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Abstract

In this paper we define and study a generalized Drazin inverse xD for ring elements x, and give a
characterization of elements a, b for which aaD = bbD. We apply our results to the study of EP elements
in a ring with involution.
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1. Introduction

This paper is motivated by a recent work of Castro et al. [2], which investigates the
necessary and sufficient conditions for square complex matrices A, B to have the same
eigenprojection at 0. This problem, under more restrictive conditions on A, B was
first considered by Hartwig [7] more than 20 years ago.

The formulation of the problem for elements of rings requires the definition of an
appropriate analogue of the eigenprojection, the so-called spectral idempotent, well
known in the case of Banach algebras. We also define and investigate a generalized
Drazin inverse for elements of rings that possess a spectral idempotent. The main result
of this paper is a characterization of ring elements with equal spectral idempotents.

In rings with involution we can define the Moore-Penrose inverse and EP elements,
that is, ring elements for which the Drazin and Moore-Penrose inverse exist and
coincide. We give a new characterization of EP elements based on our main theorem.
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138 J. J. Koliha and Pedro Patricio [2]

2. Quasipolar elements in rings

In this paper 'ring' means an associative ring with unit 1 ^ 0. Let ^ be a ring.
The group of invertible elements is denoted by 3ft~x.

For any element a e ^ w e define the commutant and the double commutant of a by

comm(a) = [x e 3ft : ax = xa},

comm2(o) = {JC e 3ft : xy = yx for all y e comm(a)).

The Jacobson radical of 3ft is the two-sided ideal

3ft™* = ( a s l : l + f a C 3ft'1}.

DEFINITION 2.1 (Harte [5]). An element a € 3ft is quasinilpotent if, for every x e
comm(fl), 1 + xa e 3ft~l. The set of all quasinilpotent elements of 3ft will be denoted
by 3ftqM. The set of all nilpotent elements will be written as 3ft"i{.

Clearly, ^ r a d C 3ftqnil. Further, J?nil c 3ftqM as

(1+jca)-1 = £}(- l )W
i=0

if a e 3ft \s nilpotent of index k and x e comm(a) (see also [5, Theorem 3 and
Theorem 4]). We note that in a ring, unlike in a Banach algebra, the sum of two
commuting quasinilpotent elements need not be quasinilpotent. However, we have
the following implication:

(2.1) a e 3ft~x and b e ^ q n i l n comm(a) = » a + be^'K

For a Banach algebra ^? it is well known [4, page 251] that

n-+oo

DEFINITION 2.2. An element a € 3ft is quasipolar if there exists p & 3ft such that

(2.2) P2 = P, P 6 comm2(a), ap e ^K)nil, a + p 6 J T 1 .

If a is quasipolar and ap 6 ^ n i l with the nilpotency index k, we say that a is polar
of order /fc. Any idempotent p satisfying the above conditions is called a spectral
idempotent of a. (The term 'quasipolar' comes from [5], and 'spectral' idempotent
is borrowed from spectral theory in Banach algebras [4]. We shall see later that
quasipolar elements are exactly the ones which are 'generalized Drazin invertible'—
Theorem 4.2.)
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PROPOSITION 2.3. Any quasipolar element a € & has a unique spectral idempotent
denoted by a"'.

PROOF. Suppose that p, q are spectral idempotents of a quasipolar element a e &&.
Then

1 - (1 - p)q = 1 - (1 - p)(a + Py\a + p)q

= 1 - (1 - p)(a + pY'aq = 1 - b{aq).

Sincep e comm2(a), we have b e comm(a^); aq e &qm] implies 1 — b{aq) e 8?,~x.
Then

1 - (1 - p)q = 1 - (1 - pfq2 = (1 - (1 - p)q){\ + (1 - p)q).

The invertibility of 1 — (1 — p)q implies that (1 — p)q = 0, that is, q = pq. Similarly
we prove that (1 — q)p e Sf.~x, and p = qp = pq. Then p = q. •

REMARK 2.4. From [8, Theorem 3.2] it follows that the condition a + p e 3?rx in
(2.2) can be replaced by 1 - p e (2#a) n (a&).

