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ANTICHAINS AND FINITE SETS THAT MEET ALL 
MAXIMAL CHAINS 

J. GINSBURG, I. RIVAL AND B. SANDS 

This paper is inspired by two apparently different ideas. Let P be an 
ordered set and let M(P) stand for the set of all of its maximal chains. The 
collection of all sets of the form 

A(x) = {C e M(P)|JC S C) 

and 

B(x) = {C e MP)|JC e C}, 

where x e P, is a subbase for the open sets of a topology on M(P). 
(Actually, it is easy to check that the B{x) sets themselves form a subbase.) 
In other words, as M(P) is a subset of the power set 2'p' of P, we can 
regard M(P) as a subspace of 21 ' with the usual product topology. M. Bell 
and J. Ginsburg [1] have shown that the topological space M(P) is 
compact if and only if, for each x e P , there is a finite subset C(x) of P all 
of whose elements are noncomparable to x and such that {x} U C(x) 
meets each maximal chain. 
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co X co 

Figure 1 

The primary concern in [1] is to describe those compact spaces which can 
be represented as M(P) for some ordered set P. That is the first idea 
behind this paper. 

In contrast, our interest here is with the order theoretical counterpart of 
this compactness condition. What are the properties of the ordered sets P 
for which M(P) is compact? Some examples are illustrated in Figure 1. 
What kinds of subsets of an ordered set meet each maximal chain? That is 
the second motivation. 

A maximum sized antichain of an ordered set need not meet each 
maximal chain. For instance, in Figure 2, {b, c, d, e} does not meet the 
chain { # , / } . In fact, it may even be that no antichain at all meets every 
maximal chain (cf. Figure 3). Moreover, in the ordered set of Figure 2 the 
smallest subset that 
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meets each maximal chain is a two-element chain, while every maximal 
antichain has at least three elements. This contrasts with the "chain 
decomposition theorem" of Dilworth [2] which in a sense suggests a 
"crossroad" between chains and antichains in an ordered set. 

The main idea that we treat here is this. A cutset for an element x of an 
ordered set P is a subset C(x) of P all of whose elements are 
noncomparable to x and such that each maximal chain of P includes x or 
some element of C(x). For instance, in the ordered set of Figure 2, we may 
take C(a) = {b, c}, C(b) = {a, c}, and so on. 

Figure 3 

Let m be a nonnegative integer. Say that an ordered set P has the 
m-cutsetproperty if there is a cutset C(x) with at most m elements for each 
x G P. The degenerate case m = 0 corresponds to the case that P itself is 
a chain. It is not hard to prove that if m = 1 then P cannot contain a 
three-element antichain. For, suppose that {a, b, c} is a three-element 
antichain in an ordered set P with the 1-cutset property and suppose that 
C(a) = {ax}, C(b) = {bx} and C(c) = {q} . Then ax is noncomparable to 
a but must be comparable to b and to c, both. Say ax > b and ax > c. Now 
bx is comparable to a and to c. If bx > c then bx > a and so ^ is 
noncomparable to al9 and then neither a nor ax can be on any maximal 
chain including c and bx. Therefore, bx < a and bx < c. Now, cx is 
comparable to a and to b both. If q > a and q > Z? then both a and ^ 
miss every maximal chain through b and cx. If q < a and q < b then both 
/? and bx miss every maximal chain through q and a. Therefore, P cannot, 
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after all, have a three-element antichain. 
In contrast the ordered set illustrated in Figure 4 has the 3-cutset 

property yet it contains an infinite antichain; in fact, every maximal 
antichain containing x is infinite. Note, for instance, that we may take 

C(Û,.) = {/>,_!, d), C(bt) = {*,. + „</}, 

and so on, while there is no finite maximal antichain including x. What if 
P satisfies the 2-cutset property? N. Sauer and R. E. Woodrow [5] have 
shown that in an ordered set with the 2-cutset property every element is 
contained in a 4-element maximal antichain. 

Figure 4 

Say that an ordered set has the finite cutset property if there is a finite 
cutset C(x) for each x e P. We shall show that an ordered set with the 
finite cutset property in which each chain is finite must itself be finite (see 
Corollary 3). 

An ordered set may have "big" cutsets but only small antichains. An 
example can be constructed from jc-chains as suggested in Figure 5. 
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K chain 

Figure 5 

Also, an ordered set may have "big" antichains even if the cutsets are 
quite small. The ordered set of Figure 6 has the 2-cutset property but it 
contains a ^-element antichain. 

