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Mod � representations of arithmetic fundamental

groups II: A conjecture of A. J. de Jong

Gebhard Böckle and Chandrashekhar Khare

Abstract

We study deformation rings of an n-dimensional representation ρ, defined over a finite field
of characteristic �, of the arithmetic fundamental group π1(X), where X is a geometrically
irreducible, smooth curve over a finite field k of characteristic p (�= �). When ρ has large
image, we are able to show that the resulting rings are finite flat over Z�. The proof
principally uses a Galois-theoretic lifting result of the authors in Part I of this two-part
work, a lifting result for cuspidal mod � forms of Ogilvie, Taylor–Wiles systems and the
result of Lafforgue. This implies a conjecture of de Jong for representations of π1(X) with
coefficients in power series rings over finite fields of characteristic �, that have this mod �
representation ρ as their reduction. A proof of all cases of the conjecture for � > 2 follows
from a result announced by Gaitsgory. The methods are different.
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1. Introduction

Let X be a geometrically irreducible, smooth curve over a finite field k of characteristic p and
cardinality q. Denote by K its function field and by X̃ its smooth compactification and set S :=
X̃ \ X. Let π1(X) denote the arithmetic fundamental group of X. Thus π1(X) sits in the exact
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G. Böckle and C. Khare

sequence
0 → π1(X) → π1(X) → Gk → 0,

where X is the base change of X to an algebraic closure of k, and GF denotes the absolute Galois
group of any field F . In this paper we study deformation rings of mod � representations of π1(X):
fix a continuous, absolutely irreducible representation ρ : π1(X) → GLn(F) with F a finite field of
characteristic � �= p. We begin with the following conjecture of de Jong.

Conjecture 1.1 [dJo01, Conjecture 1.1]. Let ρ : π1(X) → GLn(F[[x]]) be a continuous represen-
tation with residual representation ρ. Then ρ(π1(X)) is finite.

Remark 1.2.

(i) De Jong [dJo01] proves the above for n � 2 by extending Drinfeld’s reciprocity theorem [Dri83]
to F((x))-coefficients.

(ii) It is an important feature, observed in [dJo01, Lemma 2.12], of the representations considered
in Conjecture 1.1 that the image of any inertia group (for a place in S) is finite. We will exploit
this several times.

To state a reformulation of the above, we need some notation. Let O be the ring of integers of a
finite extension of the fraction field ofW (F) inside Q�, let ρ be as above and fix a lift η : π1(X) → O∗

of finite order of the one-dimensional representation det ρ. Then in [dJo01], following [Maz89], it
is explained how to attach a deformation ring RηX,O(ρ), or simply RηX for deformations of ρ of
determinant η and defined on π1(X). In [dJo01] the following is shown.

Theorem 1.3 [dJo01]. Suppose ρ is absolutely irreducible when restricted to π1(X). Then
Conjecture 1.1 is equivalent to RηX being finite (as a module) over Z�.

The theorem combined with the result quoted in Remark 1.2(i) shows the following result.

Corollary 1.4 [dJo01]. Suppose n = 2 and ρ is absolutely irreducible when restricted to π1(X).
Then RηX is finite over Z�.

Remark 1.5. Using obstruction theory, de Jong shows [dJo01] that, if RηX is finite over Z�, then it
is also flat over Z� and a complete intersection.

1.1 Results
In Theorem 3.1 we shall prove, under a mild restriction, that the ring RηX is finite over Z�. To avoid
some technicalities, here we only state the following special case.

Theorem 1.6. Let ρ : π1(X) → SLn(F) be a representation with F a finite field of characteristic
� �= p. Assume that ρ has full image, � � |n, |F| � 4, and |F| > 5 if n = 2. Then the ring RηX is finite
over Z�, and in particular Conjecture 1.1 holds for all ρ with reduction ρ.

Corollary 1.7. Let ρ be as in the previous theorem. Then it lifts to an �-adic representation
ρ : π1(X) → SLn(O) with O the ring of integers of a finite extension of Q�. The representation ρ
arises from a cuspidal eigenform, and hence ρ arises via reduction from a cuspidal eigenform.

If moreover at any place in S ramification is either tame or of order prime to �, then there exists
an �-adic lift ρ and a corresponding cuspidal eigenform both of the same conductor as ρ.

Representations ρ as above we call automorphic (of minimal conductor).

Proof of Corollary 1.7. We prove the second statement, as the first is similar and easier. Let R0,η
X

denote the quotient of RηX which parameterizes deformations which are minimal at the places in S.
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(This is a purely Galois-theoretic requirement. The conditions on ramification are needed so that we
can formulate, using [BK05, Propositions 5.1 and 5.2], a minimality condition.) By Poitou–Tate and
some obstruction theoretic arguments due to Mazur, it is by now standard to show that R0,η

X has a
presentation W (F)[[x1, . . . , xn]]/(y1, . . . , yn), where some of the yi could be zero. Because RηX/(�) is
finite, the same holds for R0,η

X /(�). From this one deduces easily that R0,η
X must be finite flat over Z�.

This proves the corollary when combined with the results of [Laf02].

Remark 1.8. The corollary combined with finiteness theorems of Harder about dimensions of cusp
forms with bounded conductor and fixed central character has consequences for conjectures in
[Kha00], [Moo00] and [MT01]; see [BK06].

1.2 Sketch of proof
The form of Conjecture 1.1, combined with Remark 1.2(ii) and Theorem 1.3, lends itself to proving
it not necessarily over X, but over a suitable finite cover Y of it, i.e. to applying base change
techniques. We repeatedly make use of this. In a first reduction, base change allows us to pass to a
situation where the assumptions of Theorem 1.6 are satisfied, and moreover X is projective.

In a second reduction step, we apply a level lowering technique of Skinner and Wiles [SW01]
to the lift of ρ constructed in [BK05]. This relies on an important principle that was discovered
by Carayol [Car89] to switch types of automorphic representations that give rise to a given ρ. The
technique of Skinner and Wiles yields, after finite base change, a minimal lift (i.e. a representation
of π1(Y ) with Y projective) of ρ over some finite cover Y of X. (As the results in [Laf02] provide
us with all base change results one expects, this does not require solvable base change.)

Thus it suffices to prove that the deformation ring RηY of a representation ρ : π1(Y ) → SLn(F),
with large image in the sense of Theorem 1.6, is finite over Z�, where Y is a projective, smooth,
geometrically connected curve, and ρ lifts to an �-adic representation of π1(Y ). (Here RY is a
minimal deformation ring, i.e. parameterizes equivalence classes of lifts of ρ, to representations of
π1(Y ) with a fixed determinant η, defined over certain complete Noetherian Z�-algebras.) This is a
significant simplification, if compared to the situation over number fields, as we need no level raising
results (which are still not available, at least in any generality).

We prove the finiteness of RηY by constructing Taylor–Wiles systems for ρ using the Galois
cohomology techniques of § 2 and automorphic methods of § 3. This allows one to prove that the
deformation ring RηY for ρ is finite over Z�. By what we have said this proves Theorem 1.6.

Our techniques follow closely the original method of Wiles and Taylor in [Wil95] and [TW95],
and later developments [Dia97, Fuj, SW01, HT03], which we have to generalize to our context. In
fact most of the work of this paper is devoted to carrying out these generalizations. There is a small
modification needed to handle problems arising from ‘torsion’ which may be of relevance even in the
number field case: in an Appendix we explain this innovation in the context considered in [Wil95]
and [TW95].

1.3 Some remarks
In a previous version [BK03] of this paper we had a weaker version of Theorem 1.6 with the additional
hypothesis that ρ was locally irreducible at some place. A forthcoming result of Ogilvie [Ogi05], see
Theorem 3.7 below, allows us to remove this hypothesis.

A proof of all cases of de Jong’s conjecture has been announced conditionally by Gaitsgory
[Gai04] for � > 2. His methods are different from ours. Our proof works in many cases when � = 2.

There are two separate works of Genestier and Tilouine (for GSp4), and Clozel, Harris and Taylor
(for GLn), on generalizations of [Wil95] and [TW95] to n-dimensional representations of absolute
Galois groups of totally real number fields. It is a comfort to us that we may quote verbatim
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from § II of [HT03] for the Hecke action at places that are introduced in building Taylor–Wiles
systems. One of the technical differences between the present work and [HT03] when building
Taylor–Wiles systems is that we allow for the possibility that the �th roots of 1 are in the base field
which entails slight adjustments on the Galois and automorphic side.

The key qualitative difference between the mentioned works and ours is that we can prove
automorphy of residual representations like ρ in the theorem (by the main result of [BK05]), while
in the works quoted this has to be at the moment an important assumption that seems extremely
difficult to verify in the number field case. Furthermore our aim is different: we are mainly interested
in establishing algebraic properties of deformation rings, while in the number field case these are
established en route to proving modularity of �-adic representations (which is known in our context
by [Laf02]).

Throughout this paper we use the notation of Part I of this work without further mention.

2. Galois cohomology

2.1 On deformations of the determinant
Unlike in Part I of this work, we will no longer work with fixed determinants when considering
deformation problems. At the same time, we want to keep finite the number of such determinants.
The standard way over function fields to achieve this is to require that under any deformation of
the determinant a certain a priori chosen place is totally split. This is basically what we will be
doing, except that the deformation theory, for instance in the proof of Lemma 2.9, requires a slight
twist of this, cf. Remark 2.10. The choice of place is the content of the following lemma.

Lemma 2.1. There exist infinitely many places w ∈ X whose residue field kw satisfies � � | [kw : k]
and k(ζ�) ∩ kw = k.

