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Abstract. We are interested in ergodic properties of absolutely continuous invariant
measures of positive entropy for a map of an interval. We prove a Bernoulli property
and a characterization by some variational principle.

We consider (piecewise) C2 maps from an interval into itself. Sufficient conditions
have been given for the existence of an invariant measure which is absolutely
continuous with respect to the Lebesgue measure: we shall write this a.c.i.m. (See
Bowen [4] for discussion and references; Misiurewicz [15], Jakobson [10] and
Szlenk [33] for recent results.) We want to study the ergodic properties of such an
a.c.i.m. in the case when the expansivity is not uniform, but only asymptotic: We
consider only maps which are not flat at their critical points.

We show that for an a.c.i.m. weak mixing and positive entropy imply a Bernoulli
property: each finite partition in intervals is weak Bernoulli. This result was known
in the uniformly expansive case (Bowen [3]). We also show for a C2 map / that
a.c.i.m. of positive entropy are characterized by a variational principle: an ergodic
measure /u. of positive entropy h is an a.c.i.m. if and only if it satisfies Rohlin's

formula: h = log |/'| dfi. This result is also true in the piecewise C2 case if the

measure is non-degenerate (see definition 1.3 below). It was known only in some
particular cases, like /S-transformations (Walters [34], Hofbauer [8]). This charac-
terization leads to criteria for the existence of an a.c.i.m. We give an example: if
there is a set of positive measure of regular points with positive characteristic
exponent, then there exists an a.c.i.m.

In order to prove these results, we construct the local unstable manifold in some
natural extension of the system. Much more general results about local unstable
manifolds for a non-invertible map are announced by Ruelle and Shub [29], and
I am very grateful to D. Ruelle /or having acquainted me with this idea.

Then we prove the absolute continuity of the unstable foliation, from which
ergodic properties follow. Absolute continuity of the unstable foliation is the key
property of Sinai's measure in several examples (Anosov systems [31] and flows
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78 F. Ledrappier

[32], Axiom A attractors for diffeomorphisms [24] and flows [5], Lorenz' attractor
[6]) and also of invariant smooth measure for diffeomorphisms (Pesin [18]). Ruelle
[26] proposed that measures describing turbulence are measures with that property.
This paper shows that in dimension one, even in the non-uniform case, this
proposition is consistent with other natural notions such as being an a.c.i.m. of
positive entropy or satisfying a variational principle.

Part of this work was done while visiting the University of Rome, with the support,
hospitality and interest from the statistical mechanics Roman team.

1. Notations and results
We shall say that a real function / on an interval [a, b] satisfies condition C, or is a
C-map, if:

Condition C. The map / is continuously differentiate and its derivative / ' has the
following properties:
(Ci) / ' satisfies a Holder condition of order e, e >0.
(C2) There are only a finite number of critical points. We denote them by
a<ax<a2- • • <an<b with /'(a,) = 0 for 0 < i < n.
(C3) There exist positive numbers ki(kt) such that

\f(x)\
log]

\x — at

is bounded in a left (right) neighbourhood of a,-.
Let / be the unit interval. A map / from I into itself will be called piecewise

condition C or a PC-map if there exists a finite partition 0 < b\ < b2 • • -<bm<\ such
that / is a C-map from [&,, &/+1] into /, for any /.

A probability measure ii on / is said to be invariant if fi(f~1A) = /J.(A) for every
Borel set A, and ergodic if it is invariant and every invariant set has measure 0 or
1. The entropy h(fi) of an invariant measure is a positive number (cf. [23]); the
entropy is 0 if and only if the map / is jtt-a.e. invertible. Conversely, a finite partition
P in a system {X, f, /x) defines a weak Bernoulli process [16] if, for any s >0, there
exists an n such that for any m, p

a,b

where the sum extends over all atoms of the partitions
m — 1 m + n+p

V f~'P and V f~'P
i=0 i = m + n

respectively.
The main results of this paper are the following.

THEOREM 1. Let f be a PC-map, Q the partition of I defined by the critical points
and the points of discontinuity, /u, an ergodic a.c.i.m. of positive entropy. If n is ergodic
for fk, for all k>0, then Q defines a weak Bernoulli process. In any case, there exists

k°~l -• k

a j t o > l such that the partition V / 'Q defines a weak Bernoulli process with f ° on
any ergodic component.
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Absolutely continuous invariant measures 79

We remark that, by introducing new discontinuities, any finite partition in intervals
can play the role of Q in theorem 1.