Figure 6 

This ordered set is not chain complete; for instance, the co-chain 
{x0 < X] < x2 < . . } has no supremum, although xw and y^ are upper 
bounds. 

Our principal result is this. 

THEOREM 1. A countably chain complete ordered set with the finite cutset 
property contains no uncountable antichain. 
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Figure 7 

We have conjectured that in a chain complete ordered set with the finite 
cutset property each element is contained in a finite maximal antichain. 
And this is settled in the affirmative by Sauer and Woodrow in [5]. Still, an 
ordered set may be chain complete, satisfy the finite cutset property (even 
the 2-cutset property) and yet contain infinite antichains (see Figure 7). 

We also establish a result with a topological bent. Actually, it uses 
Theorem 1. 

THEOREM 2. Let X be a compact topological space. If there is a chain 
complete ordered set P whose space M(P) of maximal chains is homeomor-
phic to X then the cellularity c(X) of X satisfies c(X) ^ 2W. 

The cellularity c(X) of a topological space X is defined by 

c(X) = SUP{K\X contains a family of K disjoint nonempty open 
sets}. 

Finite cutsets and uncountable antichains. For the proof of Theorem 1 
we shall use a lemma about "special" infima (or suprema). 

LEMMA 1. Let P be an ordered set with the finite cutset property. Let C 
be a chain in P and let c0 = infP C. Then there is cx e C such that for each 
x G P if x < C] then x ^ c0 or x = c0. 

Proof Let C(c0) be a finite cutset for c0. Then, of course, each element 
a e C(c0) is noncomparable to c0. Actually, for each a e C(c0) there is 
ca G C noncomparable to a (otherwise, if a ^ c for all c e C then 
a ^ infp C = c0). As C(c0) is finite and the ca

9s lie in a chain we may 
construct 

c, = inf{c> G C(c0) } G C. 
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Now, let x < cx and let D be any maximal chain including x and cx. 
Suppose that c0 € D. Then some a <E C(c0) must belong to D. If a ^ cx 

then a ^ ca which is impossible. Otherwise, ifa>c] then a > c0 and that 
too is impossible. 

Here is a typical application of this lemma. 

PROPOSITION 2. Let P be a chain complete ordered set with the finite cutset 
property. If P contains an infinite antichain then P contains a subset 
isomorphic to the ordered set T or its dual T {see Figure 8). 

The ordered set T. 

Figure 8 

Proof. Let A = {ax, a2, . . .} be an infinite antichain in P. There is 
bx e C(ax) which meets infinitely many of the maximal chains through ax, 
a2, . . . . Then either b} is above infinitely many a-s or below infinitely 
many of the a/s. Suppose that bx > a2, a3,. . . , (after possibly relabelling 
the indices). Now, choose b2 ^ C(a2) which meets infinitely many of the 
maximal chains through a3 < bu a4 < bx, a5 < b^ . . . . Either b2 is above 
or below infinitely many of #3, a4, . . . , and it is in any case below bx (since 
b2 ^ bx implies b2 ^ a2). For simplicity let us suppose that b2 is above a3, 
a4, . . . (after possibly relabelling the indices). In this way we construct a 
descending chain bx > b2 > . . . of elements, each bt G C(ay), and bt > aj 
if and only if y > /' (see Figure 9). (If the successive Z>/s are not always on 
the same side of the a/s then at least a subsequence of the Z>/s can be 
chosen all on the same side. If the b/s are below then we construct an 
ascending chain bx < b2 < . . . , each bt G C{at), and bi < aj if and 
only if y > /'.) Now, set C = {bx > b2 > . . .} and c0 = infP C. Note that 
c0 £ C. Choose cx E Cas in Lemma 1. Then cx = bt for some /, that is, 
cx > tf/+1, ai+2, . . . and that, according to Lemma 1 means that 
c0 < al + x, al + 2, 
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Figure 9 

COROLLARY 3. Let P be an ordered set with the finite cutset property. Ij 
every chain of P is finite then P itself is finite too. 

Here follow two simple proofs of this fact. The first is an order 
theoretical proof. If P contains an infinite antichain then according to 
Proposition 2 P will contain either an infinite descending chain or an 
infinite ascending chain. Finally, if each chain and each antichain is finite 
then, of course, P is finite. 

The second proof is quite different in character and applies the result 
from [1] cited at the outset. Let C be a maximal chain of P. Then 

{C} n B(x) 

is an open set in M(P) (this is a finite intersection). As P has the finite 
cutset property M(P) is compact. That means that P can be covered by 
finitely many chains, and so P is finite. 