Proof. Let K ′ denote the unique constant field extension of K of degree �. For a place w of K
the following three conditions are equivalent: (a) w is split in K ′/K, (b) � divides [kw : k], and
(c) Frobw ∈ Gal(K ′/K) is trivial. Similarly one has equivalences between (a′) kw ∩ k(ζ�) = k,
(b′) K(ζ�)/K is inert at w, (c′) Frobw ∈ Gal(K(ζ�)/K) has maximal order. Since Gal(K(ζ�)/K)
and Gal(K ′/K) are abelian of relatively prime order, the group Gal(K ′(ζ�)/K) is the direct product
of the above two. Let σ ∈ Gal(K ′(ζ�)/K) be of maximal order. By the Čebotarev density theorem
there exist infinitely many places w ∈ X whose Frobenius automorphism maps to σ. Any such w
will have the desired properties.

Remark 2.2. The assertions of the Weil conjecture for curves over finite fields allow one to deduce an
effective version of the Čebotarev density theorem over function fields. Therefore one may strengthen
Lemma 2.1 to the following assertion. There exists an n0 ∈ N such that for every n � n0 there is a
place w of degree n over k which satisfies the conditions of Lemma 2.1.

For a place w as in Lemma 2.1 and Iw := Iw/([Gw, Iw]I�w) one has a split exact sequence

0 −→ Iw −→ Gab
w −→ Ẑ −→ 0, (1)

where the group Iw ∼= k∗w/k∗�w is a quotient of Z/(�) and trivial unless ζ� ∈ Kw. We fix a splitting
sw : Gab

w → Iw.

Lemma 2.3. Let w and sw be as above. Let ρ : Gw → {1} ∈ F denote the trivial character
and ρw : Gw → GL1(Rw) the universal deformation of ρ for deformations which factor via the
splitting sw. Denote by Lw,d ⊂ H1(Gw,F) the subspace corresponding to the tangent space of
the universal deformation.
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Then dimLw,d = dimFH
0(Gw,F(1)) = dimF F(1)π1(X), the subspace Lw,d is a complement to

H1
unr(Gw,F) in H1(Gw,F), and L⊥

w,d is a complement to H1
unr(Gw,F(1)) in H1(Gw,F(1)).

Proof. From the definition of Rw it follows that Lw,d is a complementary sub vector space for
H1

unr(Gw,F) in H1(Gw,F). Since local Tate-duality is perfect, L⊥
w,d must be a complementary vector

space for H1
unr(Gw,F(1)) in H1(Gw,F(1)). The fact that Lw,d is complementary to H1

unr(Gw,F) also
implies that it has the same dimension as H2(Gw,F). Again by local Tate-duality the latter is equal
to the dimension of H0(Gw,F(1)). Combined with the second assertion in Lemma 2.1 this yields
the identities for dimF Lw,d.

From now on, for the remainder of this paper, we fix a place w ∈ X as in Lemma 2.1 and a
splitting sw as in (1).

2.2 Removing local ramification
The current section lays the Galois-theoretic groundwork for the base change techniques which we
will apply repeatedly in the proof of our main result in the subsequent section. In this respect the
following proposition and corollary will be of much use to us.

Proposition 2.4. Let R be in A, let ρ : π1(X) → GLn(R) be a continuous representation and let
S1 ⊂ S be the set of places at which ρ(Iv) is finite. Let Ts, Ti ⊂ X̃ be finite and disjoint and
let m be some positive integer. Then there exists a finite (possibly ramified) Galois cover Y → X,
say with function field L, such that:

(i) L/K is totally split at all places above of Ts;

(ii) at places in Ti, the residue degree of the extension field L/K is a multiple of m;

(iii) the restriction ρ|π1(Y ) is unramified at the places above S1 \ Ts.
Note that S = S1 if either R is finite or R is the ring of integers of a local field of positive

characteristic, cf. Remark 1.2(ii). Before giving the proof, we state the following important corollary,
which will be used in the sequel.

Corollary 2.5. Suppose R lies in A and ρ, S1 are as in Proposition 2.4. Let Ti be a subset of X̃
and m some positive integer. Then there exists a finite (possibly ramified) Galois covering Y → X
with corresponding extension L/K of function fields such that:

(i) Y is geometrically connected over k;

(ii) ρ(π1(X)) = ρ(π1(Y )), ρ(π1(X)) = ρ(π1(Y ));
(iii) ρ|π1(Y ) is unramified above the places in S1;

(iv) at places above Ti, the residue degree of L/K is a multiple of m.

In particular if R is finite or the ring of integers of a local field of positive characteristic, we can
ensure that ρ|π1(Y ) is unramified everywhere.

Proof. We claim that there is a finite set T ′ ⊂ X disjoint from Ti such that the elements ρ(Frobv),
v ∈ T ′, topologically generate ρ(π1(X)). Since ρ(π1(X)) is finite, by the Čebotarev density theorem
there exists a finite set T ′′ ⊂ X disjoint from Ti with the above property for ρ. Let X ′ → X be the
smallest finite Galois covering over which ρ becomes trivial. Then ρ(π1(X ′)) is a pro-� group, and
since the pro-� completion of π1(X ′) is topologically finitely generated, so is ρ(π1(X ′)). Therefore
its Frattini quotient is finite, and again by the Čebotarev density theorem we may choose a finite
set T ′′′ ⊂ X disjoint from Ti such that the elements ρ(Frobv), v ∈ T ′′′, lie in ρ(π1(X ′)) and span
the Frattini quotient. Therefore by Burnside’s basis theorem these elements topologically generate
ρ(π1(X ′)). The claim follows with T ′ := T ′′ ∪ T ′′′.
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Recall that E is the splitting field of ρ. Let now Ts ⊃ T ′ be a finite set of places disjoint from
Ti such that:

(a) the greatest common divisor of the qv, v ∈ Ts, is q; and
(b) there exist w1, . . . , wj ∈ Ts such that Frobwi ∈ GE , i = 1, . . . , j, and such that #(E ∩ Fp) is

the greatest common divisor of the qwi, i = 1, . . . , j.

Applying Proposition 2.4 to these data, the corollary follows. (Note that condition (b) guarantees
the second part of (ii).)

We first prove the following lemma.

Lemma 2.6. Let K̃/K be finite with constant field k, let u be a place of K̃ and let K̃u be the
corresponding completion. Suppose F/K̃u is Galois of prime degree e. Then for any set of places T
of K̃ not containing u, there exists a Galois extension L of K̃ of degree e such that:

(i) all places in T are split;

(ii) there is a unique place u′ in L above u;

(iii) the extension Lu′/K̃u is isomorphic to F/K̃u.

Proof. For notational convenience, we give the proof only for K̃ = K. We will construct the desired
extension by the use of class field theory. Recall first the left exact sequence

0 −→ ET∪{u} −→ K∗ −→
∏

v/∈T∪{u}
K∗/O∗

v ,

where ET∪{u} is the group of (T ∪ {u})-units of K. As a group ET∪{u} ∼= k∗ × Z#T . Let f be an
element of ET∪{u}\EeT∪{u}. The extension K[f1/e] over K is non-trivial. Hence the number of places
at which this extension is not completely split is infinite. By class field theory this means that f
lies in O∗

v \ O∗e
v for infinitely many places v.

Choose now elements f1, . . . , fs ∈ ET∪{u} whose images in ET∪{u}/EeT∪{u} form a basis. By the

previous paragraph we may find a finite set of places T̃ = {v1, . . . , vs} of K disjoint from T ∪ {u}
and subgroups Uv ⊂ O∗

v for v ∈ T̃ of index e, such that

0 −→ EeT∪{u} −→ K∗ −→
∏

v/∈T∪{u}∪T̃
K∗/O∗

v ×
∏
v∈T̃

K∗/Uv

is left exact. From this one easily deduces the injectivity of

K∗
u/Uu ↪→ K∗

∖( ∏
v/∈T∪{u}∪T̃

K∗
v/O∗

v ×
∏
v∈T̃

K∗
v/Uv ×K∗

u/Uu

)
, (2)

where Uu ⊂ K∗
u is the subgroup which via local class field theory corresponds to F/Ku.

By possibly enlarging T , we may assume that the T -class group of K is trivial, i.e. that the
coordinate ring of X̃ \ T is a unique factorization domain. Then the right-hand side of (2) is
e-torsion. Since it is finitely generated, as well, it yields an elementary abelian e-extension of K.
Clearly the extension is totally split above T . By the injectivity of the map (2) the extension also has
the desired decomposition properties at u. The existence of an extension of K, satisfying (i)–(iii),
follows by choosing a suitable summand of the left-hand side of (2).

Proof of Proposition 2.4. By possibly shrinking S, we may assume that ρ is ramified at all places
of S. Let v1, . . . , vr denote the places in S and v1, . . . , vr′ , r′ � r, those in S1 \Ts. The groups ρ(Gv)
are all pro-solvable. By repeated application of the above lemma, we first construct a finite extension
L1 over K which is totally split at all places in Ts and such that the local extension of L1/K above v1
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is Galois with group isomorphic to ρ(Gv1) under ρ. Then construct L2/L1 which is again totally
split at all places of Ts and such that for a place v′2 of L1 above v2 in K the local extension of L2/L1

above v′1 is Galois with group isomorphic to ρ(Gv2) under ρ. One reaches inductively an extension
Lr′ which contains places w1, . . . , wr′ above v1, . . . , vr′ such that the restriction of ρ to each Gwi is
trivial.

By another repeated application of the lemma, we may construct an extension L′
r′ of Lr′ , totally

split at all places above Ts and such that the residue degree at places in Ti grows by a multiple of
m. (Locally at places in Ti one constructs the unramified extensions of degree m.) Then the Galois
closure L of L′

r′ above K has all the desired properties.

Simplifying assumption. Henceforth, because of the corollary, and Theorem 1.3, we may and
will assume that the curve X in Theorem 1.6 is projective. (Note that this simplification already
appeared in [dJo01].)