COROLLARY 2. Let f be a PC-map, /J. an ergodic a.c.i.m., si the o--field of Borel sets
on I. The tail cr-field f\f~"si is either finite or equal to si, according to whether
f log |/'| dfi is strictly positive or zero.

THEOREM 3. Let f be a C-map. An ergodic invariant measure ft with positive entropy
is an a.c.i.m. if and only if Rohlin's formula (1.1) is true:

(l.D

Theorem 3 is also valid for PC-maps if one considers only measures which are
non-degenerate (definition 1.3 below).

COROLLARY 4. Let f be a PC-map, fi an a.c.i.m. Almost all ergodic components of
/j, with positive entropy are still absolutely continuous. Therefore there can be essentially
only a countable number of different ergodic components with positive entropy.

A counterexample to theorem 3 for a C map can be obtained from a construction
of Bowen's [2] (this remark is due to L. S. Young). As an example of an application of
theorem 3, let us define a point x in / to be a regular point if the following properties
hold:

n - l

(Ri) The sequence of measures (1/n) X Sf'x converges vaguely towards an ergodic
1=0

measure fix (Sy denotes the Dirac measure at y).
(R2) The sequence of numbers (1/n) log \f" (x)\ converges towards \x.
(R3) We have Ax = j log \f'\ dyix.

A regular point is called positive regular if Ax > 0. The set of (positive) regular points
is measurable ([9], p. 363).

In some sense, orbits of regular points are the very orbits an experimentalist wants
to observe. One may argue that he can do so only if regular points have a positive
Lebesgue measure. Our criterion deals with that condition and was suggested by the
numerical evidence of [1].

THEOREM 5. Let f be a C-map from Iinto itself. The set of positive regular points has
a positive Lebesgue measure if and only if there exists an a.c.i.m. of positive entropy.

Theorem 5 follows from theorem 3 and proposition 6.

PROPOSITION 6. Let f be a C-map. For Lebesgue almost every regular point, we have
h(fix) = max (0, Ax).

The proofs of the main theorems use the construction of an invertible extension of
/ as follows: let / be a PC-map, 0 = a0 < a i < • • • < an+! = 1 be the sequence of critical
points and points of discontinuity. Let Z be the set of sequences of
{ 0 , 1 , . . . , n, n +1}, z = {zu 2 2 , . . . , zn,...}.
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80 F. Ledrappier

(1.2) We call the system (Y,/) the extension of (/,/), where Y is the subset of / x Z
composed of all the pairs (x, z) such that, for any m, there exists xm in / satisfying

and / is defined by

f(x, z) = 0c', z'), with x' = f(x), z'n = zn-,

for n > 1 and z i is the only index for which az; < x < az;+1.
It is easy to check that the map /on Y is invertible, its inverse fx being given by

f~1{x, z) = (x", z"), where x" is the first element xx (see above) in the definition of
(x, z) belonging to Y, and z"n = zn+1. It is also clear that the projection II on /
commutes with the maps / and that, for any invariant measure /x on I, there exists
a unique invariant measure /Z on Y whose image by II is /x. If the measure /x is
ergodic, so is /Z. Put 5(y) = inf |II(y)-a,|.

i

Definition 1.3. We say that an invariant measure /x is non-degenerate if we have

liminf (1/n) log<5(/~"y) = 0 /Z-a.e.
n

PROPOSITION 7. Let f be a C-map and (x an ergodic non-atomic invariant measure

with log |/'| dfx > -oo, or let f be a PC-map and fi an a.c.i.m. In both cases, the

measure n is non-degenerate.

For a non-degenerate measure we can construct the local unstable manifold.

THEOREM 8. Let f be a PC-map and /J, a non-degenerate invariant ergodic measure.

