
/ . Austral. Math. Soc. (Series A) 26 (1978), 89-98

HAMILTONIAN CYCLES IN CERTAIN GRAPHS

KATHERINE HEINRICH and W. D. WALLIS

(Received 3 August; revised 7 December 1977)

Communicated by T. E. Hall

Abstract

It is observed that arrays which arise in the scheduling of tournaments exist if and only if there
are Hamiltonian cycles in certain graphs. The graphs are generalizations of those which arise
in the "Footballers of Croam" problem. It is proven that such Hamiltonian cycles exist in
infinite classes of the graphs.

Subject classification (Amer. Math. Soc. (MOS) 1970): 05 C 35, 05 B 30.

1. Introduction

We consider the following problem. Given positive integers m, n and g, is it
possible to arrange all the subsets of size m of an n-set S in an array with g columns
such that

(i) each subset appears exactly once in the array;
(ii) there are exactly g subsets in each row, except possibly the last;
(Hi) no element of S appears more than once in any row;
(iv) no element of S appears in two successive rows;
(v) no element of S appears in both the first and the last row.

Grant (1975) pointed out that arrays with these properties (and similar arrays
with property (v) relaxed) arise in the scheduling of tournaments; the interested
reader should see his paper for details. Grant studied the case m = 2, for arbitrary
n and g.

The arrays are also related to a well-known problem of graph theory. Let Gnm

denote the graph whose vertices are labelled with the w-subsets of an w-set, two
vertices being adjacent if and only if their inducing sets are disjoint. Then Gn>TO

has I j vertices and h[ )( ) edges. An array satisfying the five conditions
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of the problem in the case g = 1 exists if and only if Gnm has a Hamiltonian
cycle.

The case n = 2k— 1, m = k— 1, g = 1 has been considered by several authors.
Meredith and Lloyd (1972) called G2i._lfc_1 "the graph 0k" and conjectured that,
for k^4, 0fc is an edge-disjoint union of Hamiltonian cycles plus, perhaps, a
1-factor. It is easily verified that 02 has a Hamiltonian cycle and that 03 does not
(03 is in fact the Petersen graph). The graphs 04, 05, 06, 07 and 08 have all been
shown to have Hamiltonian cycles (see Balaban, 1972; Meredith and Lloyd, 1973;
Mather, 1976). The problem appears to be very difficult.

For the rest of the paper we restrict our attention to the "graphical" case g = 1,
but consider general m and n with n 3s 2m +1. (If n «S 2m the array is impossible and,
in fact, the graph is disconnected, unless m = 1.) Without loss of generality we
may choose the n-set 5 to be {1,2,..., «}.

The authors wish to thank Mr. Ross Dunstan, who found the proof of Lemma
4.3.1, and also wish to thank the referee for helpful comments.

2. Graph-theoretic preliminaries

We shall use two standard results of graph theory—Phillip Hall's Theorem on
matchings and Ore's Theorem on the existence of Hamiltonian cycles.

If G is a bipartite graph on two sets X and Y, written as G = G(X, Y), then a
complete matching of A'into Y is a set of edges such that no two edges are incident
and every vertex of X appears in some edge. The following theorem is due to
P. Hall (1935).

THEOREM 2.1. Let G = G(X, Y) be a bipartite graph. There exists a complete
matching of X into Y if and only if for all A £ X, \ A | ^ | R(A) | where R(A) is the
set of vertices in Y adjacent to vertices of A.

COROLLARY 2.1.1. In a bipartite graph G(X, Y) there exists a complete matching of
X into Y if every vertex in X is adjacent to k or more vertices in Y and every vertex
in Y is adjacent to k or fewer vertices in X.

The proof of the corollary follows easily from the theorem.

THEOREM 2.2 (Ore, 1960). A graph withp^3 vertices has a Hamiltonian cycle if,
for every pair u and v of non-adjacent vertices,

degree u+degree

COROLLARY 2.2.1. Gn>m has a Hamiltonian cycle whenever 21" J ** 1 / •
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3. The cases m- 1,2,3

The existence of a Hamiltonian cycle in Gnm is easy to discuss when m = 1 or 2.
The case m = 3 is more difficult and takes up most of this section.

It is interesting to notice that Gnl is the complete graph Kn, and Gn 2 is the
complement of the line graph of Kn.

THEOREM 3.1. The graph Gnl, M > 3 , has a Hamiltonian cycle.

The proof is trivial.

THEOREM 3.2. The graph Gn>2, n > 6, has a Hamiltonian cycle.