The uniqueness of the spectral idempotent is used to prove the following result
valid in rings with involution (see Section 5).

PROPOSITION 2.5. Let @ be a ring with involution. Then a is quasipolar if and only
if a* is quasipolar. In this case and (a*)" — (a")*.

PROOF. From a + a" e @rx and aan = a*a e ^ q n i l we obtain a* + (a")* e &~l

and a*(a*)n = (a*)"a* € @M by applying the involution. •

For polar elements we can relax the condition that p double commutes with a:

PROPOSITION 2.6. Let a e 3£, and let p e & be such that

(2.3) P2=p, p e comm(a), ape£#"'\ a + pe&~1.

Then a is polar and p = a".

PROOF. Since ^ n i l c ^q n i l , we only need to prove that p e comm2(a). For
ap 6 ^ n i l there exists k eU such that (ap)k = akp — 0. Set b = (a + p )~ ' ( l - p)\
then ab = ba = 1 - p. Let x e comm(a). We have

xp — pxp = (1 — p)xp = (1 — p)kxp = bkakxp = bkxakp = 0,

which implies xp — pxp. Similarly we show that px{\ — p) = 0 , and px — pxp.
This proves px = xp, and p e comm2(a). D

Observe that in general double commutativity of p with a is necessary.
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3. Results on regular elements of rings

An element a e Sf, is regular (in the sense of von Neumann) if it has an inner
inverse x, that is, if there exists x e Sf. such that ax a = a. Any inner inverse of a will
be denoted by a'. The set of all regular elements of & will be denoted by 3?.~. Given
a € $, we define the sets

= {ax : x e 3$), 3ta = [xa : x e &},

a0 = {y e & : ay = 0}, °a = {y € St: ya = 0},

where a3f, and Sf-a can be considered as finitely generated ^-modules; the same is
true of a0 and °a if a e 3?r (see Proposition 3.1 below). When considering a matrix
A, these sets reflect, respectively, the column space of A, the row space of A, the
kernel of A, and the kernel of AT. However, we will work with these sets with no
reference to rank, dimensional analysis or orthogonality. If M C &, we can define

MSP, = {mx : m e M, x e 3f,\, M° = [x e & : Mx = {0}};

similarly we define Sf,M and °M.
Some properties of these sets, established by Hartwig in [6, Proposition 6], will be

needed in the following section. We include proofs for the sake of completeness.

PROPOSITION 3.1. Given a,be@~ and A, B c Bf., we have

(i) (l-a-a)# = a°;
(ii) a° = (&a)°;

(iii) S?,a = °(a°) = \{0taf)\
(iv) A C B = » °A D °B.

PROOF, (i) As a((l - a~a)y) = 0, we have (1 - a~a)y 6 a0. Conversely, if
ax = 0, then (1 — a~a)x = x which implies * € (1 — a~d)3f..

(ii) Clearly, a° C (^a)°. The reverse inclusion is immediate when we take x = 1
in (^a)° = { j e ^ : xay = 0 for all x € &}.

(iii) Let ya e Sf.a. Then yax = 0 for any x € a0, and ya e °(a°). Hence
^ a C °(a°).

Conversely let y 6 °(a°). Thenyj: = 0 for all x G a0. Asy = ya~a + y(l -a'a)
and 1 — a~a € a0 by (i) above, we have y(l - a~a) = 0, and y = ya~a 6 ^ a . This
proves °(a°) c ^?a.

(iv) is obvious. D
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4. The g-Drazin inverse in rings

The original definition of the 'pseudoinverse' was given by Drazin [3] for elements
of semigroups and polar elements of rings. It was generalized by Harte [5] to quasipolar
elements, and studied by the first author in [8] in Banach algebras. In this section we
survey the properties of the generalized Drazin inverse (called g-Drazin inverse) for
quasipolar elements of rings; many of the results will appear in this setting for the first
time.