Let 0 < x < I log |/'| d/x. Then there exist on Y four measurable functions a, /3, y, y

and a constant D such that:
(i) a > 0, 1< p < oo, 0 < y < oo /Z-a.e.;

(ii) let y = (x, z) and |f] < a(y); the point y, = (x +1, z) lies in Y;
(iii) |n(/""y)-n(/""yt)| < j8(y) exp (-*n)|f|;
(iv) for any n,

1 ^/'(IK/-"y))
D f'(U(rnyt))

Let us consider the equivalence relation on Y defined by the projection on Z.
Theorem 8 says that classes are made of open subsets of the interval, so that this
equivalence relation defines a 'measurable foliation' of dimension one. The classes
of that equivalence relation also define a measurable partition £ Absolute continuity
of the foliation (Sinai [30]) is a property of conditional measures, or Rohlin
decomposition, with respect to £.
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THEOREM 9. Let f be a PC-map and fx. a non-degenerate invariant ergodic measure

such that h(n)= log \f'\ dfi > 0. Let q(y, •) be a Rohlin decomposition of (ifor the

partition £. Then for ji almost all y, the measure q(y, FF , •) on I is absolutely
continuous with respect to the Lebesgue measure. We even know the densities of the
conditional measures (proposition 3.6).

We first prove theorem 8. Local unstable manifolds in the non-uniform case were
first constructed by Pesin [18]. Further progress has been made by Ruelle [27], Fathi,
Herman & Yoccoz [7], Katok & Strelcyn [11], Ruelle [28], Mane, Ruelle & Shub
[29]. Our result is contained in the union of all those results and it is much simpler.
We give a proof of it for the sake of completeness and notations, and in order to
show the role of the different conditions. We then prove theorem 9. The proof
uses mainly the construction of a measurable increasing partition, as Pesin did in
[19], and the concavity of log, as in [12]. We then make some remarks which lead
to propositions 6 and 7 and, finally, combine our proofs to obtain the other
announced results. We shall use basic facts from Rohlin's papers [21] and [23]
without any other particular reference.

2. Local unstable manifold theorem
We consider a PC-map and we keep the notations of § 1. We put F(y) = |/'(Il(/~1y))|.
We first prove some lemmas.

LEMMA 2.1. Let f be a PC-map, y a point in Y, y = (x, z) andF(y) ^ 0. There exists
a constant D such that, if \t\ < (l/2D)S{f~1y) F(y), then there exists a point x\ in I
such that

f(x't) = x+t, a2l<x',<azi+u l/D<\f(x',)\/F(y)<D.

Proof. Let us consider a point x in I and / the index such that |x -a , | = S(jc). If
\x-x'\rs^S(x), then | < ( x - a , ) / ( x ' - a , ) < | a n d , by C3 if a, is a critical point, by Ci
otherwise, we can find a uniform D such that (1/D) ̂ f(x')/f'(x)<D. Therefore for
y in Y and t real, the conclusions of lemma 2.1 are true as soon as y +t lies in the
image by / of the interval [Tl{rly)-\8{f~ly), U(f1y) + U{rxy)]. The lemma
follows because |/'| is bounded from below by F(y)/D on this interval. •

Let us now define A(y) = (l/2D)S(f~iy) ^iy) a nd let us choose a real C3 function
d on the real line such that 6{t) = 1 if \t\ < i 0 if \t\ > 1. For any y in Y with F(y) # 0
define the real function Gy by

where x\ is given by lemma 2.1.

LEMMA 2.2. (i) Gy(t) = x',-U(f~ly) for | f |<U(y); |G'y(0)| = 1/F(y).
(ii) There exists K>\ such that, for any s, t reals, we have

"(F(y))2
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82 F. Ledrappier

Proof. Property (i) is immediate. Let us choose M such that \f'(t)—f'(s)\<M\t-s\
if s, t belong to the same interval. To prove (ii), we compute \G'y(t)- G'y(s)\.

In the case when |f|<A(y) and |s|>A(y), we have

\G'y(s)-G'y(t)\

1 1

fix',) F(y)

by Ci and lemma 2.1,

C
< -— 2 I' ~ s I * for some constant C.

The estimation is quite similar if both s and t are smaller than A(y). •

LEMMA 2.3. Let (X, f, fi) be a dynamical system, g in Ll(X, fi). Then

l im(l/«)g°/" = 0/u-a.e.

Proof. This follows immediately from the pointwise ergodic theorem. •

LEMMA 2.4. Let p be a non-degenerate invariant measure such that log |/'| dfi is

finite. Then liminf (l/n)logA(/~"y) = 0 /I-a.e.

Proof. This follows clearly from the non-degeneracy of the measure fi and lemma
2.3 applied to the integrable function log F. •

Let us now state the non-linear ergodic theorem ([27] theorem 5.1) for a family of
one-dimensional maps.