2.3 On Taylor–Wiles auxiliary primes
In § 3.4, we will construct Taylor–Wiles systems [TW95] in the minimal case. As such they consist of
a Galois-theoretic and a Hecke part. The current section provides the Galois-theoretic tools needed.
Recall that in [BK05] the extension E/K is defined as the splitting field ρ.

We begin with the following lemma.

Lemma 2.7. Let v be a place such that qv ≡ 1 (mod �), ρ is unramified at v and ρ(Frobv) has
distinct eigenvalues which are all contained in F. Let (R,M) be in A and let ρv : Gv → GLn(R) be
a lift of ρv. Then up to strict equivalence the image of ρv is diagonalizable.

Recall that ρv, ρ′v : Gv → GLn(R) are strictly equivalent if there exists M ∈ GLn(R) congruent
to the identity modulo M such that MρvM

−1 = ρ′v.
Note also that ρv will factor through the tame quotient Gqv of Gv since ρ is unramified and the

kernel of π : GLn(R) → GLn(F) is prime to p. The lemma implies that in fact ρv factors through
the abelianization Ẑ × Z/(qv − 1) of Gqv . The following proof is analogous to the one in Faltings’
appendix to [TW95].

Proof. Let us assume that ρv takes its image in the diagonal matrices. This shows, in particular, that
the exponent e of the cyclic group ρ(Gv) is prime to �. Because the kernel of π, defined above, is a pro-
� group, the representation ρv : Gqv → GLn(R) must factor via the quotientG := Z�(1)�(Z�×Z/(e))
of Gqv .

Let σ be a generator of Z/(e) and s of Z� × Z/(e). We may regard σ as well as s as elements
of G. Because ρ(σ) has distinct eigenvalues and ρv(σ) has finite order e, using strict equivalence we
may assume that ρv(σ) is diagonal. Since ρ(σ) has distinct eigenvalues, the same holds for ρv(σ).
But this implies that ρv(s) is diagonal as well, because ρv(s) commutes with ρv(σ).

Let t be a generator of Z�(1). We claim that ρv(t) (mod mi) is diagonal for all i � 1. Proceeding
by induction, the assertion is trivially true for i = 1. So let us assume that the assertion holds for
some i and write ρv(t) = D + B, where D is a diagonal matrix and B is zero along the diagonal
and has entries in mi. Because B2 ≡ 0 (mod mi+1), the relation sts−1 = tqv yields

ρv(s)(D +B)ρv(s)−1 ≡ Dqv +
qv−1∑
i=0

DiBDqv−i−1 (mod mi+1).

As D ≡ I (mod m), and qv − 1 ∈ m, the right-hand side is congruent to Dqv + B modulo mi+1.
Comparing off-diagonal entries, we see that B (mod mi+1) commutes with ρv(s) (mod mi+1). This
shows that B (mod mi+1) is diagonal, and hence zero.
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Let us fix a place v as in the previous lemma, an integer m ∈ N such that �m|(qv − 1), and
an eigenvalue λ of ρ(Frobv). The place v is of the type used by Taylor and Wiles [TW95] as an
auxiliary prime. By the previous lemma, any deformation of ρ|Gv

will have diagonal image. We now
define a local deformation problem which further restricts ramification, namely so that it can only
occur in the ‘direction’ defined by the chosen eigenvalue λ. More precisely, we define the collection
of lifts Cv,λ,m of ρv as follows.

Let s, t ∈ G
ab
qv

∼= Z/(qv − 1) × Ẑ be such that t generates inertia and s maps to Frobv in Gv/Iv.
Denote by λ1, . . . , λn Teichmüller lifts of the eigenvalues if ρ(Frobv) such that λ ≡ λ1 (mod �). Set

Rv,m := W (F)[[x1, . . . , xn, y]]/((1 + y)�
m − 1), (3)

and define ρv,λ,m : Gv −→→ Gab
v −→ GLn(Rv,m) by

s 
→ Diag(λ1(1 + x1), . . . , λn(1 + xn)), t 
→ Diag((1 + y), 1, 1, . . . , 1).

Finally define Cv,λ,m : A → Sets by

R 
→ Cv,λ,m(R) := {ρ : Gv → GLn(R) | ∃α ∈ HomA(Rv,m, R),

M ∈ 1 +Mn(mR) : ρ = M(α ◦ ρv,λ,m)M−1}.
We define Lv,λ,m ⊂ H1(Gv , ad(ρ)) as the subspace spanned by the 1-cocycles{

c : g 
→ 1
ε
(ρ(g)ρ−1

0 (g) − I) | ρ ∈ Cv,λ,m(F[ε]/(ε2))
}
, (4)

where ρ0 is the tautological lift induced from the splitting F → F[ε]/(ε2). It is easy to see that
dimLv,λ,m = dimH1

unr(Gv, ad(ρ)) + 1 = n + 1. Moreover Lv,λ,m is independent of m as long as
m > 0. Finally, note also that Corollary 4.9 of [BK05] yields the following lemma.

Lemma 2.8. Let σ ∈ Gal(E(ζ�)/K) be the image of Frobv. Then the subspace

L⊥
v,λ,m ⊂ H1

unr(Gv , ad(ρ)(1)) ∼= ad(ρ)/(Frobv − 1)ad(ρ)

of codimension one only depends on σ and the choice of λ (among the eigenvalues of ρ(σ)).

Because of the above lemma, we also write L⊥
σ,λ or L⊥

v,λ for L⊥
v,λ,m. Note that since the cyclotomic

character χ is trivial on Gv, the restrictions of ad(ρ) and ad(ρ)(1) to Gv agree.
The central result of this section is the following which is modeled on [HT03, Theorem IV.5.3].

The notation for Selmer groups is a standard one and for instance the one used in [BK05], and
introduced there on page 9.

Lemma 2.9. Let ρ : π1(X) → GLn(F) be a continuous representation. Define Lw :=H1
unr(Gw, ad

0(ρ))
⊕ Lw,d, where Lw,d is the subspace of H1(Gw,F) considered in Lemma 2.3, and F ⊂ ad(ρ) via the
diagonal embedding. Suppose that the following hold.

(i) For any π1(X)-subrepresentation V of ad(ρ), there exists a regular semisimple gV ∈ ρ(π1(X))
such that V gV �= 0.

(ii) If ζ� ∈ E, then H1(Gal(E/K(ζ�)), ad0(ρ)) = 0.
(iii) If ζ� ∈ K, then ad0(ρ) has no one-dimensional subrepresentation.

(iv) The image of ρ has no quotient of order �.

Then for any given m ∈ N there exists a set Qm of dimH1
{Lw}({w}, ad(ρ)) places of X \ {w} and

there exist elements λv ∈ F for all v ∈ Qm such that:

(a) for all v ∈ Qm one has the congruence qv ≡ 1 (mod �m);
(b) for all v ∈ Qm the matrix ρ(Frobv) has n distinct eigenvalues and λv is among them;
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(c) H1
{L⊥

v }({w} ∪Qm, ad(ρ)(1)) = 0 if one sets Lv := Lv,λv for each v ∈ Qm;

(d) dimH1
{Lw}({w}, ad(ρ)) = dimH1

{Lv}(Qm ∪ {w}, ad(ρ)).

The proof in fact shows that the sets Qm above may be chosen disjoint from any given finite set
of places S′. Moreover the proof can be extended, almost verbatim, to the case where one is given
a set of deformation conditions (Cv, Lv)v∈S∪{w} at a finite set S disjoint from {w}.

Proof. The proof follows closely the analogous proof given in [HT03] which in turn is similar to
that in [TW95]. First, one has h1

unr(Gv, ad(ρ)) = h0(Gv , ad(ρ)) for any place of X. Also dimLw,d =
dimH0(Gw,F(1)) by Lemma 2.3. Hence [BK05, Remark 3.5], yields

dimH1
{Lw}({w}, ad(ρ)) = dimH1

{L⊥
w}({w}, ad(ρ)(1)). (5)

Define Em := E(ζ�m) and let Ym → X \ {w} be the corresponding Galois cover. We first claim
that the composite

H1
{L⊥

w}({w}, ad(ρ)(1)) ↪→ H1(π1(X \ {w}), ad(ρ)(1))

→ H1(π1(Ym), ad(ρ)(1))Gal(Em/K)

is injective, where the second morphism is restriction.
We have Lw = H1

unr(Gw, ad
0(ρ))⊕Lw,d with Lw,d ⊂ H1(Gw,F), and so we may prove the claim

separately for the subrepresentations F and ad0(ρ) of ad(ρ). We first consider ad0(ρ).
Condition (ii) yields H1(Gal(E1/K), ad0(ρ)(1)) = 0, as can be seen by applying for instance

[Böc03, Proposition 1.8(i),(ii)]. This proves the claim for m = 1 and ad0(ρ). For m > 1, inflation-
restriction and taking invariants yields the left exact sequence

0 → H1(Gal(Em/E1), ad0(ρ)(1))Gal(E1/K)

→ H1(π1(Y1), ad0(ρ)(1))Gal(E1/K)

→ H1(π1(Ym), ad0(ρ)(1))Gal(Em/K).

We will show that the left-hand term vanishes. SinceK(ζ�m) is Galois over K, the group Gal(Em/E1)
lies in the center of Gal(Em/K). Moreover by the definition of E1, the action of Gal(Em/E1) on
ad(ρ)(1) is trivial. Therefore we find

H1(Gal(Em/E1), ad0(ρ)(1))Gal(E1/K)

= H1(Gal(Em/E1),F) ⊗F (ad0(ρ)(1))Gal(E1/K).

By (iii) the last expression is zero. This proves the claim for the ad0(ρ)-component.
We will now consider the diagonal F-component. By inflation-restriction we need to show that

0 = H1
{L⊥

v,d}
({w},F(1)) ∩H1(Gal(Em/K),F(1))

inside H1(π1(X\{w}),F(1)). Again by inflation-restriction, the second term allows the isomorphism

H1(Gal(Em/K),F(1)) ∼= (H1(Gal(Em/K(ζ�)),F) ⊗ F(1))Gal(K(ζ�)/K).

