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ABSTRACT

In the present paper, different estimators of the Pareto parameter a will be
proposed and compared to each others.

First traditional estimators of a as the maximum likelihood estimator and
the moment estimator will be deduced and their statistical properties will be
analyzed. It is shown that the maximum likelihood estimator is biased but it
can easily be modified to an minimum-variance unbiased estimator of a. But
still the coefficient of variance of this estimator is very large.

For similar portfolios containing same types of risks we will expect the
estimated a-values to be at the same level. Therefore, credibility theory is used
to obtain an alternative estimator of a which will be more stable and less
sensitive to random fluctuations in the observed losses.

Finally, an estimator of the risk premium for an unlimited excess of loss
cover will be proposed. It is shown that this estimator is a minimum-variance
unbiased estimator of the risk premium. This estimator of the risk premium
will be compared to the more traditional methods of calculating the risk
premium.

1. INTRODUCTION

The Pareto model is very often used as a basis for Excess of Loss quotations as
it gives a pretty good description of the random behaviour of large losses — see
for example BENKTANDER (1970).

The distribution function can be written as

(1.1) F(x) = 1 - | -
x

X > C

with a > 0 and c > 0. The mean value E{X) exists if a > 1 and

(1.2) E{X) = c.
a—1

ASTIN BULLETIN, Vol. 20, No. 2

https://doi.org/10.2143/AST.20.2.2005443 Published online by Cambridge University Press

https://doi.org/10.2143/AST.20.2.2005443


202 METTE RYTGAARD

The variance Var (X) exists if a > 2 and

(1.3)

The density function

Var

can be

(X) = -

written

/ (* ) =

a-1) 2

acax

c2

(a -2)

- a - 1

The Pareto distribution belongs to the exponential family of distributions as
the density function can be written

pe(x) = C(0)exp | £ Qi(0)t,(x)\h{x),

with

9 = a, C(6) = <xca, Qt(d) = - ( a+1) , t,(x) = In x, h(x) = 1.

See f. ex. SILVEY (1970).
In the expression of the distribution function two parameters appear.

Through the whole paper, we will assume that the lower limit c is known as
very often will be the case in practice when the reinsurer receives information
about all losses exceding a certain limit which could for instance be the priority
of the excess of loss treaty.

If on the other hand c is unknown which is the case if the reinsurer receives
only a list of the largest losses and does not know if the list contains all losses
exceding 100,000, 120,000 or 150,000. In this case we have to estimate the c.

The maximum likelihood estimator of c is very simple:

c — min Xj.
i

In other words, we choose the parameter c to be equal to the smallest loss (see
f. ex. MUKHOPADHYAY and EKWO (1987) about estimation problems for c).

All results in the following hold only true if c is known. If it is unknown and
we have to estimate it, for instance all statements about unbiased estimators of
a will not be true.

The Pareto distribution with the distribution funtion at the form (1.1) is the
common used definition of the Pareto distribution in Europe. In HOGG and
KLUGMANN (1984) we find a different definition of the Pareto distribution
function

/ b V
x > 0 .b + x

This definition of the Pareto distribution is the common used in America. If X
is "European" Pareto distributed with parameters (c, a), then X—c is " Amer-
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ican " Pareto distributed with parameters (b, a) where b = c. The results in the
following are applicable to the American Pareto as well by replacing Xt by
Xj + c and putting b = c in the formulas.

A third version of the Pareto distribution is known as the " shifted " Pareto
(see HOGG and KLUGMAN (1984)). The distribution function is

/ l+d\«
F(x) = 1 - , x > d > 0

\l + xj
with unknown parameters a and /. If X— d is American Pareto with parameters
(b, a) then X is shifted Pareto with parameters (d, a, /) where I — b — d. Of
course the shifted Pareto with / = 0 is equal to the European Pareto. If / > 0,
two parameters have to be estimated. This estimation will require numerical
techniques and the results in the following can no longer be applied.

2. ESTIMATION OF THE OC-PARAMETER

Let X{,..., Xn be independent identically Pareto distributed random variables.
Hence, the maximum likelihood estimator of a is

(2.1)

where In denotes the natural logarithm.
It follows easily that In (X/c) will be exponentially distributed with mean

value I/a when X is Pareto distributed (c, a). Then
n v

(2.2) r = £ In —
/=i c

will be /"-distributed with density function

/(*) = — t n - x e ~ a t , t > 0 .
(n — 1)!