DEFINITION 4.1. An element a e 3f. is generalized Drazin invertible (or g-Drazin
invertible for short) if there exists b e Sf. such that

(4.1) 2>ecomm2(a), ab2 = b, a2b-ae^M.

Any element b e ffi satisfying these conditions is a g-Drazin inverse of a. We denote
the set of all g-Drazin invertible elements of J? by ^ g D . If a2b — a in the above
definition is nilpotent, then a is called Drazin invertible and b is called a Drazin
inverse of a. The set of all Drazin invertible elements of ̂  will be denoted by 8$°.
The following result ensures that these concepts are well-defined.

THEOREM 4.2. An element a e 8f. is g-Drazin invertible if and only if a is quasipo-
lar. In this case a 6 8% has a unique g-Drazin inverse a0 given by the equation

(4.2) b = (a + anr[(l - a") = (1 - a")(a + a")'1.

PROOF. Suppose first that a is quasipolar with the spectral idempotent p, and set
b = (a + p)'l(l - p). Then b e comm2(a). Further,

ab2 = a(\ -p){a+Pr2 = (a + p)(l - p)(a + p)~2 = (1 - p)(a + p)~l = b,

and
a2b-a = a2{\ - p)(a + p)~l - a

+ p)~l(l - p) - a =-ap e ^ q n i l .

Conversely assume that a is g-Drazin invertible with a g-Drazin inverse b, and set
p = 1 — ab. Then p e comm2(a), and (1 — p)2 = a2b2 = a(ab2) = ab = 1 — p,
which implies p2 = p. Finally, to prove that a + p € S?.~l, we observe that
ap =a-a2be &*"n and

(4.3) (a + p)(b + p)=ab + ap+bp+p = l-p+ap+p = l+ape @,~x

as bp = b{\ —ab) = b — ab2 = 0. From (a + p)b = ab + pb = 1 — p +pb = 1 — p
it follows that b = (a + p)~l(l — p). The uniqueness of the spectral idempotent of a
proves the uniqueness of the g-Drazin inverse b. •
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The preceding theorem together with Proposition 2.5 implies the following result
valid in rings with involution (see Section 5).

PROPOSITION 4.3. Let & be a ring with involution. Then a is g-Drazin invertible if
and only if a* is g-Drazin invertible. In this case (a*)D = (aD)*.

DEFINITION 4.4. The g-Drazin index i(a) of a quasipolar element a e 3ft is de-
fined by

(4.4) i(a) =

0 i f a e . ^ " 1 ;

k if a2b — a is nilpotent of index k e N;

oo otherwise.

If i(a) < 1, we say that a is group invertible; the Drazin inverse of a is then called
the group inverse, and is denoted by a° = a*. The set of all group invertible elements
will be denoted by &?.

We observe that the g-Drazin index of a e ^ is finite if and only if a is polar.
The sets J?gD, @? and ffi* coincide with the-set of all quasipolar, polar and simply
polar elements of @, respectively. Note that &D D ^ D z> @* D S?rx. We make the
following useful observation.

PROPOSITION 4.5. An element a e & is Drazin invertible if and only if there exists
k e M such that ak is group invertible.

In addition to (4.2) we have the following useful relations between the spectral
idempotent and the g-Drazin inverse established in the proof of Theorem 4.2:

(4.5) a" = 1 - a°a = 1 - aaD, a"aD = aDa" = 0.

By (4.3) we also have that aD + a" e 3?.~x. This leads to the following.

PROPOSITION 4.6. If a e ^ g D , then aD e &*, and (aD)n =a". In addition, aD e M~.

PROOF. We only need to observe that by (4.1), b = aD is regular for any a e ^ g D . •

Equation (4.2) can be improved as follows.