PROOF. The graph Gn 2 has I I vertices and is regular of degree I ). As

2 { " ~ p u ) f o r w^8> t h e n b v Corollary 2.2.1, Gn#2, « ^ 8 , always has a

Hamiltonian cycle. The following sequences of vertices illustrate Hamiltonian
cycles in G62 and G72 respectively:

25, 16, 23, 45, 12, 34, 56, 13, 24, 35, 46, 15, 26, 14, 36;

25, 37, 12, 34, 56, 17, 23, 45, 67, 13, 24, 35, 46, 57, 16, 27, 36, 47, 15, 26, 14.

THEOREM 3.3. The graph Gn3, n ^ 7 , has a Hamiltonian cycle.

PROOF. Theorem 2.2 implies that G n 3 has a Hamiltonian cycle for «^16
and Theorem 4.2 will prove that GnZ has a Hamiltonian cycle when n = 12,
13 or 15 leaving only the cases n = 7, 8, 9, 10, 11 or 14; however, it is shorter to
give a general proof than to exhibit the six Hamiltonian cycles.

The proof is by induction. We begin by exhibiting sequences of vertices which
are Hamiltonian cycles in G73 (due to Balaban, 1972) and in G83, respectively:

236, 157, 246, 135, 467, 125, 346, 257, 134, 256, 137, 456, 123, 567, 234,
167, 235, 147, 356, 127, 345, 267, 145, 237, 146, 357, 124, 367, 245, 136,
247, 156, 347, 126, 457;

247, 138, 567, 348, 156, 234, 678, 124, 356, 178, 235, 146, 578, 134, 256,
347, 568, 137, 248, 357, 468, 157, 236, 145, 268, 147, 368, 257, 168, 237,
458, 127, 346, 125, 378, 245, 136, 278, 456, 123, 478, 126, 345, 128, 457,
238, 167, 258, 367, 148, 267, 135, 246, 158, 467, 358.
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Now assume that the graph Gn_2i3 has a Hamiltonian cycle. Also assume that

Writing Ffor the vertex set of Gn3, partition Finto four subsets, Vlt V2, V3 and F4

as follows: V1 consists of all vertices whose indexing sets contain neither of the
elements 1 and 2; F2 consists of all vertices whose indexing sets contain 1 but not 2;
F3 has all vertices whose indexing sets contain 2 but not 1; and F4 has all vertices
whose indexing sets contain both 1 and 2. Obviously V = V1 u F2 u V3 u F4 and

I Vi I = (" 3 2 ) . IV21 = | Vz | = / " ~ 2\ and | F21 = (" j 2\. By the induction hypothesis

the subgraph induced by Vx has a Hamiltonian cycle; we denote it by C.
We now consider inserting the vertices of F4 into C in the following way. Say

v = VxV2v3 and u = u1u2u3 are two adjacent vertices in C and w = 1 2 ^ is a vertex
of F4 where ^ ^ { i ^ , v2, v3, ult u2, w3}. Then we can extend C to include w by deleting
the edge (w, v) and adding the edges (w, w) and (w, v). For any edge of C there are
n—8 possible vertices in F4 that could be inserted into this edge. So with each of the

("I2) edges of C we can associate a set of n — 8 vertices of V4.

We next count the number of these sets which contain a given vertex of F4.

Consider the vertex u = 12«x of F4. As ux appears in the indexing set of I I

vertices of Vlt none of which are adjacent, then u is contained in

of the sets associated with the edges of C; and as n *s 9 each vertex of F4 is contained
in at least 5(« — 8) of these sets.

Construct a bipartite graph G = G(X, Y) where X is the set of vertices of V4

and Y is the set of edges in C. If x e X and yeY then x is adjacent to y if and only
if x is contained in the set associated with the edge y. Thus each vertex in X has
degree (n—8)(n—4)(«—3)/6>5(«—8), as M > 9 , and each vertex of y has degree
n—8. Putting k = n — 8 we can, using Corollary 2.1, associate each vertex of F4

with a distinct edge of C. Therefore the cycle C can be extended to a cycle C"
which passes through all vertices of Fx u F4.

We consider separately the cases when I I is odd and when I j is even.

Case 1. When l " j is odd. Consider the vertex sets F2 and F3. In F2 delete the

element 1 from all indexing sets and draw the graph (7n_2>2 on this new set of
vertices, F2. Similarly delete 2 from F3 and draw the graph Gn_2>2 on V. Since
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by Theorem 3.2, Gn_22 has a Hamiltonian cycle for n—2^6 we can draw
Hamiltonian cycles through the vertices of V'2 and F3. Permute the elements of
the indexing sets in these cycles so that we have u = 34 adjacent to v — 56 and
then delete the edges (M, V) from both cycles to obtain two Hamiltonian paths of

odd length; their lengths are l"~ j . In V2 relabel ux = 34 with u'x = 134. Then

if w = wx w2 is adjacent to u relabel it with w' = 2w1 w2. Continue in this manner

until vx = 56 is relabelled with v'x = 156 (as I j is odd). For F3 relabel u2 = 34

with u'2 = 234 and continue as for V'2 until v2 = 56 is relabelled v'2 = 256. Then
draw an edge joining the vertices u'x = 134 and v'2 = 256. We now have a
Hamiltonian path through the vertices of V2 u F3.