By assumption (iv) the right-hand side is isomorphic to

H1(Gal(K(ζ�m)/K(ζ�)),F) ⊗ (F(1)Gal(K(ζ�)/K)).

If ζ� /∈ K, the proof of the claim is thus complete. In the case ζ� ∈ K, a non-zero class in
H1(Gal(Em/K),F(1)) describes a non-zero character Gal(K(ζ�m)/K(ζ�)) −→ F. Because � � | [kw : k],
such a class restricts to a non-zero class in H1

unr(Gw,F(1)). By Lemma 2.3 it maps to a non-zero
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class in H1(Gw,F(1))/L⊥
w,d and so such a class cannot lie in H1

{L⊥
w,d}

({w},F(1)). This completes the
proof of the claim.

Let now ψ be a 1-cocycle whose class [ψ] ∈ H1
{L⊥

w}({w}, ad(ρ)(1)) is non-zero. By the above
claim, the restriction of ψ to π1(Ym) is non-trivial. Since π1(Ym) acts trivially on ad(ρ)(1), the
class [ψ] induces a non-trivial Gal(Em/K)-equivariant homomorphism π1(Ym) → ad(ρ)(1). Let Eψ
denote the fixed field of its kernel, and V (1) its image in ad(ρ)(1). Then the induced morphism
Gal(Eψ/Em) → V (1) is bijective.

Choose a regular semisimple g ∈ ρ(X) such that V g �= 0, and an element σ ∈ Gal(E1/K(ζ�))
such that g = ρ(σ). For such a g we now consider

V (1)g ∼= Vg ↪−→ ad(ρ)(1)g ∼= ad(ρ)g ∼= H1
unr(Gv , ad(ρ)(1)),

where v ∈ X \ {w} is any place with Frobv 
→ σ. For an eigenvalue λ of g we denote by L⊥
g,λ ⊂

ad(ρ)(1)g the corresponding subspace as defined in (4). One easily shows
⋂
λ L

⊥
g,λ = 0, where the

intersection ranges over all eigenvalues of g, e.g. by proving the dual assertion. We claim that there
exists xV ∈ Vg and an eigenvalue λ of g such that

ψ(Frobv) + xV /∈ L⊥
g,λ ⊂ H1

unr(Gv , ad(ρ)(1)).

Assume otherwise. Then ψ(Frobv) + Vg ⊂ L⊥
g,λ for all eigenvalues λ. This implies Vg ⊂ L⊥

g,λ for
all λ, and therefore Vg ⊂

⋂
λ L

⊥
g,λ = 0, contradicting Vg ∼= V g �= 0.

Let τ ∈ π1(X \{w}) by any element which acts trivially on Em and maps to xV under ψ. Because
Eψ/K is Galois, by the Čebotarev density theorem there exists a place v′ ∈ X \ {w} such that the
image of Frobv′ in Gal(Eψ/K) agrees with that of τFrobv. By the above [ψ] /∈ L⊥

v′,λ. A simple
inductive argument now finishes the proof of the lemma.

Remark 2.10. At two instances the above proof makes crucial use of the special choice of w and of
the deformation condition on the determinant that we enforce at w. First this choice is needed to
obtain formula (5). Second, it is needed to prove the injectivity on the F-component of ad(ρ) in the
homomorphism displayed below (5).

In the function field situation the extension K(ζ�m)/K(ζ�) is a constant field extension, and
hence unramified. The special choice of determinantal deformations at w is needed to rule out
certain unramified characters. In the number field case the extension K(ζ�m)/K(ζ�) typically is
ramified at the prime �, and so a choice of w and a deformation condition is unnecessary.

To complement Lemma 2.9, in the particular case in which we are interested, we also prove the
following lemma.

Lemma 2.11. Suppose ρ : π1(X) → SLn(F) is surjective, � � |n, |F| � 4, and |F| > 5 for n = 2. Then:

(i) ρ(π1(X)) = SLn(F) contains a regular semisimple element;

(ii) ad(ρ) = ad0(ρ) ⊕ F, ad0(ρ) is irreducible, and for any regular semisimple g ∈ SLn(F) one has
Fg = F and M0

n(F)g �= 0;

(iii) H1(SLn(F),M0
n(F)) = 0;

(iv) SLn(F) has no quotient isomorphic to Z/(�).

Proof. Under our conditions on n and F, the group SLn(F) has no abelian quotients, which shows
(iv) and ρ(X) = SLn(F). Parts (i) and (ii) are clear and (iii) follows from [CPS75].
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3. Automorphic methods

We begin this chapter by briefly reviewing parts of the theory of automorphic forms over function
fields. We formulate in § 3.3 a principle of Carayol [Car89] in a form suitable for us (cf. the two
lemmas in the section). Section 3.4 explains how to carry over the method of Taylor–Wiles systems
and its later simplification, cf. [TW95, Dia97], from the number field to the function field case,
using crucial results of § 3.3, assuming that we are in a situation where we have an automorphic
lift of ρ of minimal level. Thereby we prove isomorphisms between certain universal deformation
rings and corresponding Hecke algebras, under this crucial assumption. We present a slight technical
improvement over the usual method that might also be useful in the number field case. In § 3.5, we
prove a theorem on ‘lowering the level up to base change’ for certain cuspidal Hecke eigenforms,
which allows us to verify this assumption in a significant number of cases, enough to cover the
applications to Theorems 3.1 and 1.6 that are proved in the last section by pulling all the results
of this section together. Our method here is that of Skinner and Wiles [SW01], and again relies on
results of § 3.3.

We keep the hypothesis that X is projective and fix some notation to state the main theorem of
the final section. Let O be a discrete valuation ring finite over W (F) and with maximal ideal m. For a
finite subset T of X, consider a representation ρ : π1(X \T ) → GLn(O) with residual representation
ρ := ρ (mod m). The extension E/K is as in § 2.3. We say that ρ is type-1 at a place v ∈ X, if ρ
is unramified at v and ρ(Iv) is unipotent of rank 1.

In the final section, we prove the following theorem and give some further applications of it.

Theorem 3.1. Let O, T, ρ and ρ be as above and suppose that they satisfy the following.

(i) The representation ρ is type-1 at all v ∈ T .

(ii) For any π1(X)-subrepresentation V of ad(ρ), there exists a regular semisimple gV ∈ ρ(π1(X))
such that V gV �= 0.

(iii) If ζ� ∈ K, then ad0(ρ) has no one-dimensional subrepresentation.

(iv) If ζ� ∈ E, then H1(Gal(E/K(ζ�)), ad0(ρ)) = 0.

(v) The image of ρ has no quotient of order �.

(vi) Finally, η := det ρ is of finite order.

Then RηX is finite flat over Z�.

The proof of this theorem will occupy us in the rest of this paper. Combined with the Galois-
theoretic lifting results of [BK05, Theorems 1.1 and 2.4], the above theorem will easily imply
Theorem 1.6 as we see at the very end (see proof of Theorem 4.1).

Note that if ad0(ρ) is (absolutely) irreducible, then so is ρ. So when we require both assumptions,
we only state the former.

The above result would also go through if one allows unipotent ramification of any rank at the
places in T . However, since we do not need this and since it would make the proofs unnecessarily
technical, we content ourselves with the rank one case.

Let us fix the following notation for this section. For a place v of X̃ we denote by Kv, Av, Mv ,
kv and qv the completion of the function field K of X at v, its ring of integers, the maximal ideal of
the latter, its residue field and the cardinality of the latter, respectively. Let A = AK be the adeles
over K. The symbols F , O, F and m will denote a sufficiently large finite extension of Q�, its ring
of integers, its residue field and the maximal ideal of O, respectively. In the definitions to come, Λ
stands for any of the three rings F , O or F.
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Note again that we have chosen a place w ∈ X and a splitting sw as in Lemma 2.1 and in the
short exact sequence (1). To this splitting corresponds the choice of a uniformizer πw of Kw unique
up to multiplication by 1 + Mw. From now on v will always be a place of K different from w.

Let U0(kv) ⊂ GLn(kv) be the maximal parabolic which fixes the subspace e1kv and define
U0(v) := {g ∈ GLn(Av) : g (mod Mv) ∈ U0(v)}. For ḡ ∈ U0(kv) denote by a11(ḡ) its (1, 1)-entry.

Definition 3.2. For a character χv : k∗v → Λ∗, we denote by I1(χv) the one-dimensional represen-
tation of U0(v) defined by

U0(v)
(modMv)−→ U0(kv)

a11−→ k∗v
χv−→ Λ∗.

We define U1,m(v) := {g ∈ U0(v) : a11(g (mod m)) ∈ k∗�mv }, so that U1,m(v) ⊂ ker(I1(χv)) ⊂
U0(v) for any character χv of order dividing �m.

We also define the compact open group Ud(w) as the kernel of the composite

GLn(Aw) modMw−→→ GLn(kw) det−→→ k∗w −→→ k∗w/(k
∗�
w ).

3.1 Automorphic forms over function fields
Our next aim is to define spaces of cusp forms on GLn(A).

In the sequel we will often work under the following hypothesis.

Assumption 3.3.

(i) T is a finite subset of X \ {w}.
(ii) ω : GL1(A) → Λ∗ is a character of finite order, unramified outside w, and trivial on

πZ
w(1 + Mw)k∗�wK∗ (with πw ∈ Kw the uniformizer at w chosen above corresponding to the

splitting sw).
(iii) For v ∈ T , χv : k∗v → Λ∗ is a character of �-power order �mv , which may be trivial.

The above set-up will be of use in two different instances, namely in lowering the level of an
automorphic cusp form associated to a residual Galois representation and in constructing Taylor–
Wiles systems. In the first case, we will use the above notation as stated. In the second, the set T
will be denoted by Q or Qm.