PROPOSITION 4.7. Let a e 3?gD. Ifx e @rx n comm(a), then a + xa" e @rx and

(4.6) aD = (a+xaTl(l -a").
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PROOF. Letx e Sfrx n comm(a). Then x commutes with a", and aa" + x e 3Prx

according to (2.1). Hence

a +xa" = (a+xa")a" + (a +xa")(l - a")
= (aa" + x)a" + (a + a")(\ - a"),

which shows that

(a+xaTl = (aa" +x)~la" + (a + a"y\\ -a").

The result follows from the equation

(a + xa")aD = aa? + xa"aD = 1 - a"

obtained from (4.5). •

REMARK 4.8. In rings the double commutativity of b with a in Definition 4.1 is
necessary to guarantee the uniqueness of the g-Drazin inverse. In [8, Lemma 2.4]
it is erroneously claimed that the uniqueness of the g-Drazin inverse follows from
b e comm(fl). However, commutativity is sufficient when 3£ is a Banach algebra or
a2b - a is nilpotent rather than quasinilpotent.

PROPOSITION 4.9. Let a e 2?., and letbzBt be such that

(4.7) b g coram(a), ab1 = b, a2b-ae &m.

Then a is polar, and aD = b.

PROOF. Let p = I —ab. Then it can be easily verified that p € comm(a), p1 = p,
ap €&ni\ and (a+p)(b + p) = \+ap e @~x which implies a + p e &~l. Thus/?
satisfies the conditions of Proposition 2.6, and p = a" e comm2(a). Hence a is polar
and b — (a + p)~'(l - p) € comm2(a). This proves b — aD. •

REMARK 4.10. Drazin [3] defined a. pseudo-inverse of a € Sf. as an element a! e Sf,
satisfying aa' = a'a, a(a')2 = a! and am+la' = am for some positive integer m. (For
m — 0 we get a e Sf.~x and a! = a"1.) It can be verified that these conditions on
a! are equivalent to (4.7). Hence the Drazin original definition applies only to polar
elements, in which case a! = a0.

5. The Moore-Penrose inverse

An involution x i->- x* in a ring 8ft is an anti-isomorphism of degree 2, that is,

(a*)* = a, (a + b)* = a* + b*, (ab)* = b*a*.
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We say that a is Moore-Penrose invertible if the equations

(5.1) bab = b, aba = a, (ab)* = ab, (ba)* = ba

have a common solution; such solution is unique if it exists (see [11]), and is usually
denoted by a+. The set of all Moore-Penrose invertible elements of 8$ will be denoted
by 3?.

The next well known lemma (see [11, page 407J) asserts that two one-sided invert-
ibility conditions imply the Moore-Penrose invertibility.

LEMMA 5.1. Let a e St. Then a € 3P if and only if there exist x, y G Sf. such that
axa = a = aya, (ax)* — ax and (ya)* = ya. In this case a1 = yax.

DEFINITION 5.2. An element a € 8?. is ^-cancellable if

(5.2) a*ax = 0 = » ax = 0 and xaa* = 0 = > xa = 0.

A ring 3£ is ^-reducing if all elements are *-cancellable. This is equivalent to a*a =
0 ==> a = 0 for all a. A *-regular ring is a *-reducing regular ring.

Applying the involution to (5.2), we observe that a is *-cancellable if and only if
a* is *-cancellable. It is often useful to observe that

(5.3) a is *-cancellable =$• a*a and aa* are *-cancellable.

Generalized inverses in *-regular rings, including the Moore-Penrose inverse, were
studied by Hartwig in [6]. The local *-cancellation property was used by Puystjens
and Robinson in [12] to study the Moore-Penrose inverse of a morphism in a category
with involution. The condition ||JC*JC|| = ||;c||2 guarantees that any C*-algebra (called
a Hilbert algebra in [4, Section 8.8]) is a ""-reducing ring.

THEOREM 5.3. Let a e 3$. Then a € & if and only if a is ^cancellable and a* a
is group invertible. Then also aa* is group invertible and

(5.4) af = (a*a)*a* = a*(aa*f.

