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V(n)

Let n = Π pp. A well known theorem of Hardy and Ramanujan states:
i = l

v(n) = (1 4- 0(l))log log n holds for all w if we neglect a sequence of density 0

[5]. Define for 2<j<v{n)

I had often occasion to use the fact that rj(n) is "usually" 0(1) [2]. Put

max rj(n) = P(n).
2^j^v(r»)

In the present note we shall prove the following:

THEOREM 1. For almost all integers n

(1) P(n) = (l + o(l)) log3n/log4^.

The phrase "almost all integers" means that (l) holds for all n if we

neglect a sequence of integers of density 0, log* n denotes the Mold iterated

logarithm.

We will also outline the proof of the following further results:

THEOREM 2. There is a continuous strictly increasing function <f(c), ψ{0) = 0,

^(°°) = 1, so that for almost all integers n

log2 n T,£io ° '

In other words there are (ψic) +o(l))log2 n values of j for which rj{n)<c.

THEOREM 3. The density of integers for which

min γj(n) <c/log2 n
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61 δ P. ERDOS

is φ(c) where 0(0) = 0, 0(°°) = 1 and ψ(c) is continuous and strictly increasing.

Put py -p'n\. In a previous paper [3] I proved then the density of integers

n for which

(2) min ηj < 1 + £/log2 n

equals 1 - exp( - c)(exp z= ez), also the density of integers n for which

(3) max yjj>clog2n
lίj£v(n)-l

is 1 — exp( —1/c). I further proved [4] that for almost all n

V ( n ) - 1

(4) Σ 7}j = (1 + o(l)) log2 » logs n.
3 = 1

It would be easy to deduce from Theorem 2 and from the result of de Bruijn

[1] that for almost all n

(5) " Σ rλn)= (1 + 0(1)) log2n["<p(c). (

Now we prove Theorem 1. To prove our Theorem we have to show that

for every ε>0 the density of integers for which

(6) P(n) > (1 + ε) log3

is 0 and the density of integers for which

(7) P(n) < (1 - ε) logs ^/log4 n

is also 0. First we prove (6). Because of the slow growth of log3 ^/log4 n it

clearly will suffice to show that the number of integers n<x for which

(8) P(n)

is o(x).

First of all we observe that the number of integers n<x which are divisible

by a square k2>c is less than

2x

Hence by (9) we obtain by a simple argument that (8) will follow if we show

that for every ε>0 for all but 0U) integers n<x we have for every 2<,j<p{n)
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ON SOME PROPERTIES OF PRIME FACTORS OF INTEGERS 619

(10) Π/>/<exp((l+ -f) dogsx/log,x) logpj)-

Put T= ( l + -|-)log3tf/log4#. (10) will easily follow from

LEMMA 1. Let k>kQ(ε) be sufficiently large. Then the number of integers

n<x which for some l>0 have more than T prime factors p satisfying

(11) 2kl<p<2kl^

is o(x).

Assume that the Lemma has already been proved. Let n be an integer

which has for every />0 not more than T distinct prime factors satisfying (11).

For these integers we clearly have for every

for k>ko(ε), hence (10) is proved.

Thus to prove (10) we only have to prove Lemma 1. By the well known

theorem of Mertens Σ l/P = log log y + c + 0( I/log y) we have (in Σ/ 2kί <p<

(12) Σl//><cilogft.

The number of integers n<x which for a given / have more than T

distinct prime factors satisfying (11) is by (12) clearly less than

τlT\<x(cΛogkYlT\<

eci log u v τ

x T I ^ (log,

for x>Xo(ε). Since 2kl<x we have at most logo x choices for /, thus the number

of integers n<x which for some / have more than T distinct prime factors

satisfying (11) is by (13) less than x/ilog2 x)*110 = o(x), which proves Lemma 1

and hence (10), (8) and (6) are proved.

By the same method we can prove that for every e > 0 and -η > 0 there is

an I- /(ε, η) so that the density of integers n for which

rA n) > (1 + e> logs pj/logi pj

holds for more than / values of j is less than η.
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The proof can be easily deduced from the fact that for every k the series

(14) Σ i-(( Σ l/q)Mp)/Λ(p)\)

converges. The proof of (14) is similar to that of (13).

To complete the proof of Theorem 1 we now prove (7). Instead of (7)

we will prove that for all but o(x) integers n<x

(15) Pin) X I - e) log3 */log4 x.

Let r run through the integers of the interval (-9 log2 x, log2x) and denote

by Ir the interval

To prove (15) it will suffice to prove the following:

LEMMA 2. For all but o{x) integers n<x every n has at least

[(l--j)loga*/log4*]=Γi

distinct prime factors in some Ir.

