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Abstract. We prove the central limit theorem (CLT), the first-order Edgeworth expansion
and a mixing local central limit theorem (MLCLT) for Birkhoff sums of a class of
unbounded heavily oscillating observables over a family of full-branch piecewise C2

expanding maps of the interval. As a corollary, we obtain the corresponding results for
Boolean-type transformations on R. The class of observables in the CLT and the MLCLT
on R include the real part, the imaginary part and the absolute value of the Riemann zeta
function. Thus obtained CLT and MLCLT for the Riemann zeta function are in the spirit
of the results of Lifschitz & Weber [Sampling the Lindelöf hypothesis with the Cauchy
random walk. Proc. Lond. Math. Soc. (3) 98 (2009), 241–270] and Steuding [Sampling
the Lindelöf hypothesis with an ergodic transformation. RIMS Kôkyûroku Bessatsu B34
(2012), 361–381] who have proven the strong law of large numbers for sampling the
Lindelöf hypothesis.
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1. Introduction
Expanding maps of the unit interval are the most elementary class of dynamical systems
that exhibit chaotic behaviour. There is an extensive body of literature on limit theorems for
Birkhoff sums of expanding maps as summarized in [8, 10, 15]. In particular, in [34], the
central limit theorem (CLT) is established for observables with bounded variation (BV)
over piecewise uniformly expanding maps whose inverse derivative is also BV. Further,
in [10], Edgeworth expansions describing the error terms in the CLT are established in the
case of BV observables over C2 uniformly expanding maps that are covering. In both cases,
the results are limited to bounded observables since the observables considered are BV.

One standard technique of establishing limit theorems for dynamical systems is the
Nagaev–Guivarc’h spectral approach that was first introduced by Nagaev in the Markovian
setting in [32], and later, adapted to deterministic dynamical systems by Guivarc’h in [14].
The key idea is to code the characteristic function using an iterated twisted transfer operator
(one can think of this as the deterministic counterpart of the dual of the Markov operator
in the Markovian setting) and to analyse the spectral data of these families of operators in a
suitable Banach space. More precise formulations of this idea can be found in [4, 13, 15].

Though transfer operator techniques to handle unbounded observables are available, see
for example, [5, 11, 16, 28], there are only a few results for limit theorems for unbounded
observables over uniformly expanding maps of the interval; see for example, [1, 6] of
which the latter, however, does not use transfer operator techniques. In [1, 5, 28], the
goal was to obtain bounds for the spectral radius and the essential spectral radius of the
(twisted) transfer operators associated with expanding maps acting on their corresponding
Banach spaces. While the first two works did not address limit theorems, in [1], a CLT and
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Limit theorems for unbounded observables 3

an almost sure invariance principle were proven. However, to the best of our knowledge,
nothing is known about the first-order Edgeworth expansion (the quantitative CLT) or the
mixing local central limit theorem (MLCLT) in this setting.

Notably, [16] introduced a general framework for establishing the first-order Edgeworth
expansion in a Markovian context that is nearly optimal, comparable to conditions in the
independent identically distributed (IID) setting. This framework was further extended in
[11] to obtain expansions of all orders in both the CLT and the MLCLT, with applications
to systems modelled by shifts of finite type or Young towers and unbounded observables
with nearly optimal order of integrability. Despite its potential, this generalized theory has
not been applied to expanding maps until this work.

In this paper, we introduce a class of Banach spaces that are not contained in L∞ and for
which the conditions introduced in [11, 16] can be verified in the context of C2 uniformly
expanding maps of the interval. In Remark 2.4, we compare the class of Banach spaces we
introduce with other Banach spaces in the literature that include unbounded observables
and are known to possess a spectral gap for the associated transfer operator.

The observables χ : (0, 1) → R we focus on and which belong to our Banach space are
unbounded heavily oscillating observables characterized by the conditions

|χ | � x−a(1 − x)−a and max{|χ ′(x+)|, |χ ′(x−)|} � x−b(1 − x)−b

for some a, b > 0. The permissible ranges for a and b vary depending on the specific
interval map and the limit theorem of interest.

As the underlying transformations we consider are full-branched C2 uniformly
expanding maps of the interval, we see that the non-removable singularities of χ are
always at a fixed point of the interval map. (This, however, could easily be extended to any
periodic point.) The behaviour of such maps can be considered as particularly interesting:
once an orbit lands close to a fixed point, a few subsequent iterates might stay relatively
close to the fixed point and the Birkhoff sum might be very large locally. Such situations
can cause the system to behave qualitatively different from the IID setting, see for example,
[24, Theorem 1.10].