PROOF. Suppose that a e & and a*ax = 0. Then

ax = aa^ax = (aa*)*ax = (a*)*a*ax = 0.

Similarly we prove that xaa* = 0 =>• xa = 0. Hence a is *-cancellable. The
Moore-Penrose invertibility of a*a is obtained by verifying that (a*ay = a^ia*)*.
Since a*a is symmetric, (a*a)* = (a*a)\
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Suppose that a is *-cancellable and a* a is group invertible, and write x = (a*a)*a*.
The conditions xax = x, (ax)* = ax and (xa)* = xa can be verified by a di-
rect calculation. By the group invertibility, a*a(a*a)" = 0, and a(a*a)" — 0 by
*-cancellation. This gives

a - axa = a(\ - (a*afa*a) = a(a*af = 0.

Hence x = af and the first equation in (5.4) is proved.
We observe that a e & if and only of a* € ^>t. Applying the preceding result to

a* in place of a, we get the rest of the theorem. •

The following is the main result on the existence of Moore-Penrose inverse in rings
with involution. Many of the equivalences were observed earlier for matrices; we note
that the *-cancellability holds automatically in the *-regular ring of complex matrices
of the same order. The equivalence of conditions (i) and (ix) was proved by Puystjens
and Robinson [12, Lemma 3] in categories with involution.

THEOREM 5.4. For a e 3% the following conditions are equivalent:

(i) a e 3P\
(ii) a" e &u,

(iii) a is *-cancellable and a*a € S^\
(iv) a is *-cancellable and aa* € &f;
(v) a is ^-cancellable and a*a e 3£°\

(vi) a is *-cancellable and a a* e 8??;
(vii) a is ^-cancellable and a*a € 3$*;

(viii) a is *-cancellable and aa* e 3?*;
(ix) a is ^-cancellable and both aa* and a*a are regular;
(x) aeaa*&D&a*a;

(xi) a is *-cancellable and a*aa* is regular.

PROOF. First we prove the implications

(5.5) (i) ==> (iii) = » (v) = » (vii) = » (i).

(i) implies (iii). Follows from Theorem 5.3 and its proof.
(iii) implies (v). A Moore-Penrose invertible symmetric element is Drazin (in fact

group) invertible.
(v) implies (vii). Since a is *-cancellable, then so is x = a*a by (5.3). Hence x

is Drazin invertible, symmetric and *-cancellable. We have (x*)* = (x*)n = x" by
Proposition 2.5. Let k e N be such that xkx" = 0. From the symmetry of x and its
•-cancellability we deduce that xx" = 0. Hence x = a*a 6 3$*.
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(vii) implies (i). This follows from Theorem 5.3.
Since a e 8P if and only if a* e 3?\ (5.5) gives immediately

(ii) => (iv) =>• (vi) = > (viii) => (ii),

and the equivalence of (i)-(viii) is established.
(viii) implies (ix). As we showed, (viii) is equivalent to (vii), and together they

yield (ix) (group invertibility implies regularity).
(ix) implies (x). From aa*xaa* = aa* we get aa*xa = a, and a*aya*a = a*a

implies ay a* a = a by the *-cancellability of a. Hence, a e aa*8& n 3?,a*a.
(x) implies (i). If a = aa*u = va*a are consistent, then a*u = (aa*u)*u =

u*aa*u = u*a. Similarly, va* = av*. Further, au*a = aa*u = a and av*a =
va*a = a. Then a e & by Lemma 5.1 with x = v* and y — u*.

(i) implies (xi). We note that a*aa*((a^)*af(aJt)*)a*aa* = a*aa*aa* = a*aa*.
(xi) implies (x). If a*aa*ca*aa* = a*aa*, then, by using the *-cancellability of a

twice, we get aa*xa*a = a, which implies a e aa*3$ D 3?.a*a. •

From the equivalence of (i) and (vi) (or (i) and (vii)) in the preceding theorem we
recover [9, Theorem 2.4] in C*-algebras and [13, Lemma 2] in *-reducing rings.