For any m ∈ N0 we define

ZmT := K∗
(
πZ
w(1 + Mw)k∗�w ×

∏
v∈T

(1 + Mv)k∗�
m

v ×
∏

v/∈T∪{w}
A∗
v

)
.

For any m ∈ N and any finite (possibly empty) T ⊂ X \{w} we define a compact open subgroup
of GLn(A) by

UmT := Ud(w) ×
∏
v∈T

U1,m(v) ×
∏

v/∈T∪{w}
GLn(Av) ⊂ GLn(A).

Under the hypothesis of Assumption 3.3, and for m � max{mv : v ∈ T}, we define Cω,(χv)
cusp,T (Λ)

as the space of all functions
f : GLn(K)\GLn(A)/UmT → Λ

with the following properties:

(i) the central action of ZmT on f is described by ω;
(ii) for v ∈ T the right action of U0(v) on f(g · ) is via the character I1(χv);
(iii) f is cuspidal (cf. [BJ79, § 5]).
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Note that the conditions do completely determine the central action of A∗
v. We define the analo-

gous space Cω,(χv)
c,T (Λ) with the last condition replaced by compact support mod center. By a result

of Harder we have an inclusion Cω,(χv)
cusp,T (Λ) ⊂ Cω,(χv)

c,T (Λ).
For any m ∈ N0 we define a second space of functions Cω,m

cusp,T (Λ) as the space of all functions

f : GLn(K)\GLn(A)/UmT → Λ

such that for z ∈ ZmT one has f(zg) = ω(z)f(g), and f is cuspidal. If instead of cuspidal we consider
functions that are compact mod center, we denote the corresponding space by Cω,m

c,T (Λ).
The following is an immediate consequence of the above definitions.

Proposition 3.4. Assume that F contains ζ�m. Then

Cω,m
cusp,T (F ) ∼=

⊕
(χ′

v)

Cω,(χ′
v)

cusp,T (F )

and

Cω,m
c,T (F ) ∼=

⊕
(χ′

v)

Cω,(χ′
v)

c,T (F ),

where the (χ′
v) range over all characters of

∏
v∈T U0(v)/U1,m(v).

Proposition 3.5. Let M(O) be any of the spaces Cω,(χv)
cusp,T (O), Cω,(χv)

c,T (O), Cω,m
cusp,T (O) or Cω,m

c,T (O).

(i) The spaces M(O) are free and when we consider the cuspidal space they are also finitely
generated over O.

(ii) The induced morphism M(O) ⊗O F →M(F) is injective.

Proof. The modules Cω,(χv)
c,T (O) and Cω,m

c,T (O) may be viewed as spaces of finitely supported func-
tions on an infinite (discrete) set. Hence they are free O-modules. The other two are submodules of
these, and thus they are free as well. This proves (i).

For (ii) note that the argument given in (i) shows that for the spaces describing compactly
supported functions the morphism in question is an isomorphism. Since cuspidality is preserved
under the reduction map O → F the injectivity also follows in the remaining cases.

By definition, cf. [BJ79], one has a smooth admissible automorphic representation Π(f) of
GLn(A) attached to an automorphic form f for GLn (simply given by F [GLn(A)]f). The local
constituents of Π(f) are denoted Πv(f), so that Π(f) ∼= ⊗̂

vΠv(f). Conversely, if Π is a smooth
admissible cuspidal automorphic representation and U a compact open subgroup of GLn(A), then
ΠU is a (possibly empty) space of cusp forms.

3.2 Hecke algebras
For v /∈ T ∪ {w} we define the spherical Hecke algebra Hv as the algebra of bi-GLn(Av)-invariant
locally constant compactly supported functions on GLn(Kv) with values in Z�, and where multipli-
cation is given by convolution. The algebra Hv contains naturally defined elements Tv,i, i = 1, . . . , n,
the Hecke operators at v, and the Satake isomorphism asserts that

Hv
∼= Z�[Tv,1, . . . , Tv,n, T−1

v,n ].

For v ∈ T (T might be empty) and mv ∈ N0, we follow [HT03, ch. II], (there is no difference
between the function and the number field case here). So we denote by Vv,i, i = 1, . . . , n − 1,
the Hecke operators in the convolution algebra of U1,mv (v)-bi-invariant locally constant compactly
supported functions on GLn(Kv) with values in Z�, defined as in [HT03, II.2.2]. By Vv,n we denote
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the U -operator from [HT03, II.2.4], which again lies in the above convolution algebra. (We choose
the notation Vv,n, to avoid any conflict with our notation for compact opens.) The commutative
subalgebra generated over Z� by the Vv,i, i = 1, . . . , n, is denoted by Hmv

v . We consider the Hecke
action at places in T only when building Taylor–Wiles systems.

To obtain a Hecke action at almost all places (namely outside w), we set

Hab,m
T :=

⊗
v∈T

Hm
v ⊗

⊗
v/∈{w}∪T

Hv.

This Hecke algebra acts on the spaces of cusp forms Cω,(χv)
cusp,T (Λ), Cω,m

cusp,T (Λ) and the analogous (much
larger, infinite-dimensional) space of functions that are compact mod center. For m � max{mv : v ∈
T}, we define Hm

T (Λ), respectively H(χv)
T (Λ) as the image of Hab,m

T ⊗Z Λ in the endomorphism ring
of Cω,m

cusp,T (Λ), respectively Cω,(χv)
cusp,T (Λ). Also define Hm

c,T (Λ) and H(χv)
c,T (Λ) as the image of Hab,m

T ⊗Z

Λ in the endomorphism ring of Cω,m
c,T (Λ) and Cω,(χv)

c,T (Λ). Because Cω,m
cusp,T (Λ) is a free Λ-module

of finite rank, the same holds for Hm
T (Λ) and H(χv)

T (Λ). Moreover Hm
T (F ) ∼= Hm

T (O) ⊗O F and
H(χv)
T (F ) ∼= H(χv)

T (O) ⊗O F . (Although Cω,m
c,T (Λ) is not a free Λ-module of finite rank, we still have

Hm
c,T (F ) ∼= Hm

c,T (O) ⊗O F .)
We state the main theorem of [Laf02].

Theorem 3.6 [Laf02]. For any finite subset T of X, there is a bijection between:

(i) smooth irreducible cuspidal automorphic representations Π whose central character is of finite
order and with Πv unramified for v /∈ {w} ∪ T ; and

(ii) irreducible continuous representations ρ : π1(X \ ({w} ∪ T )) → GLn(Q�) with determinant of
finite order.

Suppose that for Π as above, the eigenvalues of the operators Tv,i, v /∈ {w} ∪ T , i = 1, . . . , n, are
αv,i (and αv,0 = 1). Then the correspondence is given by the condition

det(1 − xρ(Frobv)) =
n∑
i=0

xn−iαv,i. (6)

Suppose we are given ρ : π1(X \ {w} ∪ T ) → GLn(O) with absolutely irreducible residual
representation ρ. Let Π be the corresponding automorphic representation. By the relation (6) the
Hecke eigenvalues αv,i, v /∈ {w} ∪ T , i ∈ 1, . . . , n, lie in O, and so they define ring-homomorphisms

Hv → F : Tv,i 
→ αv,i (mod m)

for v /∈ {w} ∪ T .

For v ∈ T the subspace of U1,mv(v)-invariant functions in Πv is non-trivial. If ΠU1,mv (v)
v is one-

dimensional then U0(v) acts on it by a character χv. If this character is non-trivial, then Πv is
principal series. (If the dimension is bigger than 1 then Πv is unramified.)

If ρ is unramified at v with n distinct eigenvalues and if λ̄ is the eigenvalue at the (1, 1)-entry
(this will be the case when we need to consider the Hecke action at T , i.e., when building TW
systems), then by [HT03] one has two cases.

(1) If Πv is unramified, then dim ΠU1,mv (v)
v = n, the action of Vv,n on this space is semisimple, it has

a unique eigenvalue which reduces to λ̄ and the corresponding eigenspace is one-dimensional;
this one-dimensional subspace is also an eigenspace for the operators Vv,i, i = 1, . . . , n− 1.
The corresponding eigenvalues are denoted bv,i and their mod m reductions depend only
on ρ(Frobv).
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(2) If Πv is ramified, then dimΠU1,mv (v)
v = 1, and if we denote by bv,i the eigenvalues for the Hecke

operators Vv,i, i = 1, . . . , n, their reductions modulo m depend only on ρ(Frobv) (and by the
same formulas as in the first case). Moreover the reduction of bv,n is λ̄. In either case one
obtains a ring homomorphism

Hmv
v → F : Vv,n 
→ λ̄, Vv,i 
→ bv,i (mod m) (i = 1, . . . , n− 1).

The above homomorphisms induce a ring homomorphism Hab,m
T → F whose kernel is a maximal

ideal which we denote by mρ. This notation is justified because the homomorphism depends only
on data defined in terms of ρ. We also denote by mρ the image of this ideal in Hm

T (O), H(χv)
T (O),

Hm
c,T (O) and H(χv)

c,T (O). (Since a priori there is no relation between ρ and Cω,m
cusp,T (O), this image

can be all of Hm
T (O).) For an Hab,m

T -module M , we denote by Mmρ
its localization at mρ.

The following theorem is crucial to us, and is proved by Ogilvie [Ogi05] in forthcoming work.

Theorem 3.7 [Ogi05]. Compatible with the Hecke action of Hab,m
T we have isomorphisms

Cω,(χv)
cusp,T (O)mρ

� Cω,(χv)
c,T (O)mρ

and

Cω,m
cusp,T (O)mρ � Cω,m

c,T (O)mρ

(and the same statement after dropping the Hecke operators at T ).

3.3 Carayol’s principle
The methods of this section, which allow us to change ‘types’ of automorphic forms which give rise
to a given ρ, use a principle discovered by Carayol that occurs in the proof of [Car89, lemme 1].