As a = n/T we get the following

(.co ^ n - 1

(2.3) £(a) = " " — f-2e-*'dt-
-oo n-\

Jo («-2)!(n-1) Jo («-2)! »- l

and

Jo («~3)!

n2n2 C* nn~2 n2

E(A2) = — f — f-*e-«'dt = - a2.
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Hence, the variance of a is

(2.4) Var (<S) =
« 2 a 2

n-\ \n-2 n-\
a2.

The maximum likelihood estimator a of a is not unbiased — but so is the
estimator

(2.5)

with T given by (2.2).
Furthermore,

(2.6)

n-\

Var (a*) = a2 < Var (a).
71-2

Thus, a* is a better estimator of a than a is — and in the following we shall
concentrate on this estimator a*.

As the joint density function of Xx,..., Xn can be written
_ - a - l

(2.7) p{xl,...,xn)~<xncn«

with Tas in (2.2). Therefore, Twill be sufficient for a as the Pareto distribution
belongs to the exponential family of distributions which are complete. Then
every function g(T) of T is a minimum-variance unbiased estimator of its mean
value Eg(T) (see SILVEY (1970), p. 33, or RAO (1973), p. 321). Thus, a* is a
minimum-variance unbiased estimator of E(<x*) = a.

As Xi,..., Xn are independent, identically Pareto distributed random vari-
ables, then Y{,..., Yn with Yt = ln(X,/c) are independent, identically expo-
nentially distributed random variables with mean value I/a and variance I/a2.
It follows from the Central Limit Theorem (RAO (1973), p. 127) that

n-\ i
oo,

is asymptotically normally distributed (I/a, l/(«a2)). As l/(«a2) -> 0 for n -> oo
and the function f(y) = l/y is differentiable with

it follows that a* = f(zn) is asymptotically normally distributed

(See RAO (1973), p. 122-124).

a,
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Thus, a* is consistent. That is, a* converges in probability to its estimated
value as n converges to infinity (see RAO (1973), p. 344).

3. THE MOMENT-ESTIMATOR OF a

When X is Pareto distributed (c, a), the mean value E(X) is given by (1.2).
If we solve the equation

X = a with
a u - l

we get the following estimator of a:

* = -
n I=

(3.1) a° =
X-c

We can only determine the asymptotical distribution of a0 when a > 2. In this
case we get: Let Xx,..., Xn be independent identically Pareto distributed
random variables with mean value and variance given by (1.2) and (1.3). Then
according to the Central Limit Theorem (RAO (1973), p. 127)

1

n

will be asymtotically normally distributed with parameters

(X a
c, — — , when a > 2.

a-1 (a-l)2(a-2) n

Consider the function f(y) = y/(y — c). As f'(y) = —c/(y — c)2, we get

a - 1
c \ = -

(a-1) 2

0, when a > 2.

The estimator <z° =f(Yn) is then asymptotically normallly distributed with
parameters (RAO (1973), p. 122-124)

a

n n (a - 2)

a0 is then asymptotically unbiased for a, and usually, the asymptotical variance is

As-var(a°) > Var(a*).

In some cases we do not know each and every single loss amount but only the
total amount of losses and the number of losses exceding a certain lower limit
c. Then it is only possible to calculate the a°-estimator of a.
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In the tables below, we compare the mean value and variance of the two
estimators a* and a0 for different values of a > 2.

TABLE 3.1

COMPARISON OF STANDARD DEVIATIONS AND COEFFICIENTS OF VARIANCE FOR a = 2.1

n

5
10
15
20
25
50

100

-JWai (a*)

1.212
0.742
0.582
0.495
0.438
0.303
0.212

£(<**)

0.577
0.354
0.277
0.236
0.209
0.144
0.101

x/Var (a0)

(2.254)
(1.594)
(1.302)
(1.127)
1.008
0.713
0.504

£(«°)

(1.073)
(0.759)
(0.620)
(0.537)
0.480
0.339
0.240

Efficiency
f 0

oi a

(1.859)
(2.147)
(2.234)
(2.277)
2.303
2.353
2.377

TABLE 3.2

COMPARISON OF STANDARD DEVIATIONS AND COEFFICIENTS OF VARIANCE FOR a = 2.5

n

5
10
15
20
25
50

100

Vvar(a*)

1.443
0.864
0.683
0.589
0.521
0.361
0.253

£(«*)

0.577
0.354
0.277
0.236
0.209
0.144
0.101

(1.500)
(1.061)
(0.866)
(0.750)
0.671
0.474
0.335

VvaT^)
£(«")