6. Elements with equal spectral idempotents

In this section we give a characterization of elements of 8?. with equal spectral
idempotents. In view of (4.5) we observe that

a' = V <^> aaD = bbD.

This problem was studied by Hartwig [7] for matrices over a ring in the special case
when bal+l — a1 and abk+{ = bk. Our investigation is motivated by a recent study of
Castro et al. [2] for the case of complex matrices.

THEOREM 6.1. Let a € 3#iD and b € £%. The following conditions are equiva-
lent:

(i) b e @&D and a" = b";
(ii) a" € comm2(fc), ba" G ^">nM and b + a" e &TX\

(iii) a" 6 comm2(i), ba" e &qni[ andaDb + a" e @rx;
(iv) b 6 ^ g D , aDb + a" e @rx and bD = (aDb + a"ylaD;
(v) b 6 ^ g D and bD-aD = aD(a - b)bD;

(vi) b € &gD, an e comm(fc) and 1 - (b" - a")2 e Sfrx\
(vii) b € ^ g D , bD@ C au@ and (bD)° C (aD)°.
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PROOF. The equivalence of (i) and (ii) is Definition 2.2.
(ii) if and only if (iii). We show that under the assumption a" e comm2(&) and

a" be &qni\

(6.1) b + a"e3>-1

Observe that

(6.2) (aD + a")((l - a")b + a") = aDb + a".

Since aD + a" e £&~\ from (6.2) we obtain

a°b + a" e &rx.

As a"b € •^>qnil, (6.1) will follow when we show that a"b commutes with b + a"
(obvious) and aDb + a" (not so obvious):

a"b(aDb + a") = anbaDb + anban = ba"aDb + a'b = anb,

{a°b + an)c?b = aDba*b + anb = cPa'b2 + a"b = anb.

This proves the equivalence of (ii) and (iii).
(iii) implies (iv). Let (iii) hold. From the equivalence of (i) and (iii) we conclude

that a71 = b". Then

(aDb + a")bu = aDbbD + a"bD = a°{\ - a") + b'b0 = a°

in view of (4.5), and (iv) follows.
(iv) implies (v). If bD = (aDb + a")'xaD, then aD = (aDb + a")bD, and

bD - aD = (1 - aDb - a")bD = (aDa - aDb)bD = aD(a - b)bD.

(v) implies (i). From bD - aD = aD(a - b)bD we get bD = aD{b" + abD).
Multiplying this expression on the right by bDb2, after a short calculation we get
bbD = aDabDb. Writing aaD = 1 - a" and bbD=l-b", we get a" =a'b".

Similarly, multiplying aD = (a* + aDb)bD on the left by a2aD, we get aaD =
aaDbbD, and b" =a"b". Hence a" = V.

(i) implies (vi) is clear.
(vi) implies (i). From ba" = a"b it follows that bna" = a*b* since b* 6

comm2(A). Then 1 - (b" - a71)2 = (1 - a" + b")(l - b* + a"), and 1 - a" + b",
1 - b" + a" e @r\ Further, a" (I - a" + V) = a'b* = If (I - b* + a"). Hence

a" = (1 -a" + b")-1a"b' = (1 - a ' + J T ' d -a' +b")a'b' =a"b",

b" = (1 -b" +alxyib"a7' = (1 - b" + a')~l(l - b" + a") If a" =a*b*.
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(vii) implies (i). From (bD)° c (aD)° it follows that &aD C S&aP. Indeed, aD, bD

are regular (with inner inverses a, b, respectively). By Proposition 3.1,

D)° = (bD)° C

and

The inclusions £&bD D &aD and bD& c aD& imply the consistency of the equations

(6.3) . aD = ybbD, acPx = bD,

since aD3? = aa°2?, and 3?bD = 3?bbD. Equation (6.3) is equivalent to

(6.4) (1 -aaD)bD = 0 = aD(l - bbD),

which in turn implies

aD = aDbbD and bD = aaDbD.