We turn now to the proof of Theorem 1. Let A be an uncountable 
antichain in P. For each a e A there is a finite cutset C(a). We may 
choose a positive integer r such that \C(a) \ = r for an uncountable subset 
of A. After possibly relabelling call this subset A, itself. Let r— stand for 
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the tree with countably many levels starting from a root and branching 
into r vertices at each vertex. Let us write 

r^ = U r\ 

where rn is the set of all functions/ of n = (0, 1, . . . , n — 1} to r = 
{0, 1, . . . , r — 1). Now, for each a e r " we shall construct (i) sets Ua 

and (ii) elements a0, ba. To this end call A = A0 and let a0 be any element 
of A. Recall C(a0) is an r-element cutset for a0. Put U0 = C(a0) — A0 and 
b0 = 1P, the maximum element of P; we may suppose without loss of any 
generality that it exists (see Figure 10). 

ao %) %)i 

Figure 10 

Suppose that for each k ^ n, Ak and each 

a <= U rk 

has been constructed. Let o e rn + l and write o = T U { ( « , / ) } , where 
T = a\n and i = o(n). Now, set 

An+x =A„-( U„(C(a0) n ^ ) U K | T e /•"}). 

Suppose 

^T = R , 0 > « T , l . - " . « T , r - l } -

Note that the cutsets have at most r elements and that 

UT = C(aT) - A. 
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Choose ba = uTJ and 

a° G A»+\ n k£l+\ X{b^k) 

where 

X(y) = {z e P\z ^ y or z ^ y) 

(provided this is nonempty), and otherwise let aa = 1. Also, put 

l/a = ( C ( « 0 ) n A g n + ] Z ( è a | , ) ) - ^ 

as long as it is nonempty and otherwise Ua = {1}. This completes the 
inductive construction. 

Now, each An is a cofinite subset of A so there is 

We now def ine/ e r- such that a e X(bnn) for all n e (O. Note that 
# G v4j but « ¥= a0. Take any maximal chain C, a ^ C. Then C meets 
C(a0) and so C meets f/0, say in w0 z. Then define f(0) = i. Now 
proceed inductively. Suppose a l l / (0) , / ( l ) , . . . , / ( « ) such that a e A^/y^.) 
for all k ^ « 4- 1 are defined. To define/(/7 4- 1) consider a e ^4,z+i- Let 
C be any maximal chain containing 

{a) U {bflk\k ^ n + 1}. 

(From the construction, the 6's form a chain.) Then 

C n C ( ^ , + 1 ) * 0. 

Actually C n ty|w + 1 ^ 0, say 

uf\n + \j G ^ n ty|« + i-

Define/(w + 1) = /. 
Now consider {b^n\n e co}. (For these Z>'s the corresponding Ua's are 

nonempty so the b's themselves must all be distinct.) Say 

S = {n\bfln > a) 

is infinite (or else {n\bf\n < a) is infinite). Then by construction 
{bf\n\n ^ S} forms a decreasing sequence. Let 

c0 = mtP{bfln\n ^ S}. 

Note that a ^ c0. According to Lemma 1, 

c0 ^ fl/|«-i f° r many n e S, 

so # ^ ^ />- i an<^ ^ a t *s a contradiction. This completes the proof of 
Theorem 1. 
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We conjecture that in a chain complete ordered set with the finite cutset 
property every uncountable subset contains an uncountable chain. 

Cellularity. In [1] Bell and Ginsburg consider compact topological 
spaces of the form M(P) for some ordered set P. They show, for instance, 
that the one-point compactification of an uncountable discrete space is 
not of the form M(P). 

Which compact spaces arise from an M(P) for a chain complete ordered 
set PI While this is not in general known Theorem 2 provides an 
interesting property of such topological spaces. Before we turn to its proof 
we record this useful fact. 

LEMMA 4. Let P be a chain complete ordered set with the finite cutset 
property. Then P contains no subset isomorphic to (co © 1) X 2 or to its 
dual. 

Figure 11 

Proof. Suppose to the contrary that there are chains x0 < xx < x2 < . . . 
< x„ and y0 < yx < y2 < . . . < yu in P whose union is isomorphic to 
(<o © 1) X 2 (cf. Figure 11). Let C = {x0 < xx < x2 < . ..} and set 

c0 = suppfol/ = 0, 1, 2 , . . .} S x„. 