(15) immediately follows from Lemma 2. Let n have at least 7Ί distinct

prime factors in Ir and let pj the greatest pin in Ir. Then clearly for sufficiently

large x

IT t> y ^Ti-Dd-l/logiX) -> j)(l-S)log3χ/log4x

ι<j

which proves (15).

Thus to prove (15) (and hence to complete the proof of Theorem 1) we

only have to prove Lemma 2. First we need three further Lemmas. Denote

by a{{\ i=l, . . the integers which are the product of Tx distinct prime

factors of / r. We have

LEMMA 3. Put (log(l + l/logi*))^/:^! =frx). We then have

(16)

By the theorem of Mertens we hav§
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(17) Σ
in lr

Denote by b{f\j— 1, . . . the integers composed of s distinct primes in Ir

(for 5= Ti the bf are the α n ) . Clearly

where the dash indicates that the summation is extended over the p in Ir for

which p\bf\ Clearly by (17) we have

(19) Σ ' J - = logd + l/log4*) + o(l/\og2 x).

Lemma 3 follows from (18) and (19) by a simple computation.

LEMMA 4. Denote by Λr(χ) the number of integers which are divisible by at

least one d{\ We have

Af(x) = (l + o(l))xF{x).

Clearly by Lemma 3

(20)

Denote on the other hand by Bj(x) the number of integers n<x which are

multiples of a\r) but of no other af\ Clearly by (17)

(21) £,(*)>[-4r]- Σ

Further clearly

(22) Ar(x)>Ί]Bι(x).

From (21), (22) and Lemma 3 we have

(23) Λ-(#)>(l 4

(20) and (23) proves Lemma 4.

Denote by Arur2(x) (ri=*r2) the number of integers n<x which are divisible

by at least one a\rι) and at least one a\r%)

LEMMA 5.
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The proof of Lemma 5 is the same as Lemma 4, (we use (a{fι\ a(/2)) = 1

and a{{ι)a(pJ = o(x)) and can be left to the reader.

Now we are ready to prove Lemma 2. Denote by f(n) the number of r's

for which n is divisible by an a\r\ We have to show that for all but o(x)

integers n<x, f(n) >0. In fact we shall prove more. We shall show that for

all but o(x) integers n<x (put-^- (loglog x). F(x) =

(24) f(n) = (1 + o(l))-j (loglog Λ:). F(X) = (l+o(l))®(x)

(24) implies by a simple computation that for almost all n, f(n) -• °o. We

prove (24) by Turan's method [6].

We evidently have

(25) Σ (/(«) ~ ®(*))2 = Σ / ^ ) 2 - 2 (8U)
n = l n = l n = l

Now clearly by Lemma 4 and the definition of ®(x)

(26) Σ / ( » ) = Σ 4 r U ) = (l + o(l))^β(Λr).
n = l r

Further by a simple argument we have from Lemma 5

(27) Σ / 2 U ) = 2 Σ AritrΛ

Thus from (25), (26) and (27)

(28)

(28) immediately implies (24) (using Tchebicheffs inequality). This completes

the proof of Lemma 2 and Theorem 1.

By somewhat more trouble we could prove the following sharpening of

Lemma 2* Let &,..., Cs, s = o(x) be classes of integers. Assume that if a

and b belong to different classes then (a, b) = 1. Denote by gi(x) the number

of integers n<x which are divisible by at least one integer of d and assume

that

1 s

lim— Σ £ϊ(#) = °°.
aj=oo X t = i
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Then all but o(χ) integers n<% have a divisor from at least one G, \<i<,s.

The proof is more difficult than that of Lemma 2, and I have to use Brun's

method. The difficulty is that the analog of Lemma 5 breaks down.

We only outline the proof of Theorem 2.

LEMMA 6. There is a continuous strictly increasing function ψ(c),

ψ{°°) — 1 so that to every e>0 there is a j0 for which for every fixed j>jo the

density of integers n with γj(n) >c differs from ψ(c) by e.

The proof of Lemma 6 can easily be deduced from the results of N. G. de

Bruijn [1] and is not difficult.

Theorem 2 follows from Lemma 6 by the methods of probabilistic number

theory but the proof is not quite simple, we have first to show that if j ' - j is

large then the values of γjin) and rjAn) are nearly independent and then Turan's

method [6] can be applied without much difficulty.

Theorem 3 can be proved similarly as (3) but the proof is more complicated.

By using the results of de Bruijn one could sharpen Theorem 1 and one

could perhaps obtain an asymptotic expansion for P(n) valid for almost all

integers, but I have not even determined the second term of this hypothetical

asymptotic expansion.
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