We define Nn(�) as the order of an �-Sylow subgroup of GLn(k).
We may consider the Hecke action without the operators at places in T and will denote the

induced maximal ideal of this smaller Hecke algebra by the same symbol.

Lemma 3.8. We assume the set-up of Assumption 3.3 for sets of characters (χv) and (χ′
v) such that:

(i) Λ is the fraction field F of O;

(ii) for each v ∈ T , the product of Nn(�) with the order of χ−1
v χ′

v, which we assume is a power of
�, divides the order of k∗v .

Then

rankOCω,(χv)
cusp,T (O)mρ = rankOCω,(χ′

v)
cusp,T (O)mρ

(and the same conclusion holds if we consider the corresponding maximal ideal of the smaller Hecke
algebra without the operators at the places in T ).

Localization at mρ commutes with reduction O → F of the ring of integers of F to its residue field.
Furthermore, after reduction one has χv ≡ χ′

v ≡ 1 in F for all v ∈ T . So in view of Proposition 3.5(i)–
(ii) and Theorem 3.7 due to Ogilvie, it suffices to prove the following lemma.

Lemma 3.9. Suppose the hypotheses of Lemma 3.8 hold. Then the submodules Cω,(χv)
c,T (O) ⊗O F

and Cω,(χ′
v)

c,T (O) ⊗O F of Cω,m
c,T (F) agree.

Proof. By Z we denote the center of GLn, viewed as an algebraic group over K, and we regard
ZmT as a subgroup of Z(A). Because of the central action and the conditions on the places v ∈ T ,
elements in Cω,(χv)

c,T (O) may be thought of as functions with finite support and values in O on the
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infinite set GLn(K)ZmT \GLn(A)/U0
T . Choose gj ∈ GLn(A), j ∈ J , such that

GLn(A) =
∐
j∈J

GLn(K)ZmT gjU
0
T .

Let O((χv)) denote the representation of ZmT U
0
T /Z(K)UmT on O given by the (compatible) action

of ω and of the χv. Then Cω,(χv)
c,T (O) can also be identified with elements of the direct sum⊕

j∈J O((χv))GLn(K)∩Zm
T g−1

j U0
T gj , because in addition to the actions by ω and the χv, the com-

ponent at gj also carries a trivial action by GLn(K). (We have analogous descriptions for forms
with F-coefficients, and for the space Cω,(χ′

v)
c,T (Λ) with Λ ∈ {O,F}.)

Since we prefer to work with the action of the finite group ZmT /Z(K)πZ
w, we observe that elements

in Cω,...
c,T (. . . ) may be regarded as functions on the set GLn(A)/Z(K)πZ

w. By Lemma 3.10 below, the
�-part of the exponents of (the finite groups) (GLn(K)πZ

w ∩ZmT g−1
j U0

T gj)/Z(K)πZ
w divide Nn(�) for

all j. Using the second hypothesis of Lemma 3.8 we have

O((χv))
GLn(K)∩Zm

T gjU0
T g

−1
j ∼= O((χ′

v))
GLn(K)∩Zm

T g−1
j U0

T gj

for all j ∈ J . Hence for each j ∈ J either this set is zero, or agrees with O. This completes the proof
of Lemma 3.9.

Lemma 3.10. If γ ∈ GLn(K)/K∗ is of �-power order, its order divides Nn(�).

Proof. We have the exact sequence

0 −→ SLn(K)/{x ∈ K∗ : xn = 1} −→ GLn(K)/K∗ −→ K∗/K∗n −→ 0.

Because the image of γ in K∗/K∗n is of �-power order, it must lie in k∗/k∗n. Because � is prime to
n, the order of this image divides the order of the �-Sylow of k∗. Say the latter order is n�. Then γn�

lies in SLn(K)/{x ∈ K∗ : xn = 1}. Again because n is prime to �, there is an element γ′ ∈ SLn(K)
which maps to γn� and whose order is the same as that of γn� . Thus it suffices to show that, if
γ′ ∈ SLn(K) is of �-power order �d, then the order of γ′ divides the order of an �-Sylow of SLn(k).

Let k′ be the smallest extension of k which contains a primitive �dth root of unity. We assume
that γ′ is given in rational canonical form over K. We claim that γ′ has entries in k. For this we
may assume that the rational canonical form consists of a single block, which is thus completely
determined by the characteristic polynomial of γ′. But the characteristic polynomial has coefficients
in k′ and in K and thus in k. Hence γ′ has coefficients in k. Thus γ′ lies up to conjugation in SLn(k),
and our last assertion is shown.

3.4 Taylor–Wiles systems
Throughout this section, we fix a lift ρ : π1(X) → GLn(O) of ρ and make the following assumption.

Assumption 3.11. We assume that η := det ρ is of finite order.

For each m ∈ N we also fix a finite subset Qm ⊂ X \ {w} of places such that for all v ∈ Qm the
matrix ρ(Frobv) has distinct eigenvalues and qv ≡ 1 (mod �m). In this section we will complement
the Galois-theoretic work in § 2 by automorphic results that together yield the existence of Taylor–
Wiles systems.

Define ∆m as the maximal quotient of
∏
v∈Qm

k∗v of exponent �m. Via the projection onto the
(1, 1)-entry, we identify

∆m
∼=

∏
v∈Qm

U0(v)/U1,m(v).
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There is a natural (‘diamond’) action of ∆m on the spaces Cω,m
cusp,Qm

(O)mρ and Cω,m
c,Qm

(O)mρ . Using
Lemma 3.9 and its proof, we easily show the following result.

Proposition 3.12. We fix a positive integer m and assume the set-up of Assumption 3.3, with

(a) the set of places Qm here playing the role of T there,

(b) Λ a discrete valuation ring O containing W (F)[ζ�m ], and

(c) �mNn(�) dividing the order of k∗v for all v ∈ Qm.

Then Cω,m
cusp,Qm

(O)mρ is free over O[∆m], and for the invariants under ∆m one has

(Cω,m
cusp,Qm

(O)mρ)
∆m = Cω,0

cusp,Qm
(O)mρ .

Note that by Proposition 3.4, one has the isomorphism

Cω,m
cusp,Qm

(O)mρ ⊗ F ∼=
⊕
(χ′

v)

Cω,(χ′
v)

cusp,Qm
(O)mρ ⊗ F,

where the sum is over all characters of (χ′
v) of ∆m.

Proof. The second assertion is obvious from the definitions. To prove the first, observe that because
localization at mρ commutes with the action of ∆m and because of Theorem 3.7, it will suffice to show
that Cω,m

c,Qm
(O) is free over O[∆m]. This follows easily (see proof of Proposition 5.6.1 of [CDT99])

from the fact that, for all characters (χv) of ∆m, the rank of Cω,(χv)
c,Qm

(O)mρ ⊗ F is independent of
(χv) as follows from Lemma 3.8.

We now define universal deformation and Hecke rings corresponding to the above situation.
Choose for each v ∈ Qm a Teichmüller lift λv of one of the eigenvalues of ρ(Frobv). Write λ for

(λv)v∈Qm . Let

ρ
m,λ
X,Qm

: π1(X \ ({w} ∪Qm)) → GLn(R
m,λ
X,Qm

)

denote the universal deformation that parameterizes deformations ρ̃ : π1(X\({w}∪Qm)) → GLn(R),
R ∈ A, R an O-algebra, of ρ such that:

(i) det ρ̃w factors via Gw
sw−→ Iw and ρ̃w ⊗ (det ρ̃w)−1/n is unramified; and

(ii) for all v ∈ Qm, ρv is of type Cv,λv,m as defined above Lemma 2.8.

Note also that from the local conditions at v ∈ Qm, via the action of Iv one obtains a homomorphism
O[∆m] → R

m,λ
X,Qm

.
We define ω : GL1(A) → O∗ as the Hecke character corresponding to η = det ρ. For v ∈ T we

let χv : k∗v → O∗ be the trivial character. Then the above data satisfies Assumption 3.3 for Λ = O.
Suppose a basis of Anv is chosen in such a way that e1,v corresponds to the eigenvalue λv. We now
define

Tm,λ
X,Qm

:= (Hm
Qm

(O))mρ .

Let τ1, . . . , τs be a list of the Galois representations corresponding via Lafforgue’s theorem to
eigenforms in C̃ω,m

S,Qm
(O)mρ . By choice of the maximal ideal and definition of the Hecke action at

places in Qm, using the C-valued theory one finds that the algebra Tm,λ
X,Qm

⊗O F is semisimple,
cf. [HT03, III.2, second paragraph]. We therefore denote by

τ := τ1 ⊕ · · · ⊕ τs : π1(X \Qm) −→ GLn(T
m,λ
X,Qm

⊗O F )

the corresponding Galois representation.

287

https://doi.org/10.1112/S0010437X05002022 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05002022
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Proposition 3.13. The representation τ can be factored as a composition

π1(X \Qm)
τ

m,λ
X,Qm−→ GLn(T

m,λ
X,Qm

) ↪→ GLn(T
m,λ
X,Qm

⊗O F ).

Proof. Because ρ is absolutely irreducible, by a result of Carayol [Car94] the image of τ lies in
the ring of traces. By the Čebotarev density theorem, this ring is spanned by the coefficients of
the characteristic polynomials of

τ(Frobv), v /∈ {w} ∪Qm.
Thus by Lafforgue’s theorem, it is spanned by the Hecke eigenvalues of the corresponding eigenforms.
Thus the ring of traces lies in Tm,λ

X,Qm
.

From the definition of τm,λX,Qm
it is clear that it is a representation of the type parameterized by

ρ
m,λ
X,Qm

. By universality there arises a unique morphism R
m,λ
X,Qm

→ Tm,λ
X,Qm

such that τm,λX,Qm
is induced

from ρ
m,λ
X,Qm

. Both rings are non-zero because of the existence of ρ.