THEOREM 2.5 (Non-linear ergodic theorem). Let (X, 2, p; /) be a dynamical system
and, for any x in X, Gx be a C1+e real function, x<0. We write G" =
Gf-1

x ° • • • ° Gfx ° Gx and we suppose that log+ ||Gx||i,e is integrable and that
limsup (l/«) log \G" (0)|<*p-a.e. Then there exist measurable functions a(x),

such that, if \t\<a(x), \G"{t)\<p(x) exp (nx) for all n >0.

Proof of theorem 8. Let / be a PC-map and fi a non-degenerate ergodic measure.

Let us suppose that log |/'| dfi>0 and let us choose x> ®<X< log I/I ^M- By

(2.5) applied to (Y,f~x) and lemma 2.2, there exist measurable functions on Y
0<a '</3<+oo ji-a.e., such that, if |f|<a'(y), then \G"(t)\<@(y) exp (~nx) \t\.

We now put

a(y) = inf (a'(y), A(/""y) exp (nX)/2p(y), n >0).

By lemma 2.4, a is positive almost everywhere. We have now for |/|<a(y), and any
n>0 ,

\Gn
y(t)\*p(y)exp(-nX)\t\ and \Gn

y(t)\<h(r"y)-

The sequence {x"+i} which we obtain by applying lemma 2.1 t o ( / ~ " y , G"(t))

successively satisfies, by lemma 2.2 (i), f(x") = x"1 and therefore defines a unique
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point y, in Y; it clearly has the properties (ii), (iii), (iv) of theorem 8. Property (v)
follows from (iii), (iv) and the Holder condition on /'. •

3. Absolute continuity of the unstable foliation
We first show a preliminary lemma.

LEMMA 3.1. Let m be a finite measure on I; for Lebesgue almost all x in I, for all

a < 1, lim sup (1/n) log m[x -a", x + an]<0.
n

Proof. We have only to prove the formula for rational a < 1. Let us call Ak the set
of x such that m[x-ak,x + ak]<2k2ak, and let us cover I\Ak by intervals Q =
[xi — ak,Xi + ak], in such a way that xt£Ak and any point of / is at most in two
different intervals C,. If A denotes the Lebesgue measure, we have

By the Borel-Cantelli lemma, A-almost every point lies in lim inf Ak, and therefore
satisfies

lim sup (1/n) log m[x-a", x +«"]< lim sup (1/n) log 2n2 a" <0. •
n n

Lemma 3.1 allows us to construct Pesin's partition in the general case.

PROPOSITION 3.2. Let f be a PC-map and fi a non-degenerate invariant ergodic

measure, log \f'\ dfx. > 0. There exists a measurable partition r\ ofYwith the following

properties:
(i) the partition -q is increasing by f, f~l-q > 17, and generates;
(ii) the entropy of IJL is given by h(fi) = Hif^rj/ri);
(iii) the elements of 17 are subsets of the elements of the partition i;

(iv) we have /Z-a.e. 0< A(y, y') dy'<oo, where 17(y) denotes the element of i\

containing y and d denotes the natural Lebesgue measure on each element of 17.

Proof. We shall first construct the partition and then check properties (i) to (iv). We
consider the functions a, /3 and y given by theorem 8.

We call IT the projection from Y into Z. Let us consider a0, Po such that
/I ({a > a0, @ < /3o}) > 0 and a measurable map p from B = Tl'({a >a0, @ < /30}) into
{a >a0, /3< j80} which is a section of IT. We consider As, the set of y such that IT(y)
lies in B and |II(y) - IIp(IT(y ))| < s. By modifying p if necessary, we may suppose that
fi(Aao/2)>0.

For any 0 < T < 1, any integer n, consider Ar
s'

n, the set of y such that IT(y) lies in
B and | |n(y)-Ilp(II'(y))|-s|<r". By lemma 3.1 we can choose s<a0 such that

(3.3) jL(At)>0 and S jL(A?n) is finite for all T< 1.
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For such an s define 17 as the partition generated by the images of As and of the
partition Q determined by the a,:

V=\/ f'({As, Y\A,}vQ).
1=0

From the definition it is immediate that 17 is a measurable partition, increasing by
00

/, and that its elements are contained in the elements of £ because £ = V f'Q.
;=i

Furthermore, we have a generating partition because, if two points y\ and y2 are
such that all their images /'yi and f'y2 lie in the same element of {As, Y\AS} v £ we
have almost everywhere for an infinite number of «,, f'y 1 and f'y2 in the same local
unstable manifold with a>a0, (3 </30; therefore |II(yi)-n(y2)|</3oexp (-^n,)a0,
and yi and y2 must coincide. This means that almost any two points are separated
by V f"v- The partition 17 is therefore the future of a finite generating partition P,

n

and the entropy is given by

h(ji) = H(p/yjlp) = Hir'n/v).