(0.600)
(0.424)
(0.346)
(0.300)
0.268
0.190
0.134

Efficiency
of a0

(1.039)
(1.200)
(1.249)
(1.273)
1.287
1.315
1.328

TABLE 3.3

COMPARISON OF STANDARD DEVIATIONS AND COEFFICIENTS OF VARIANCE FOR a = 3

n

5
10
15
20
25
50

100

•v/var (a*)

1.732
1.061
0.832
0.707
0.626
0.433
0.303

£(a»)

0.577
0.354
0.277
0.236
0.209
0.144
0.101

(1.549)
(1.095)
(0.895)
(0.775)
0.693
0.490
0.346

£(«")

(0.516)
(0.365)
(0.298)
(0.258)
0.231
0.163
0.115

Efficiency
r 0

of a

(0.894)
(1.033)
(1.075)
(1.095)
1.108
1.132
1.143
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The (asymptotically) efficiency is defined as the squareroot of the asymptotic
variance of <x° divided with the variance of a*, i.e.

/As-var (a0)

V Var (a*)

Of course it makes no real sense to calculate the asymptotic variance and
efficienty of a0 for small values of n.

4. ESTIMATION OF a AS AN AVERAGE OF THE ACTUAL ESTIMATE

AND THE "MARKET" VALUE

The minimum-variance unbiased estimator a* is the best estimator, but even
the variance of this estimator is large if only few losses are known or available,
which is often the case for practical purposes. Very often the basis for
estimation of a is only 5 or 10 losses. But on the other hand, we often have a
certain expectation about the right level of the a-value, having experience from
other cases in the market. For fire losses, we will usually expect an a near 1.5
— for motor liability an a perhaps near 2.5. Some use of credibility theory
would therefore be natural.

Again we assume Xx,..., Xn being independent, identically Pareto distri-
buted random variables. Let

5, = I n - ' .
c

Then

is an estimator of I/a. We now regard 0 = I/a as a random variable.
Given 0 = 6 = I/a, 5,- is exponentially distributed with a mean value 0.
Furthermore,

(4.2) Var (S,|<9 = 0) = a2 (9) = 62.

Let us assume we know by experience that for a given market and a given
branch the average level of I/a is l/a0. For each portfolio we will allow a
certain variation from this average level. Then

(4.3) E(ji(9)) = E{0) = — (say),
a0

(4.4) Var (ji (0)) = Var (0) = _ (say).
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with k depending of which variation we will allow from the average level of
l/a0. This corresponds to a structure function with mean I/a and variance k/<x2.

Alternatively, if we estimate the a0 by e.g. the maximum likelihood estima-
tor, we can estimate k by calculating the true variance of l/a0 (see Example 4.1
below).

We get

(4.5) E(o2 (0)) = E(02) = (E(0))2 + Var (0) = ̂ ± 1 .
a0

Furthermore (according to BUHLMANN (1970)),

Var (S) = - £(<r2(<9)) + Var (ji(0))
n

_ 1 Jfc+1 k

n a\ al

Using the well-known credibility formula (BOHLMANN (1970)) we can approx-
imate E(jn(0)\Sl,..., Sn) by bS+(1 - b ) E{pi{0)) where

b_ Var(/i(0))

Var (S)

We will now define the "credibility" estimator a of a by

(4.6)

and we

(4.7)

get

b

bS + (\-b)E(ji(0)) = — ,
a

k kn

k + (k+\)/n \ + k(n+\)

In other words we will calculate a as the inverse of

L = b- + (l-6)-L,
a a a0

remembering the maximum likelihood estimator a in (2.1).

Example 4.1

Consider the losses larger than c = 1 mio for five fire portfolios:

https://doi.org/10.2143/AST.20.2.2005443 Published online by Cambridge University Press

https://doi.org/10.2143/AST.20.2.2005443


ESTIMATION IN THE PARETO DISTRIBUTION 209

Portfolio no

1
2
3
4
5

Total

Then

i

1

an

52.0

74

Number of losses

17
12
30

5
10

74

— 70^ — => «„ —
1.422

r as in (2.2)

10.5
13.5
19.5
3.0
5.5

52.0

1.422.