According to Lemma 1 there is Cj G C (note that c0 &. C) such that z ^ cx 

implies z is comparable to c0. But cx = xt for some / and yt is 
noncomparable to xw and xi+x whence it must be noncomparable to c0, 
too. 

And now to the proof of Theorem 2. 
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Suppose that M(P) is compact, that P is a chain complete ordered set 
and suppose that M(P) contains a family of (2e0)+ disjoint open sets, 
say 

F= { G > < ( 2 " ) + } . 

Each Ga contains a nonempty finite intersection of subbasic open sets, 
say 

Ga 2 n B(x) 

for some finite Fa Q P. Without loss of generality there is an integer n 
such that \Fa\ = n for each a < (2^) + . Let B(Fa) stand for 

n B(x). 

Note that 

B(Fa) = {C e M(P) |Fa ç C) 

and that Fa is a chain in P. If a ^ /? then 

B(Fa) n B ( ^ ) = 0 

and then Fa U Pg is not a chain. Let 

where xal < x a 2 < . . . < xan. For a ¥= P there is / ' ^ « and 7 ^ « such 
that xai is noncomparable to Xp .. Let {a, )S}< denote the pair (a, ft) 
where a < /?. Partition the pairs (a, /?} of ordinals less than (2W)+ into 
sets Dt, Ej • as follows: for i = 1, 2, . . . , n, {a, (i}< G £>Z if x a / is 
noncomparable to x^y, for / =£ j \ {a, fi}< e £(z. y) if jcaA. is comparable to 
x̂ g A for all k and x a z is noncomparable to x^j. Every pair {a, /?} is in one 
of the sets Z)z, £ ( / J j . As (2W)+ -> (co + )^ (cf. [3] ) there is a subset S of 
(2C0)+ such that \S\ = Wj and the pairs {«, /?} from 5 are either all in one 
Dt or all in one E^jy If they are all in Dt then {xaj\a ^ S] would be an 
uncountable antichain and that is impossible according to Theorem 1. So 
they must all be in E^jy Say i <j. Therefore, for a, fi e S and a < /?, xai 

is noncomparable to x^j but, for each z, {xaz-|a G S) is a chain. If 
Xpj > x a z then Xn > xai; hence x^t < xai. Also, x^, < xa . It follows 
that 

{*«> ^ S} U {xaJa G 5} 

is a subset of P isomorphic to cof X 2, which according to Lemma 4 is 
impossible. And that completes the proof of Theorem 2. 

One further remark is in order. Let ? be a chain complete ordered 
set with the finite cutset property. If, in addition, each uncountable 
subset of P contains an uncountable chain (as conjectured above) 
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then c(M(P) ) ^ to. To see this suppose that the B(Fa), for a < <ol5 are 
disjoint open sets and 

We may suppose that, for each /, {xa / |a < (Oj) is a chain. Construct a 
partition of the pairs a,/J, a,/? < cox as above. Then using the partition 
relation coj —» (<o + 1)^ (cf. [3] ) we find, as above, a subset of P 
isomorphic to (co © 1) X 2, which is a contradiction. 

However, let Tbe a Souslin tree and set P = T® T(cf. [4] ). Then P has 
no uncountable antichain, P contains no subset isomorphic t o a X 2 (for 
any a > 2) and yet M(P) does contain an uncountable family of disjoint 
open sets. 

Two final remarks. Some of the results reported in this article can be 
viewed in graph-theoretical terms. This is because a maximal chain in an 
ordered set is a (maximal) complete subgraph of its comparability graph. 
However, the transitivity property of an ordered set cannot usually be 
dropped in our results. For instance, let G be the graph with vertex set 
consisting of two disjoint sets A = {ax, a2, . . .}, B = {bx, b2, . . .} each of 
size K such that A is complete, B is independent and each a{ is joined to b: 
if and only if y ^ i. Then for each /', the pair {ah b;} intersects every 
maximal complete subgraph (and so, in a sense, G has the "1-cutset" 
property). Still, unlike ordered sets, G is not the union of two (in fact, less 
than K) complete subgraphs. 

What if for each element x in an ordered set P there is a cutset C(x) 
which is restricted by some order theoretical constraint rather than by its 
size? Say C(x) is required to be a chain, for each x G P. Then P is not 
necessarily the union of two chains (see Figure 12). Can P contain an 
infinite antichain? Can P even contain a five-element antichain? 

Figure 12 
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