We have now only to verify property (iv), which divides into two properties. The
strict positivity of the integral follows from:

LEMMA 3.4. For fi-almost any y in Y, r}(y) contains an open neighbourhood of y in

Proof of lemma 3.4. Let us call E the intersection of AT
s'", n > 1; E is the 'boundary'

of As. Let us denote the distance from y to E in £(y) by co(y). By (3.3) for any T < 1,
we have that £ /Z({«(/"y) < T"}) is finite. By the Borel-Cantelli lemma, it follows

n

that, for any x > 0, the function £(y) = inf (w(/""y) exp (nx), n>Q)is strictly posi-
tive /Z-a.e. Therefore, let us consider y in Y and a real t, \t\ smaller than a(y), <5(y),
and ^(y)/2/8(y). By theorem 8, there exists a point y't in Y, in the same element of

CO

£= V/"'O, and such that

Therefore f~"y and f~ny', are both in As or both in Y\AS for all n > 0. Since \t\ < S (y),
y and y't are also both in the same element of Q. Finally, for almost all y, we have
found an open set of reals t such that y', belongs to 7) (y), and that proves lemma 3.4. •

The finiteness of the integral in property (iv) follows from theorem 8 (v) if y is in

As, because A is bounded on the local unstable manifold, which contains rj(y). If y

is not in As, by ergodicity, there exists a positive k such that / " y is in As and then

V(y) =fk(tf~kri](rky)). We have therefore

A(y, y)dy = \ A ( / y , / y)\[ , dy
T,(y> J / f c <tr l t r , ] ( / - k y) ) i = i / ( / y)y)

= X\ \f'(fy)\ f A(rky, y') rf
'•=1 J[rkT,](rky)
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and this integral is finite because [/~kt)~\{f~ky) is contained in the local unstable
manifold of the point f~ky; this achieves the proof of proposition 3.2. •

We recall also the following classical lemma.

LEMMA 3.5. Let (X, ft, f) be a dynamical system and g,-, i = 1, 2, 3, be functions
related by g\ = g2 + gs °f~g3, with g2 and gi integrable. Then we have

lim (l/n)g3 °/" = l i - & = 0 M-a.c,

where g denotes the pointwise limit of ergodic averages of g.

Proof. The first equality comes by applying / ' to the given relation and averaging.
On the other hand, the random variables (l /n)g3 ° f" converge in measure towards
0. Therefore, the almost everywhere limit has to be 0. •

The next proposition expresses the absolute continuity of the unstable foliation.

PROPOSITION 3.6. Let f be a PC-map and fi a non-degenerate invariant ergodic

measure such that log |/'| dfi = h (fi) > 0. The Rohlin decomposition for the measure

fi. with respect to the partition r\ of proposition 3.2 is given by q(y, B), for y in Y and
B a measurable subset,

I A(y, y') dy'

f My, y') dy'

Proof. Let us remark first that q(y, •) in (3.6) is a probability measure such that
q{y, v(y)) = 1 and that, if Tj(yi) = Tj(y2), q(yi,-) is equal to q(y2, •) by multiplying
both factors by A(yt, y2).

Let us consider the Rohlin decomposition for the measure n with respect to the
partition r\, p(y, •), and we take an integer n. We have, by proposition 3.2 (ii),

(3.7) nh(n) = H{f~"v/v) = - \ logp(y, [/

In addition, the following relation is true:

(3.8) - j log q(y, [/"nT?](y))/[I(dy) = J log \f"'\ dfi^nj log |

(3.8) follows from lemma 3.5 and the following relation:

f A(y, y') dy'
q(y,irnv~\(y)) =

f My, y') dy'
Jv(y)
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which becomes by letting k(y) = A(y, y')dy',
Jr,(y)

<?(y, ir-nKy)) = r f r f A ( / " y , / V ) ^ J dy'
k(y) if-wry)) f (y)

By comparing (3.7), (3.8) and the Rohlin's formula of the hypothesis, we obtain

y. t / r

Consider the measure £ defined on the cr-algebras of [/~"TJ] measurable sets by

(3.9) says that

J log (dv/dfi) dp. =0.