As the grand total of the Ts is /"-distributed we can easily calculate the
variance of l/a0:

I'l-l.Var(l/a0) = — Var

By estimating Var {©) by the estimate of the variance of l/tx0 and using (4.4) we
get k = 1/74 = 0.0135 giving us the following results:

Portfolio no i

1
2
3
4
5

a*

1.524
0.815
1.487
1.333
1.636

b

0.1846
0.1378
0.2855
0.0624
0.1175

S

0.618
1.125
0.650
0.600
0.550

a

1.455
1.314
1.454
1.436
1.460

Using this method to estimate a, we obtain that extreme losses will not affect
too much the estimate of a.

Example 4.2

When pricing excess of loss treaties in practice the situation is not as is the case
in example 2.1 above. The only available loss information is the loss informa-
tion for the actual portfolio (if we ignore the possibility of picking up
information gradually). Let us therefore only consider the portfolio no. 1 in
example 2.1.

As said in the beginning of this chapter we do often have a certain more or
less vague expectation of the level of the a-value and then of the level of I/a.
For a fire portfolio we might expect to find I/a close to 1/1.5 = 0.67 = l/a0.
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Now let k = 0.01 and 0.02 corresponding to that we allow a coefficient of
variation of <9 of 10% respectively 14.1%.

We will then get the following estimate of a for portfolio no. 1:

1

a

.619

a*

1.524

S

0.618

k

b

0.1441

= 0.01

a

1.516

k

b

0.2500

= 0.02

1

a

.528

In this case the parameter k is more or less "politically" set: If we want the
individual estimates of a to be close to the " market value " we shall use a small
value of k. But of course the weight factor b depends on the number of losses
in the acutal portfolio as well. If it is a very small portfolio the individual
estimate of a will always be close to the market value.

5. ESTIMATE OF THE RISK PREMIUM FOR AN UNLIMITED COVER

IN EXCESS OF X

In excess of loss quotations the important quantity to estimate is not as much
the a-value as it is the expected loss amount for the layer.

Consider the unlimited layer in excess of x. The risk premium P(x) of this
layer is (see f. ex. BENKTANDER (1978))

(5.1) P(x) = n^— = nm(x),
a - 1

where n is the estimated loss frequency of the layer. Thus, the interesting
quantity to estimate is not a but rather m(x), or just m = m(l). We have

(5.2) m = J - = (l/a)7-1— = (I/a) £ ± = £ J_.
a - 1 1 - I/a k=o a *=i a

Let T be defined as in (2.2). Then T is T-distributed (n, a) and

(n + k-\)(k)

(5.3) E(Tk) =
<xk

with (n + k-\){k) = (n + k-l)...(n+l)n.

As every function g(T) of the T which is sufficient is a minimum-variance
unbiased estimator of its mean value (SILVEY (1970), p. 33, or RAO (1973),
p. 321), a minimum-variance unbiased estimator of I/a* is then

(5.4) — = Tk = ck Tk.
k { + k-\)ik)
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Then a minimum-variance unbiased estimator of m is

(5.5) m = ^ L =

211

since m is a function of T—which is sufficient—and E(d) — l/(a—1) which
follows from (5.2). As

(5.6)

we get

(5.7) E(m2) =

On the other hand,

(5.8) (E{m))2 =

k=l
(

I ck1* = 1 7
I k = 2 j=\

, with

Thus the variance of m is

00

(5.9) Var(iw) = Y (Ak-

I T Z
k=2 a ;=i

\U)

It is rather troublesome to calculate the variance of m — but we know the
CRAMER-RAO lower limit of the variance (SILVEY (1970), p. 35, or RAO (1973),
p. 324). In the first place m is a unbiased estimator of m. Secondly

dlnp(x, m)

dm

dinp(x, m)

dm

-

2

n

a

n

a

T
1

- 7J (a-

-

I)4

n

a

= - 2— T+T2\ (a-1)

where p(x,m) denotes the simultaneous distribution (2.7)

= a"
' • = •

- a - l
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Therefore,
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d In p (x, m)

dm

1)

= n

az a

( a - I ) 4

( a - I ) 4

= Im

a

The CRAMER-RAO lower limit of the variance is then
1 ~2

(5.10)

As

d In p (x,

dm

m)

Var (m) >

A"u
T a

n ( a -

n

2

1)

/ «

2

I)4

a2

(ex,—

a

( « -

I)2

I)2

( a - I ) 4

no unbiased estimator with variance equal to the CRAMER-RAO lower limit is
existing (SILVEY (1970), p. 38).