Proposition 3.14. The induced morphism R
m,λ
X,Qm

→ Tm,λ
X,Qm

is surjective.

Proof. By Nakayama’s lemma it suffices to prove the assertion modulo m. It is clear from the Lang-
lands correspondence that the reductions modulo m of the Hecke operators Tv,i, v /∈ {w} ∪ T , and
T ′
w,i, i = 1, . . . , n, lie in the image. At places v ∈ T this again follows from the compatibility of the

global Langlands correspondence with the local one, and the explicit decription of the Hecke action
at places in T , cf. [HT03, V.1.5]. Namely, the action of Vv,n (mod m) is given by the first eigenvalue
λ̄ of ρ(Frobv) and the action of Vv,i (mod m), i = 1, . . . , n− 1, by the elements bv,i (mod m) which
are expressions in the elementary symmetric polynomials in the remaining eigenvalues of ρ(Frobv).
So in this case, too, the reductions of the Hecke operators lie in the image of Rm,λX,Qm

.

If Qm = ∅, we drop it as well as m and λ from the notation, and add a superscript zero, i.e. the
above morphism becomes R0

X → T0
X . We have the following central result.

Theorem 3.15. Suppose that:

(i) η is of finite order (Assumption 3.11);

(ii) for any π1(X)-subrepresentation V of ad(ρ), there exists a regular semisimple gV ∈ ρ(π1(X))
such that V gV �= 0;

(iii) if ζ� ∈ K, then ad0(ρ) has no one-dimensional subrepresentation;

(iv) if ζ� ∈ E, then H1(Gal(E/K(ζ�)), ad0(ρ)) = 0;

(v) im(ρ) contains no normal subgroup of index �.

Then R0
X → T0

X is an isomorphism.

Proof. The proof is based on the use of Taylor–Wiles systems in the improved form due indepen-
dently to Diamond and Fujiwara, cf. [Dia97] and [Fuj]. For each m ∈ N, use Lemma 2.9 to choose
a set Qm ⊂ X such that

(a) #Qm = d := dimH1
{Lv}({w}, ad(ρ)(1)),

(b) qv ≡ 1 (mod Nn(�)�m) for all v ∈ Qm,

(c) ρ(Frobv) has distinct eigenvalues for each v ∈ Qm, and

(d) H1
{L⊥

v }({w} ∪Qm, ad(ρ)) = 0 where Lv = Lv,λv for each v ∈ Qm and λv is the Teichmüller lift
of some eigenvalue of ρ(Frobv).
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Note that dimH1
{Lv}({w}, ad(ρ)) = dimH1

{Lv}({w} ∪Qm, ad(ρ)), and define λm as (λv)v∈Qm .

We introduce notation similar to [Dia97, § 2]. Define

R := R0
X/m,

T := T0
X/m,

Rm := R
m,λm
X,Qm

/m,

Tm := Tm,λm
X,Qm

/m,

H := HomO(C̃0,ω
S,∅(O)mρ

,F),

Hm := HomO(C̃m,ω
S,Qm

(O)mρ
,F),

Am := O[∆m]/m ∼= F[[y1, . . . , yd]]/(y1, . . . , yd)m.

One easily verifies from the preceding work that:

(i) each Rm is topologically generated by d elements over F;

(ii) Rm/m
m
Rm

∼= F[[x1, . . . , xd]]/(x1, . . . , xd)m;

(iii) there exists a canonical Rm-linear surjection πm : Hm −→→ H;

(iv) under Rm −→→ R the image of (y1, . . . , yd) is zero;

(v) Hm is via Am → Rm → Tm a module over Am and Rm and the action of Am is the same as
that which occurs in Proposition 3.12;

(vi) Hm is free over Am (by Proposition 3.12).

For instance, part (i) follows from Lemma 2.9(d) and the choice of Qm. Part (ii) follows from
Lemma 2.9(c), which expresses that all relations are local, and from definition (3) of the local
ring Rv,m, which shows that the local relations at the places in Qm are trivial modulo the mth
power of the maximal ideal. Part (iii) is a trivial consequence of Proposition 3.12. Part (iv) is clear
since deformations parameterized by R are unramified at the places in Qm while the variables
y1, . . . , yd describe the ramification at Qm of deformations parameterized by Rm.

We now verify the following assertion that is also a crucial part of constructing Taylor–Wiles
systems:

(vii) the morphism πm induces an isomorphism Hm/(y1, . . . , yd) ∼= H where we consider these as
modules over Rm,λm

X,Qm
.

In view of Proposition 3.12 and the above definitions it suffices to show that we have an isomorphism

Cω,0
cusp,∅(O)mρ � Cω,0

cusp,Qm
(O)mρ (7)

as modules over Rm,λm
X,Qm

. This follows from the arguments in the proofs of [HT03, Propositions V.2.3
and V.2.4], and where the isomorphism above is given by the (exact analog of the) map X∞,Qm of
[HT03]. We give some details. As remarked in [HT03] we need to prove the isomorphism in (7) only
after tensoring with Q�. We first prove that all forms that contribute to the right-hand side are old
at places in Qm.

For this let f be a cuspidal Hecke eigenform for GLn whose image in the right-hand side of (7)
is non-trivial. Let v be in Qm. As the �-adic representation ρf corresponding to f reduces to ρ
residually, ρf restricted to a decomposition group Gv at v is a lift of ρv to O. By Lemma 2.7 such lifts
are diagonalizable and therefore finite on inertia. Hence by the compatibility of the global Langlands
correspondence of [Laf02] with the local Langlands correspondence and the unramifiedness of the
central character at v, Πv(f) is an unramified principal series representation.
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We are now in the situation described after Theorem 3.6 and quoted from [HT03]. The action
of Vv,n on Πv(f)U0(v) is diagonalizable and there is exactly one eigenvalue whose reduction modulo
m is λv (mod m), and it has multiplicity one. Therefore after localization at mρ at most a one-
dimensional subspace of Πv(f)U0(v) remains. That the remaining space is indeed one-dimensional
follows from the fact that (7) is injective. We have thus completed the proof of (vii).

It now follows from [Dia97, Theorem 2.1] that R is a complete intersection of dimension zero
and H is free over R. Since the action of R on H factors via T, it follows in particular that R → T
must be injective and hence an isomorphism.

Let us now come back to the original question. Because Tm,λ
X,Qm

is O-torsion free and finitely
generated, the surjection Rm,λX,Qm

−→→ Tm,λ
X,Qm

splits as a map of O-modules. By the above its reduc-
tion modulo m is an isomorphism. But then the morphism itself must be bijective. The proof of
Theorem 3.15 is now complete.

3.5 Lowering the level à la Skinner and Wiles
We have the following ‘lowering the level’ result as in the work of Skinner and Wiles [SW01].

Theorem 3.16. Suppose ρ : π1(X \ T ) → GLn(O) and ρ := ρ (mod m) satisfy the following
conditions:

(i) O contains ζ�;

(ii) for all v ∈ T , ρ is type-1 and �Nn(�) divides the order of k∗v .

Then there exists a representation ρ′ : π1(X \ T ) → GLn(O) such that:

(i) the residual representations of ρ and ρ′ agree;

(ii) ρ′(Iv) is finite for v ∈ T .

Remark 3.17. This theorem is referred to as a level lowering result as from it one deduces that there
is a solvable base change Y → X, that one can make disjoint from any given covering of X, such
that ρ′|π1(Y ) has conductor the conductor of ρ|π1(Y ). We use this in the section that is coming up!

Proof of Theorem 3.16. We use Lafforgue’s theorem to convert the above into an assertion about
cusp eigenforms that we have proved in Lemma 3.8. Via Lafforgue’s theorem, which is compat-
ible with the local Langlands correspondence, ρ corresponds to a cuspidal Hecke eigenform in
Cω,(χv)

cusp,T (O)mρ . (In this proof we do not need to consider Hecke action at places in T .)
Let now (χ′

v) be such that χ′
v is of exact order � at all v ∈ T . By Lemma 3.8 we find a non-zero

cuspidal Hecke eigenform f ′ in Cω,(χ′
v)

cusp,T (O)mρ
. Let ρ′ be the corresponding Galois representations,

which exist by Lafforgue’s theorem. The first assertion is clear from the definition of mρ. At places
in T , it follows from the non-triviality of χ′

v that Πv(f ′) is ramified principal series (as recalled just
before Theorem 3.7 above). This shows the second assertion.

4. Proof of main theorems

We can finally give the proof of our central theorem.

Proof of Theorem 3.1. We argue by contradiction, and, in view of Theorem 1.3, assume that there
is a representation ρ′ : π1(X) → GLn(F[[x]]) with ρ = ρ′ (mod x) and ρ′(π1(X)) infinite. Because �
does not divide n, taking nth roots is an isomorphism on the 1-units in F[[x]]∗. Therefore the nth
root of the 1-unit part of det ρ′ is a character, say η̃, of π1(X). It has the property det(η̃ ·ρ′) = det ρ.
Since the image of π1(X) under any character of π1(X) is finite, we will from now on assume
det ρ′ = det ρ.
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We now consider the ring R := ker(O ⊕ F[[x]] −→→ F). It lies in A and affords a representation
ρ′′ := ρ ⊕ ρ′ : π1(X) → GLn(R) with determinant η. Set Ti := T the set of places at which ρ is
type-1. Take m ∈ N such that �Nn(�) divides #k∗w,m for all w ∈ Ti. Then Corollary 2.5 applied to
ρ′′ provides us with a finite Galois covering Y → X such that:

(a) Y is geometrically connected over k;

(b) ρ′′(π1(Y )) = ρ′′(π1(X)), ρ(π1(Y )) = ρ(π1(X));

(c) ρ is unramified at places not above Ti;

(d) ρ|Gw′ is type-1 and � ·Nn(�)|#k∗w′ for all w′ above a place w ∈ Ti.