By the concavity of the function log, this is possible only if /Z = v, which implies that
q(y, B)=p(y, B) if B is /~"TJ measurable.

As /~"TJ generates, the proposition follows by letting n go to infinity. •

Theorem 9 follows from proposition 3.6 because the partition -q is a subpartition of
the partition £. Therefore, the Rohlin decomposition with respect to £ is made of
measures which are linear combinations of measures from the Rohlin decomposition
with respect to 17. They are also absolutely continuous with respect to the Lebesgue
measure.

4. Proof of proposition 6
We first recall some facts and remarks.

The estimation of the entropy from above, for any invariant measure, can be
shown in various ways. The following result (4.1) is proved in [25].

PROPOSITION 4.1. Let f be a C1 map from I into itself and fj. an invariant measure.

Then /i(^)<max (o, J log |/'| d/A

In particular, proposition 4.1 explains why we called (1.1) a 'variational principle'.
To compute this entropy, we have to recall some formulae from [23]. Let / be a

C-map from / into itself and m a probability measure on /. If £ is a measurable
partition, we denote by Em{ /£)(*) the Rohlin decomposition measure for m with
respect to £ at the point x. If e is the point partition, let us define

= -l f logEm([ai,ai+1yrle)dm.
i -'[a1>ai + 1 ]

/ "PROPOSITION 4.2. For any invariant measure fj., / i(^t)s// ( t (e//" s).

We shall also use elementary properties of the function m^>Hm(e/f~ e).

https://doi.org/10.1017/S0143385700001176 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001176


Absolutely continuous invariant measures 87

PROPOSITION 4.3 (cf. [14] lemma 3.2). If m = pmx + (1 -p)m2, then

If m ({fli}) = 0, and mn is a sequence of measures converging towards m, then

Finally, let / be a C-map, p a positive function, and B a Borel set. Suppose that

pdk = \. The Rohlin decomposition measures for pA with respect to f "e can

be easily computed

(4.4) EPAB/r»e)(X)= 1 P~^ff/ X M-. (with 0/0 = 0).
yer r* 1/ \y)\ I yerTxl/ 001

We are now able to estimate HpK{elf~ne). We have:

LEMMA 4.5. Let f be a C-map, p a positive function, p d\ = 1. We have

HpK (e/rne) > J log \fn'\p d\-

Proof. Let us define Q" = {Q"} the partition of / defined by the critical points of /".
By (4.4), we have:

//pA(e/r
n

£)=xf iog[(ir'ooi i T0f

+ log I p(y)/\fn\y)\p{x)dx.
J yef'Tx

By the change of variables formula, the last term is also equal to

f. v p(y) v p(y) j
log 2] ~^"^— • L. —w—i dx.

J yer"x|/"(y)| ye/""* I/" (y)l
By convexity of the function t log t, this quantity is greater than T log T, where

J ye/—x |/" (y)| J

Proof of proposition 6. There is nothing to prove if there is almost surely no positive

regular points. If that is not the case, there exists a measurable function p, p d\ = 1,

p(x) > 0 only if x is a positive regular point. We may also assume that p is bounded
and that pA integrates inf (1/n) log \fn | so that (1/n) log \fn (x)\ converges towards

n - l

A* in Ll(I, pA). Let mn be the measure mn = (1/n) £ (pA) ° f ', and let us consider

a measure jn, vague limit point of the sequence mn. We have, by Rh p. = p.xp(x) dx,

and that is the ergodic decomposition of the invariant measure p.. We also have, by
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R2 and the choice of p, the convergence of log |/'| dmn = (1/n) log \f" | dpk

towards \xp(x) dx. Therefore, we have:

HmSe/rxe)>{\/n) "l H^rie/f'e) by (4.3),

^ p

by the sum formula for conditional entropies. Finally, by (4.5), we obtain

) ^ I log |/'| dmn - (sup p log sup p)/n.

If we had /J. ({a,}) > 0 for some critical point a,, the corresponding ergodic component

/u,, should verify log |/'| d/tt, = -oo, which contradicts R3. So, by (4.3) when n goes

to infinity, we have:

HIM(e/r1e)^limsupH^ie/r'e)^ f Axp(x)dx.

And, by (4.2),

| h(nx)p(x) dx = Hn^H^e/f^e)^ \xP(x)dx.