We return now to the Hamiltonian cycle C" through the vertices of Fxu F4. Here
there must be two adjacent vertices neither of which has the elements 1 and 2 in

its indexing set as otherwise we have n—2> I I which is never true for n?s9.

Permute the elements of the indexing sets in Vx u F4 so that vertex u3 = 347 is
adjacent to v3 = 568. We can then draw edges from u'2 = 234 to v3 = 568 and
from v'2 = 256 to uz = 347 and we now have a Hamiltonian cycle in Gn$, n > 9,

Case 2. When I I is even. Note that we now only require n ̂  10 as I )

is odd. Construct the two paths through the vertices of F2uF3 as was done in
Case 1. However, this time the endpoints of one path, Plt are ux = 234, vx = 156
and of the other, P2, are u2 = 134, v2 = 256. Again, relabel the Hamiltonian
cycle C through VxuF4 so that «3 = 347 and v3 = 568 are adjacent. We now have
a cycle and two paths which we wish to join together to form a Hamiltonian

cycle in Gnfi, n>10, I ) even. First add the edge (u^v^. The number of

vertices in P2 with 1 in their indexing sets is ^1 j whilst the number with either

3 or 4 in their indexing sets is 2 r ~ J + l. As 4 | n ) > 2 l " ~ J + l for n^ 10

then clearly we have in P2 a vertex v = \xxyx where neither xx nor yx is 3 or 4.
Let u = 2x2^2, «#256, be the vertex adjacent to v in P2. Delete the edge («, t>) and
add the edges (vv u3) and (v, ux). The indexing set of u can contain at most two of
5, 6 and 8. If it contains any of these make the relevant exchange of the elements
x2 and 9 or y2 and 10 in C ; then add the edge (M, %). On deleting (w3, v^ we have a

Hamiltonian cycle in Gnfi, n^ 10, I ) even.
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Therefore, combining the two cases, we have that the graph Gnfl, n > 7, always
contains a Hamiltonian cycle.

4. Cases where n is large relative to m
In this section we derive two theorems which state that Gnm has a Hamiltonian

cycle in cases were n is sufficiently large relative to m. Theorem 4.2 uses a result
on block designs. A balanced incomplete block design is said to be resolvable if
its blocks can be partitioned into sets in such a way that every set contains each
treatment precisely once. (The reader is referred to Chapters 7, 8 and 10 of Street
and Wallis, 1977.)

THEOREM 4.1 (Baranyai, 1975). The balanced incomplete block design with para-

,. /km\ (km — \\ /km — 2\. . , . , , , , . „ , ,
meters (km, I I, I \,m, I _ _ I) in which the blocks are all the m-sets of

a set of km treatments is resolvable.

We can now proceed to the lemmas needed for the proof of the main result.

LEMMA 4.2.1. Given an n-set S let Xbe the set of all r-sets ofS and Y the set of all
l-sets ofS,n^l+r andl>r. We can associate with each r-set an l-set which contains
the r-set, that is, if the r-set is x1x2-Xr then the associated l-set is xx x2.. . xT xr+1 ...xt;
so that different l-sets are associated with different r-sets.

PROOF. Construct a bipartite graph G = G(X, Y) in the following way. Let the
vertices of X be the r-sets of S and the vertices of Y be the /-sets of S, and let
vertices be adjacent if one contains the other. Then each vertex in X has degree

I I and each vertex in Y has degree j ). So if I i ^ j I then by Corollary

2.1.1 there is a complete matching of X into Y and hence the lemma is proven.
If n^l+r, l>r, then r < | « . Now either n—l or / i s <£n and both are bigger

than or equal to r so either I I > I I o r I »)^I )• B u t both these statements

are the same. Hence (n—r)!r!^(«—/)!/! and so I . ) > ( I.

LEMMA 4.2.2. The graph Gnm, n = km, always has a Hamiltonian cycle when

PROOF. The vertices of Gnm are labelled with the blocks of the balanced in-
complete block design of Theorem 4.1. Therefore, we can partition the vertex set
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I classes Ri,R2, •••,Rp each of size k. It is easy to see

that the subgraph induced by any one of these p classes will be the complete
graph on k vertices, Kk. In Rt we have a vertex vt labelled with the indexing set
\x\ x\... x^_v for all ie{l, 2, ...,p}. As at most m of the vertices of Ri+1 can contain
elements of the indexing set of vt and as there are k^m + 1 vertices in R{+1 then
there is at least one vertex ui+1 whose indexing set is disjoint from that of vt.
Therefore, we can draw an edge from vi to ui+v Continue in this manner joining
Ri to R{+1 finally joining Rp to Rv Obviously, as «f and vt are distinct and both
are vertices in a complete graph Kk, there is a Hamiltonian path in Kk of which
they are the endpoints. The Hamiltonian cycle C in Gn>m, n = km, k^m + l, can
now clearly be seen.