Since ρπ1(Y ) satisfies all the conditions originally imposed on ρ, we may therefore rename Y
to X, assume that ρ′ is unramified everywhere and has determinant det ρ, and that ρ satisfies the
following conditions:

(i) ρ := ρ (mod m) is absolutely irreducible;

(ii) ρ(π1(X)) contains a regular semisimple element;

(iii) η := det ρ is of finite order;

(iv) at places v at which ρ ramifies, ρv is type-1 and �Nn(�) divides #k∗v .

Condition (iv) allows us to apply Theorem 3.16 on level lowering. Thereby we may replace (iv)
by:

(iv′) ρ(Iv) is finite at all places where ρ ramifies and ρ does not.

By yet another application of Corollary 2.5 to ρ′′ with Ti = ∅, the latter condition may be
replaced by:

(iv′′) ρ′′ is unramified at all places.

Recall that R0
X is universal for deformations of ρ to O-algebras in A which are unramified

outside {w}, and unramified at w after a twist by a character of order � that factors via sw. Because
ρ′ is unramified everywhere, there is a unique morphism φ : R0

X → F[[x]] which induces ρ′. The ring
F[[x]] is of characteristic � and so φ factors via R0

X/(�).
On the other hand by Theorem 3.15, which used the technique of Taylor–Wiles systems, the

ring R0
X is finite over Z�. Therefore R0

X/(�) is finite, and this contradicts our assumption that ρ′

has infinite image.

When combined with Lemma 2.11 and [BK05, Proposition 2.6], the following result implies
Theorem 1.6. (Note that (i) below implies � � |n, and that we are assuming that X is projective
which implies that in the situation of Theorem 1.6 the lifting result of [BK05] is available.)

Theorem 4.1. Suppose that ρ : π1(X) → GLn(F) satisfies the following:

(i) ad0(ρ) is absolutely irreducible over F�[im(ρ)];

(ii) if ζ� ∈ E, then H1(Gal(E/K(ζ�)), ad0(ρ)) = 0 and ad0(ρ) is absolutely irreducible over
F[ρ(π1(Z))], where Z → X corresponds to K(ζ�)/K;

(iii) ρ admits R-places;

(iv) ρ(π1(X)) contains a regular semisimple element.

Then Rηρ is finite over Z�, where η is the Teichmüller lift of det ρ.

Proof. To prove the assertion on RηX we may, as in the preceding proof, pass from X to a finite
Galois cover provided that we preserve all our original hypotheses.
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Using (i)–(iii) we obtain from [BK05, Theorem 2.4] a finite set T ⊂ X and a representation
ρ : π1(X \ T ) → GLn(W (F)) such that ρ is type-1 at places in T .

Suppose now that im(ρ) contains a normal subgroup of index �, and let π : Y → X be the
corresponding Galois cover of degree �. Because � � |n, the modular representation theory of finite
groups shows that ad0(ρ) is still absolutely irreducible over ρ(π1(Y )). Also (iv) still holds for ρ|π1(Y ).
We claim that (ii) still holds for ρ|π1(Z).

So suppose ζ� ∈ E. By the reasoning given above, ad0(ρ) will still be absolutely irreducible over
F[π1(ZY )] for the pullback ZY → Y of Z → X along Y → X. Let K ′/K(ζ�) be the field extension
corresponding to ZY → Y . Inflation-restriction yields

0 → H1(Gal(K ′/K(ζ�)), ad0(ρ)Gal(E/K ′))

→ H1(Gal(E/K(ζ�)), ad0(ρ))

→ H1(Gal(E/K ′), ad0(ρ))Gal(K ′/K(ζ�))

→ H2(Gal(K ′/K(ζ�)), ad0(ρ)Gal(E/K ′)).

The outer terms are zero because ad0(ρ)Gal(E/K ′) = 0. The second term is zero by assumption.
Now any �-group acting on a finite-dimensional non-trivial F� vector space has a non-trivial set of
invariants. Since Gal(K ′/K(ζ�)) ∼= Z/(�), this implies H1(Gal(E/K ′), ad0(ρ)) = 0. Thus (ii) holds
over Y instead of X.

By induction, we may therefore pass to an extension Y ′ of X over which (i) and (ii) hold, and
such that in addition ρ(π1(Y ′)) has no normal subgroup of index �. Over Y ′ we can now apply
Theorem 3.1, and the result follows. (This uses again the formulation of Conjecture 1.1, which
makes it obvious that de Jong’s conjecture holds for ρ, if it holds for ρ|π1(Y ′).)

Appendix

In this paper we use a modified construction of Taylor–Wiles systems introduced in [TW95]. Here we
explain this modification in the original context of modular curves of [TW95]. We use the notation
of [Dia97] to indicate what the problem is and how we handle it. The main point is that when
proving freeness of certain cohomology groups it is enough for the purposes of TW systems to prove
this over certain group algebras whose group of characters ‘kill torsion’.

A key step in TW systems is to prove, for certain finite set of primes Q = {q1, . . . , qr} and
any positive integer N prime to the primes in Q, results towards the freeness of the cohomol-
ogy group H1(XN,Q,O)m as a module over O[∆Q] (under the natural action) with ∆Q the Sylow
�-subgroup (which we may also view as the maximal �-quotient) of

∏
q∈Q(Z/qZ)∗, where m is a mod

� maximal ideal of a certain Hecke algebra which satisfies a certain set of conditions, and where
O is a finite flat extension of Z�. Here XN,Q is the modular curve corresponding to the subgroup
Γ0(N)∩Γ1(q1 · · · qr). Further the quotient of H1(XN,Q,O)m by the augmentation ideal of Z�[∆Q] is
isomorphic to H1(X0(N),O)m if the primes qi in addition satisfy the hypothesis that the mod � rep-
resentation ρ corresponding to m is such that it is unramified at qi and the ratio of the eigenvalues
of ρ(Frobqi) are not q±1

i .
One of the technical steps in proving the freeness is to impose an auxiliary level structure to

avoid problems arising from torsion of Γ0(N). We indicate an argument that bypasses this.
We observe the following proposition which directly follows from the proof of [Car89, lemme 1].

Proposition A.1. Let e be any integer that kills the torsion of Γ0(N). Let ∆Q
e be the subgroup

of Hom(∆Q,Q�/Z�) that consists of eth powers. Consider the twisted sheaf O(χ) for any character

χ ∈ ∆Q
e on X0(Nq1 · · · qr) and assume O to be large enough to contain all values of χ. Then if k is

the residue field of O, the reduction O(χ)⊗k is isomorphic to the constant sheaf k on X0(Nq1 · · · qr).
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As a standard consequence one has the following result.

Corollary A.2. Let ∆e
Q be the quotient of ∆Q that is dual to the subgroup ∆Q

e of Hom(∆Q,Q�/Z�).
Let XN,Q,e be the modular curve that corresponds to the congruence subgroup that is the kernel
of the natural map Γ0(Nq1 · · · qr) → ∆e

Q. Let m be a maximal ideal of a certain Hecke algebra (as

in [Dia97]: we drop operators Tr, Ur for r not coprime to Nq1 · · · qn) acting on H1(XN,Q,e,O) such
that the corresponding residual representation ρ of GQ is not reducible. Then H1(XN,Q,e,O)m has
a natural action of ∆e

Q and is a free O[∆e
Q]-module for any O that is finite flat over Z�.

Proof of Proposition A.1. For conciseness of notation we denote by Y and X the curves XN,Q,e and
X0(Nq1 · · · qr), and we have the natural map r : Y → X that is the quotient by ∆e

Q. The sheaf
O(χ) is described as ∆e

Q\[Y × O] with ∆e
Q acting on the constant sheaf O by χ. The stalk at a

point x ∈ X, after choosing a point y in r−1(x), can be identified with the subset of the stalk at y
of the constant sheaf, Oy, on which the stabilizer of y in ∆e

Q acts by χ (thus it is either Oy or 0).
From this description the proposition follows using our assumption on χ.

Proof of Corollary A.2. We first note that as ρ is irreducible, the étale H0 and H2 of modular curves
with coefficients in the twisted sheaves above do not have the maximal ideal m in their support
(see [Car89, § 3]). Thus from the proposition above, and the long exact sequence of cohomology, it
follows that for any character χ ∈ ∆Q

e on X0(Nq1 · · · qr) we have a (Hecke equivariant) isomorphism
H1(X0(Nq1 · · · qr),O(χ))m ⊗ k � H1(X0(Nq1 · · · qr), k)m. Then by a standard argument (see proof
of Proposition 5.6.1 in [CDT99]) the corollary follows.

Let us further assume that for each n ∈ N we have sets of primes Qn of constant cardinality
r such that, for q ∈ Qn, q is prime to N , q is 1 mod �n, and ρ is unramified at q with the
ratio of the eigenvalues of ρ(Frobq) not q±1 (such sets exist when ρ restricted to the quadratic
subfield of Q(µ�) is not reducible). Then again H1(XN,Q,e,O)m is a free O[∆e

Qn
]-module whose

quotient by ∆e
Qn

is isomorphic to H1(X0(N),O)m. The group ∆e
Qn

surjects onto Z/(�n−e)r, and
thus grows systematically with n. This is enough to construct TW systems as in [Dia97, § 3.1]
avoiding imposition of auxiliary level structures.

The modification of this appendix can also be used to avoid imposition of auxiliary level structure
needed to bypass torsion problems in the level lowering method of [SW01], as done in the main
body of this paper. Here the further remark, in addition to the observation above, is that when
base changing to make orders of multiplicative groups of orders of residue fields at some fixed places
congruent to 1 modulo high powers of �, one also requires certain other places, chosen in advance,
to split completely, so that the �-part of the torsion cannot grow much under base change.
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