Comparing this formula with (4.1) and R3 gives h(fix) = \xpX-almost everywhere,
which is the statement of proposition 6. •

Let us remark that, in general, we can try to apply some limit argument and lemma
4.5 for constructing measures satisfying Rohlin's formula (1.1). Here R3 was the
condition which allowed us to control the behaviour of (1/n) log \f" \. Replacing R3

by another condition could be a way of finding invariant measures satisfying (1.1),
and therefore by theorem 2 a.c.i.m.

5. Non-degeneracy
We prove in this section proposition 7. The arguments are not the same for a PC-map
and an a.c.i.m. (lemma 5.1 and 5.2) as for a C-map and any invariant measure for

which log |/'| is finite (lemma 5.3 and 5.4).

LEMMA 5.1. Let f be a PC-map and ft an a.c.i.m., with density h. Then
(1/n) logh(n(f~"y)) tends to 0 /Z-a.e.

Proof. Saying that y. = h\ is an invariant measure is equivalent to the relation

h(x)= I h(x')/\f'(x')\.
X'srxx

By lemma 4.4 we can compute
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and find
I(e/r1e)(x) = \og\f'(x)\+logh(fx)-\ogh(x).

We have in the extension by applying f~x

The lemma follows by lemma 3.5. We also have that the limit of the ergodic averages
are the same for the functions I{fe/e) and log |/'|. •

LEMMA 5.2. Let f be a PC-map. Any a.c.i.m. is non-degenerate.

Proof. Let a, be a singular point and /u. = h\ an a.c.i.m. The function

is ^.-integrable. Therefore we have

llog \x - a , | > -log h(x)-\og+ k(x),

with log+ k jLt-integrable. By lemma 5.1 and lemma 2.3 applied to log+ k, we have
finally

lim inf (1/n) log |n(/""y)-a, | = 0 /tZ-a.e.
n

which proves lemma 5.2. •

LEMMA 5.3. Let f be a C-map and a{ a critical point for f. Let /J. be an invariant

measure on I such that log |/'| d/u, is finite. Then

lim inf (1/n) log \U(r"y) -at\ = 0 £-a.e.
n

Proof. Lemma 5.3 follows clearly from condition C3 and lemma 2.3 applied to the
integrable function log \f ° U\. D

LEMMA 5.4. Let f be a C-map and fj. an invariant measure without atoms and such

that log |/'| dfi is finite. Then

lim inf (1/n) log \U(f~ny)\ = lim inf (1/n) log |1 -n( /""y) | = 0 /Z-a.e.
n n

Proof. We may suppose fi ergodic and non-atomic. Let us remark first that the
pre-image of 0 and 1 can be made only of critical points, and of 0 and 1. We shall
consider the different cases.

If /'({O}) contains neither 0 nor 1, every trajectory {f~"y, n >0} which would
approach 0 exponentially fast on a subsequence would also by C3 approach exponen-
tially fast at the next stage another critical point. By (5.3) this happens only on a set
of pi -measure 0 of initial points.

If /*({()}) contains both 0 and 1, the preceding remark applies to 1. Therefore, if
there is a positive set of points whose orbits approach 0 exponentially fast on a
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subsequence, almost all of them cannot approach exponentially fast another pre-
image of 0 other than 0 itself. We have here to study what happens in the
neighbourhood of the fixed point 0. There can exist non-constant orbits by f'1

approaching 0 exponentially fast on a subsequence only if/'(0) > 1. Then, if the orbit
cannot escape to another pre-image of 0, it has to converge to 0. Therefore the set
of y such that U(f~ny) converges to 0 is of positive measure, and /A has to be the
Dirac measure at 0, which is impossible by hypothesis. So, in that case also, the set
of points whose orbits approach 0 exponentially fast on a subsequence has measure
zero. The same argument applies if /^({O}) contains 0 and not 1.

By exchanging the role of 0 and 1, we are left only with the following case: /"'({()})
contains 1 and f~1{{l}) contains 0, where the same argument applies to f2 instead of
/ ; this achieves the proof of lemma 5.4. •

6. Conclusions
We proved in the preceeding sections propositions 6 and 7 and theorems 8 and 9.
The other results then follow.

Let us first show theorem 2. The formula for the entropy of an a.c.i.m. is due to
Rohlin ([22], cf. also lemma 5.1 above for a proof). Conversely, let us consider for
a C-map / an ergodic invariant measure fi with positive entropy and satisfying
formula (1.1). By proposition 7 this measure is non-degenerate, and we may apply
theorem 9. Therefore for any subset A of 7 with Lebesgue measure zero, IT1 (A) is
of q(y, •) measure zero for /I-almost every y. By averaging in y, FT^A) is of
fi,-measure zero, that is n(A) = 0. The measure /u. is absolutely continuous with
respect to the Lebesgue measure.