We can find an upper limit of the variance of m too. Using (3.1) we get
another estimate of m

(5.11)
1 X-c

It is easy to see that m° is an unbiased estimator of m. Furthermore,

°) =Var(m°) = Var f - - 1 ) = - i £ Var [ -
c J ni 1=1 \ c

1 1
= Var

n c2

1

n ( a - l ) 2 ( a - 2 )

Hence as m is a minimum-variance unbiased estimator of m

(5.12)
l 1

> Var (m) >
(

A third possibility of estimating m is to use the best estimator a* of a.
We get

(5.13)
a * - l

Tk.
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Furthermore,

( » - i r « *-i «

This result follows directly from Jensen's inequality since the function
g(x) = l/(x— 1) is convex.

As
00 * - l ,

m2 =
pi (n-iy (/i

1 OD » 1
1
 = y Tk k~l

we get

and furthermore,

(«-l)*

(
OD / i I

0 0 1 i- z ̂ —
k-\

t=2 a (.«— .

The variance of the estimator m* then is

(5.15) Var(m*)= £ 1 —-

k-l£
=2 a. («-l)

% «*yt1 (n-\y
oo . k-l

-((n + k-\)U)-(n+j-l)uy)

Summing up from (5.14)-(5.15) we have the following

(5.14a) E{m*)> E{m) = m,

(5.15a) Var (/»*) > Var (w).

If we use the minimum-variance unbiased estimator of a in the formula (5.1)
we will overestimate the risk premium. The best estimator of the risk premium
for an unlimited layer with priority x is

(5.16) P = nmx.
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This formula has been developed in the special case where it is possible to
estimate the loss frequency directly. If the excess point x is so high that only
very few or no losses are exceeding x, we have to use the a in calculating h as
described in BENKTANDER (1988). In such cases we will get a different "best"
estimator of P{x).

The formula (5.16) is only valid for unlimited layers excess x. We get a
different and more complicated formula for limited layers.

Therefore, this method to calculate unlimited layer has only a very limited
value for practical purposes. It is more of theoretical interest that it is possible
to calculate the "best" estimator of the risk premium. The traditional methods
to calculate the risk premiums will be more convenient in practice.

6. EXAMPLE

Year 1 Year 2 Year 3 Year 4 Year 5

(no losses) 19,180,000
1,915,000
1,790,000
1,755,000

Let us consider a motor portfolio. We are interested in finding the risk
premium for an unlimited layer with a priority of 1.5 million.

We have information about all single loss amounts (from ground up)
exceding 1.5 million for the last five years (all the losses have been indexed for
inflation). Furthermore, we assume that no such problem as IBNR exists.

The estimated loss frequencies for the layer is h = 3.2.
In the first case, we calculate the risk premium using m° in (5.11), that is the

traditional way to calculate the risk premium. We get

(6.1) P° = 3.2 x (3,057,500-1,500,000) = 4,984,000.

Secondly, we estimate the a*, setting c = 1,500,000,

«* = J 6 Z i = 2.314.

2,495,000
2,120,000
2,095,000
1,700,000
1,650,000

1,985,000
1,810,000
1,625,000

3,215,000
2,105,000
1,765,000
1,715,000

6.482

The risk premium is calculated using m* in (5.13). We get

(6.2) P* = 3.2 - 1,500,000 = 3,652,968.
2.314-1

In the third case, we will compute the m(x) for the layer.
We get from (2.2) and (5.5.)

T= 6.482,
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(6.3) P = 3.2 x 0.6430 x 1,500,000 = 3,086,400.

Finally, we estimate the a using the credibility formulas (4.6) and (4.7).
We get

— = 0.1368 x - 6 ^ 2 + (1-0.1368) — => a = 2.496,
a 16 2.5

using k = 0.01 and a0 = 2.5. The risk premium is in this case

(6.4) P = 3.2 x 0.6684 x 1,500,000 = 3.208,320.

Summing up, we get the following risk premiums

— P° based on moment estimator a0 4,984,000
— P* based on best estimator a* 3,652,968
— P_ based on m 3,086,400
— P based on credibility formula 3,208,200

The risk premiums P based on m are the best of the three first risk premiums
in the table, and they are in this case close to the risk premiums based on the
credibility formulas.

The traditional method to calculate the risk premium gives large risk
premiums in this example. This is because of the very large loss amount in
year 5. If this loss has been 9,180,000, and not 19,180,000, we had the following
risk premiums

— P° based on moment estimator a0 2,984,000
— P* based on best estimator a* 2,979,419
— P based on m 2,570,015
— P based on credibility formula 3,125,999
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