THEOREM 4.2. The graph Gnm where n = km+l, 0^1 <m, will always have a
Hamiltonian cycle ifk^ max {2l+1, m +1}.

PROOF. Assume that k^ma.x{2l+1,rn + l} where n = km+l, 0^l<m. In the
case / = 0 we have fc^max{2,w + l} and as m>\ then always k^m + l and by
Lemma 4.2.2, Gn>m, n = km, always has a Hamiltonian cycle. Thus we can assume

Let S be the /i-set from which the vertices of Gnm, n = km+l, are labelled.
Select a subset of / elements from S, say Y = {y^yz, •••,yH, and use the remaining
km elements to construct G' = Gkm;m. Draw the Hamiltonian cycle C in G' as
constructed in Lemma 4.2.2.

We want to insert the remaining vertices of Gnm into the edges of C, as was done
in the first part of Theorem 3.3.

Before we begin some notation is needed. Write I I I I to indicate an
LWJ l\m-r)\

w-set of S of the form y1y2-yrx1xi...xm_r where yte Y, xie5'\{ru{l}}, and
1 I I I , I to indicate an w-set 1 j ^ y2... yT x± x2... xm_,._x where yt e Y,

LWJ L\m-r-lJl
jcie5\{7u{l}}. When we speak of u{, vt and Ri they are the uit vt and Rf of
Lemma 4.2.2.

Thus the vertices of Gnm, not in G\ are labelled

Insert these vertices into the Hamiltonian cycle C of G' in the following way.
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With each i>f in C we can associate I I vertices of the form 11 I III 11,

where if vt = 1 JCX x2 • •. xm_1 then I I = x1 x2... xm_x. Consider the path of C

in Ri from vt to ut. Since x} does not occur in the indexing set of any vertex in this
path except for vt then we can extend each edge of the path, except for that edge

incident with vt, to include one of the I I vertices. This can be done provided the

path has at least («) + ( , ) edges, i.e. J^ has l + L j + l i ) vertices. And as

k^max{2l+\m + l} this is always true.

Take the vertices of .he forn, I [Q] [ ( £ , ) ] and [Q] [ £ , ) ] . Fo, each

( / M - 2 / I
 xix* — x">-* t h e r e i s a d i f f e r e n t »<» ien,2,...,p = i^_l Jh such

that vt = ljf1jf8...*m_2Z1. (This follows from Lemma 4.2.1.) So to extend the

path in / ^ from vt to i^ to include these ( ) + I I vertices Rt must have a further

( l ) + (2) e d g e S ' Le" Ri m U S t h a v e a t l e a S t l + I (0) + ( l ) + (1) + (2) v e r t i c e s ;

and there will be this many vertices as k^max{2l+1,nt+1}.

Continue in this manner until finally we have only to add l f f l | | | 1 • I

whereforeach ( ,1 = x1x2...xm_,_1 there is a different v{, ie{l,2,...,/»}
LV/W-/-1/J

such that 1^= lx1x2...xm_,_1z1z2...z, (again by Lemma 4.2.1). Then to extend

the path in i ^ from vt to 1/4 it follows that Rf must have a further I I edges and
so have at least

1 +[(K)M(K)H(K)]--4',K)K)

As /:^max{2J+1,/«+1} this is always possible.
Therefore &„„,, n = km+l, has a Hamiltonian cycle when

Given a positive integer m, we shall define N(m) to be the smallest positive

integer such that, for all n>N{m), 2(n~m) > (").
\ m J \mf
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Lemma 4.3.1.

m.mj2 m.mj2

PROOF. It is easiest to consider the ratio

\ n}\ n-lj \ n-nt+lj

Clearly

TJ-772 + lJ

Now

implies M~z\, and the left-hand inequality is equivalent to

m.mJ2 . ,.
n > ^ H m - l )

so the smallest integer not less than this is an upper bound for iV(77j), and

then M<\ and n<N(m). So

From the lemma and Corollary 2.2.1 we have

THEOREM 4.3. If

>^/2_1m

:
nm has a Hamiltonian cycle.
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We note that N(m) is asymptotically equal to /nalog2e, and approaches this
value from above. The relative error in using this approximation is quite small
(about 5% at m = 20).
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