We prove now theorem 5. Let fi be an a.c.i.m. Then log |/'| is an integrable
function (cf. again [22] or lemma 5.1). By the ergodic theorem applied to a countable
dense subset of continuous functions and to log |/'|, fi -almost every point is regular.

Therefore, if n = \ fix t*{dx) is the decomposition of the invariant measure fi into

ergodic measures, we have:

&(/"•)= I h(/j,x) fj,(dx)= \ max (0,\x) fi,(dx) by proposition 6.

If the entropy h(fi) is positive, the set of positive regular points has positive
(i-measure, and hence positive Lebesgue measure. Conversely, if the set of positive
regular points has positive measure, there exists some x0 to which proposition 6
applies and there exists some ergodic measure ju.Xo with

By theorem 2, /xxo is an a.c.i.m.
We then prove theorem 1. Let / be a PC-map and fi an ergodic a.c.i.m. of positive

entropy. By proposition 7 and theorem 9, the Rohlin decomposition measures for
/I with respect to the partition £ restricted to the <r-algebra Il~l(s£), are all absolutely
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continuous with respect to the same measure. Let us remark that the partition f is
OO

exactly the 'future' V/ 'O of the partition Q and that the cr-algebra H~1(si) contains
;=i

the cr-algebra generated by the 'past' a(f'Q, i<0). That means that the (Q, f, /I)
process has the following property: the Rohlin decomposition measures of pi with
respect to the future, restricted to the past, are all absolutely continuous with respect
to the same measure. This property implies the statement of theorem 1 (Ratner [20],
cf. also [13] and [17]). For completeness, we outline the argument here.

The Pinsker partition HQ of the process is contained in both the future and
the past. The property above implies that the Rohlin decomposition measures of
p, with respect to n o , restricted to the Pinsker cr-algebra O-(IIQ) itself, are all
absolutely continuous with respect to the same measure. This is possible only if n o

is countable.
By ergodicity, a countable invariant partition is finite and its elements are ergodic

sets for a suitable power fk°. As the Pinsker partition for the ( fy fk°Q, fk°\ process

is the same as the one for the (Q, f) process, we obtain all the conclusions of the
theorem if we show that n o trivial and the property of the decomposition imply
weak Bernoulli. But if the Pinsker partition I l o is trivial, we have that the terms in
the Rohlin decomposition for the measure p with respect to the future of the
partition Q, restricted on the remote past cr-algebra /\a(f~'Q,i>n), are all

n

absolutely continuous with respect to the same measure - and also have an average

by p which takes only the values 0 and 1 (for /\cr(f~'Q, />« ) = n o p mod Oj.
Therefore these restrictions to the remote past oj-algebra must all coincide. This
condition - that Rohlin decomposition measures with respect to the future coincide
on the remote past - is another form of the weak Bernoulli condition we gave in § 1,
as can be seen by applying f~m, letting m and p, and then n go to infinity.

Corollaries 2 and 4 are deduced in the same way. Let us consider a PC-map / and

an ergodic a.c.i.m. (i. If log \f'\ dp = 0, we have, by Rohlin's formula, h(n) = 0 and

the map / is /t-a.e. invertible; in other words, f~xs& = M mod 0. We also have

f~ns4 = si for all n. Conversely, if | log |/'| dyu >0, as we have h(fi) = H^(e/f~le),

the cr-algebra /\f~"s£ is the Pinsker cr-algebra cr(U). But for the same reason, by
n

3.2 (ii), cr(Il) is also included in the cr-algebra cr(ri). From proposition 3.5 and
the argument above, it follows that the cr-algebra cr (II) is finite, and that proves
corollary 2.

Let us now consider a PC-map /, /u. an a.c.i.m. and /A = (Ax(j,(dx) its ergodic

decomposition. By proposition 7 fi is non-degenerate and therefore almost all fix

are non-degenerate.
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In addition, the proof of lemma 5.1 gives us, if we identify the limits, the following

relation: h(/j.x) = log \f'\ dpx for almost all /xx. Theorem 2 applied to a PC-map and

a non-degenerate measure gives that almost all fix with positive entropy has to be
an a.c.i.m., which is the statement of corollary 4.
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