Then aaD = aaDbbD and bbD = aaDbbD. Thus aa° = bbD, and a' = V.

(i) implies (vii). As aaD = bbD, then bD& = bbD3> = acPSt = aD3>. Similarly,
3>bD = ®aD, which implies (3>bD)° = (@aD)°, or (aD)° = (bu)° according to
Proposition 3.1. •

Specializing the equivalence of conditions (i)-(v) in the preceding theorem to
complex matrices, we recover [2, Theorem 2.1]. Condition (vi) appears to be new.
Hartwig [7, Corollary 2] proved that if ba'+l = a1 and abk+l = bk, then aaD = bbD if
and only if ak+l and bk+l commute.

REMARK 6.2. The condition 1 - (If - a")2 e @rx in (vi) is equivalent to the
simultaneous validity of 1 - a" + b" e Sfrx and 1 - b" + a" € 3#~{. We show that
it cannot be replaced by 1 - a" + b" e M~l (or 1 - b" + an € @.~x) alone. Let 8?, be
the ring of all real 3 x 3 matrices, and set

a =

Then a° = a, bD = b and

a =

1
0
0

0
0
0

0
0
1

b =
1
0
0

0
0
0

0
0
0

0
0
0

0
1
0

0
0
0

b" =
0
0
0

0
1
0

0
0
1
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We note that ba" = a"b, and

1 - a" + b" =

while a* ^ b".

7. EP elements in rings with involution

Complex matrices and Hilbert space operators A with the property that the ranges
of A and A* coincide are known as EP or range-hermitian operators. For a discussion
of EP matrices see [ 1, Chapter 4]. A detailed study of EP elements in involutory rings
was undertaken by Hartwig [6]. The concept has been studied recently in the setting
of C*-algebras [10].

DEFINITION 7.1. An element a of a ring Sf, with involution is said to be EP if
a e 8?,%X) fl 0P and aD = at . An element a is generalized EP (or gEP for short) if
there exists k e N such that ak is EP.

We recall the following well known characterization of EP elements (see, for
instance, [6, 10]):

a is EP «=>• aa^ = a?a.

In [2], the authors gave characterization of complex EP matrices based on properties
of matrices with the same eigenprojection at 0. This section is motivated by these
results. The key to the characterization of EP elements is the following proposition
involving equality of spectral idempotents of various elements given without proof in
[10, Corollary 2.2] in the setting of C*-algebras.

THEOREM 7.2. For a e f the following conditions are equivalent:

(i) a is EP;
(ii) a € <^* and a" — (a*)";

(iii) a e ^ g D n J?+ and a" = (a*a)";
(iv) a e ^ g D n 8P and a" = (aa*)*;
(v) a e & and (a*a)" = (aa*)n.

PROOF, (i) implies (ii). Assume that a is EP. The group invertibility of a follows
from the equation aa" = a(\ — a°a) = a(\ — a1 a) = a — aa^a = 0. Further,
(a*)' = (a")* = (1 - rfa)* = \-a*a = a\

https://doi.org/10.1017/S1446788700003657 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003657


150 J. J. Koliha and Pedro Patricio [14]

(ii) if and only if (iii). If (ii) holds, then a* € &*, a"a*a = a*aa" = 0, and

a* a + a" = (a* + a*)(a + a") € X~x

by properties of spectral idempotents of a* and a. From the definition of a spectral
idempotent we conclude that (a*a)* = a". A direct check reveals that a* satisfies the
definition of a1; hence a € 3f\

Conversely, if (iii) holds, then a*a € ^?* by Theorem 5.3, and consequently
a*a(a*df = 0. By the *-cancellation for a, aa" = a(a*a)" = 0, which shows that
a e 31*. Since a" is symmetric, (ii) holds.

