 
i -i (8) v,(//)<cn(i + 1 + / / ; Hj). 

PROOF. Since P, = ^\Ce'^2trnl2e^l^) = CéHHlV"/2
 ^ D ^ T T ) ^ / ^ 

we conclude that e'^/^M^W^) = Cf^-^l2^-2^)^12!^ = 

e - ; 2 / ( 4 0 ^ ( " + l W 2 E^o~1)/2 Me")rk (N is as in Corollary 1.11). 
The functions Rk are polynomial functions in the roots and in the exponentials of the 

negative roots. The functions jme(N+l)p/2Rk(eH) are Weyl invariant and analytic (the 
theory tells us that Pt is Weyl invariant and analytic). 

According to the estimate given in [1] (valid for any symmetric space of noncompact 
type), there exists C > 0 such that 

C~x 11(1 + Hi - Hj)e-pm < (j>0(H) < C l l ( l + H( - Hj)e'^. 
i<j i<J 

To prove the theorem, it is then sufficient to show that there exists C > 0 such that 

rij€{0,\} 

for each k. 
It will actually be enough to show that there exists O 0 such that 

(9) \Rk(e
H)\ < C X) 11(1 + Ht - Hj)1^ 

Y,i<jnj=k,i<j 

^{0,1} 

for each k. 
To see this, one observes first that d(H) is like epm/2 when the roots of H are away 

from 0. The fact that e^N+3^pf2Rk/dN+3 is smooth implies that some derivatives of R^ are 
0 when the roots are 0. The "trick" can be summarized as follows: iff(x)/x3 is smooth, 
then/(;t) = / (0 ) +/'(0)x + \f'{0)x2 + ^ Jj(l - t )Y 3 \ t x )d t = £ j ^ l - t )Y 3 \ tx)dt . The 
rest is to make sure that the bounds in (9) also holds for the appropriate derivatives. 

The main factor in the size of the functions Rk is its degree in terms of the roots. It is im
portant to estimate the effect of the operators UkZ\(w ~~ a//"")7'*^71") on e~^l^At). To sim
plify the picture, we will consider a simpler situation. j^e~^lw = <?~*2A4') ̂ = 1 pi(x)t~l 

where deg/?; < / for each /. Clearly, there exists C > 0 independent of x > 0 and / such 
that |pi(jc)| <C(1+JC) '" . 

To apply this reasoning to our situation, using the notation of Lemma 1.17, we note 
that if i\(H) = E L i akHk then/£~2)(A) = CUi<j(l - (a, - af)/!). Furthermore, if we 
compute the degree ofp^~2\X) with respect to any of the differences ai — o,-, we find that 
deg/v(A) = degp^2)(A)+degry2)(A) < degp(~2\\) since from (6), degiy2>(A) < 0. 
This in turn limits the order of the derivatives that occur in the operator ^D(-2)3(7r). The 
rest is straightforward. • 

The same method can be applied to prove the corresponding result for the space 

£6(-26)/^V-
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THEOREM 2.2. Anker's conjecture is valid for the space £Ô(-26) /F4. 

PROOF. The proof is not very different from that of Theorem 2.1 except that now 
m = 8 and n = 3. For instance, Sl~l = jfD(~6)d(n). The main difference is that 
^"6)(A) = CUi<j(l - (at - aj)12){2 - (at - aj)/2)(3 - {at - a-)j2\ 

CONCLUSION. O. A. Chalykh and A. P. Veselov give in [14] an explicit formula of 
the inverse of the Abel transform in the case m = 4 (it still requires intensive computa
tions if n is large). In their formulation and ours, the inverse of the Abel transform for the 
space SU* (2ft)/ Sp(n) is the composition of n — 1 differential operators with the opera
tor d(n). Another similarity is that the inverse is computed recursively. They do not use 
the dual of the Abel transformation but rather give an inductive process to compute the 
eigenfunctions of the Laplace-Beltrami operator as the images of a differential operator. 
Most of the work leading to these results is found in [5]. Their formulation of the inverse 
of the Abel transformation would have permitted us to draw the same conclusion about 
the heat kernel. Note that their approach, as far as irreducible symmetric spaces are con
cerned, applies only to those of type An_i with m = 2, 4 and 8 (n = 3). We have used 
the dual of the Abel transform, albeit indirectly, to obtain results in the case m = 1 in 
[13]. It might be interesting to try the same idea on other classes of symmetric spaces. 

It would have been nice to show that TV in the expression for D(_2) (Corollary 1.11) 
can be chosen to be 0. That would imply that D(_2) could be given as a finite sum: 

D ' - W ^ - ^ £ ) 

with/?£~2)(A) is as in Lemma 1.17 and the corresponding differential operator with con
stant coefficients is defined by pJT2)(âJ/"' • • • > af") elX = p£~2)(A)elA. We have verified 
this in some cases but have been unable to give a general proof. 

We conclude by summarizing what we now know of Anker's conjecture for the sym
metric spaces of noncompact type corresponding to the root systems An_i, that is, the 
spaces Posi (n, F) where F is R, C, H or O (the octonions). For the complex case, there 
is nothing to do since Vt is identically equal to 1. We just have settled the cases where F 
is H or O. The real case is still, as far as we know, an open problem for n > 4 (an answer 
to the case n = 3 can be found in [13]). 
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