(ii) if and only if (iv). This is the equivalence (ii) <=> (iii) with a* in place of a.
(iii) and (iv) together obviously imply (v).
(v) implies (i). If a G 3t', then a is *-cancellable, and a*a and aa* are group

invertible by Theorem 5.3. According to (5.4) we have

a1 a = (a*a)*a*a = 1 - (a*a)" = 1 - (aa*)" = aa*(aa*)* = aa\

and a is EP. •

Part (ii) of the preceding proposition states that an element is EP if and only if a is
group invertible and the elements a and a* have the same spectral idempotent. When
we apply our main Theorem 6.1 to this situation, a number of conditions will coalesce.
In particular, we have the following result.

THEOREM 7.3. An element a € Sf- is EP if and only if a is group invertible and one
of the following equivalent conditions holds:
(a) a*a is symmetric;
(b) (a*)*=aa*(a*)t;
(c) (a*)* = (a*?a*a;
(d) a*(an)* =a"(a*)*.

PROOF. First assume that a e <S?#.
(a) implies (b). From (a*)2a = a* we obtain a*(a§a)* = a* by the symmetry of

a*a. Then a*a*(a*)* = a*; applying involution, we get (b).
(b) if and only if (c). Condition (c) is obtained from (b) with a* in place of a by

applying involution.
(b) implies (d). We have

a"(a*)* = anaa\a*)* = a"{\- a«)(a*)* = 0.

Hence a"(a*)* = 0 = a*(a")*.

https://doi.org/10.1017/S1446788700003657 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003657


[15] Elements of rings with equal spectral idempotents 151

Assume that a € £%* and (d) holds. From (d) we get

(\ - a*a)(a*)* = a*{\ - a\a*)*)

and

(a*)* -a* = a*(a-a*)(a*)*.

By Theorem 6.1 (vi) applied to b = a* we get (a*)" = a"; hence a is EP by
Theorem 7.2 (ii).

Conversely, if a is EP, then according to Theorem 7.2 (ii) a is group invertible, and
a" = (a*)" = (a*)*, that is, a" is symmetric; then a*a is also symmetric. •

In the following theorem we obtain a particularly simple and elegant characteriza-
tion of EP elements in a ring with involution.

THEOREM 7.4. An element a € 8& is EP if and only if a is g-Drazin invertible and
one of the following equivalent conditions holds:

(a) a*an = 0;
(b) a"a* = 0;
(c) a* = a*aDa;
(d) a* = aDaa*.

PROOF. Assume that a € ^?gD; then'also a* e
Under this assumption, the equivalence of (a) and (c) follows from the equation

a* — a*a°a = a*(I — a°a) = a*a". Applying (a) to a* in place of a and taking
involution, we see that (a) is equivalent to (b); similarly, (c) is equivalent to (d).

Suppose that a e &gD and (d) holds. We show that a°a is symmetric:

(aDa)* = a*(aD)* = aDaa*(aD)* = (aDa)(aDa)\

Since (aDa)(aDa)* is symmetric, so is aPa. From a* = aDaa* we get ana* = 0,
which implies aa" — 0. Then a e &*, and a is EP by Theorem 7.3 (i).

Conversely assume that a is EP. Then a e J?# and a" is symmetric by Theo-
rem 7.2 (ii). Hence a*a" = (a"a)* = 0, and (a) holds. •

For matrices we recover [2, Theorem 5.2 (ii)]—without the redundant condition
that a°a is symmetric.

As a final result of this paper we obtain the following characterization of gEP
elements of 3?, (see Definition 7.1) which follows from Theorems 7.3 and 7.4.

THEOREM 7.5. An element a 6 J? is gEP if and only if a € @° and one of the
following equivalent conditions holds:
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(a) an is symmetric,
(b) a°a is symmetric;
(c) ak 6 ^ # and (aD)k(a*)* = Ofor some k;
(d) ak e &* and (a")*(aD)k = Ofor some k;
(e) ak 6 £$* and (aD)k(a")* is symmetric for some k;
(f) a*(a')* = Ofor some k e N;
(g) {a")*ak = Ofor some k e N;
(h) ak = (aDa)*ak for some k € N;
(i) a * = ak(aDa)* for some k e N .
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