Further, we show that the general framework developed in [11] for limit theorems
involving unbounded observables can be applied to our class of observables. By adapting
the ideas in [11] to our context, in §3, we identify a set of sufficient conditions on both
the system and the observables that ensure the validity of limit theorems. In particular, we
establish the CLT, its first-order correction – the first-order Edgeworth expansion – and an
MLCLT for the Birkhoff sums of χ .

Indeed, we consider a sequence of increasing Banach spaces (all of them containing
unbounded observables) on each of which the twisted transfer operators corresponding to
full-branch C2 expanding maps satisfy Doeblin–Fortet Lasota–Yorke (DFLY) inequalities
and other good spectral properties. These properties, in turn, lead to the establishment
of the limit theorems for this class of expanding maps. In the previous literature
(including [11]), the conditions in the general framework were not verified in a context
similar to ours, and there lies the key novelty of this work. Though our results regarding the
introduced Banach spaces are tailored to prove limit theorems in the spirit of [11], similar,
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4 K. Fernando and T. I. Schindler

general techniques using a chain of Banach spaces were established in [16] and also used
in [33]. Having this in mind, the intermediate technical results of this paper regarding the
precise details of the chain of Banach spaces (relegated to Appendix A) might be helpful
to prove further limit theorems in the future.

As an immediate application, we deduce limit theorems for a Boolean-type transfor-
mation φ : R → R given by φ(x) = 1/2(x − 1/x) if x �= 0 and observables that heavily
oscillate at ±∞. This application makes use of a smooth conjugacy between the doubling
map on the unit interval and φ. In particular, this has applications to sampling the Lindelöf
hypothesis, a line of research in analytic number theory that deals with understanding the
properties of the Riemann zeta function on the critical strip. We elaborate on this in §2.6.

The structure of the paper is as follows: §2 is dedicated to preliminaries and main
results; in §2.1, we introduce the relevant notation and common definitions that we will use
throughout the paper; in §2.2, we state precisely the class of expanding maps we consider;
in §2.3, we introduce our Banach spaces; in §2.4, we state our main results for the interval
maps; and in §2.5, we state the corresponding results for the Boolean transformation on
R and their implications to sampling the Lindelöf hypothesis is discussed in §2.6. In §3,
we recall known abstract results in [11, 16] tailored (with justifications) to our setting.
The spectral properties of twisted transfer operators acting on these spaces including the
DFLY inequality are established in §4. In §5, we collect the proofs of our main results. In
particular, the proofs of the limit theorems for interval maps appear in §5.1, and in §5.2,
we prove the corresponding results for the Boolean-type transformation. Finally, we have
relegated some technical results to the Appendices; in particular, an in-depth discussion
about our Banach spaces appears in Appendix A.

2. Main results
2.1. Preliminaries. Let X be a metric space with a reference Borel probability measure
m and let T : X → X be a non-singular dynamical system, that is, for all U ⊆ X Borel
subsets, m(U) = 0 holds if and only if m(T −1U) = 0 holds. We denote by M1(X) the set
of Borel probability measures on X. Let ν ∈ M1(X). For p ≥ 1, by Lp(ν), we denote the
standard Lebesgue spaces with respect to ν, that is,

Lp(ν) = {h : X → X | h is Borel measurable, ν(|h|p) < ∞},

where the notation ν(h) refers to the integral of a function h with respect to a measure
ν and the corresponding norm is denoted by ‖ · ‖Lp(ν). When ν = m, we often write Lp

instead of Lp(m) and ‖ · ‖p instead of ‖ · ‖Lp(m).
For us, an observable is a real valued function f ∈ L2 for which we consider the

Birkhoff sums (also commonly referred to as ergodic sums),

Sn(f , T ) =
n−1∑
k=0

f ◦ T k , (2.1)

which we denote by Sn(f ) when the dynamical system T is fixed.
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Limit theorems for unbounded observables 5

We say T̂ : L1 → L1 is the transfer operator of T̂ with respect to m if for all f ∈ L1

and f ∗ ∈ L∞,

m(T̂ (f ) · f ∗) = m(f · f ∗ ◦ T ). (2.2)

Let m ∈ M1(X) be absolutely continuous with respect to m with density ρm. Then, from
equation (2.2), it follows that

Em(eisSn(f )) = m(T̂ n
is(ρm)), (2.3)

where Em is the expectation with respect to the law of Sn, where the initial point x is
distributed according to m and

T̂is(·) = T̂ (eisf ·), s ∈ R, (2.4)

see, for example, [15, Ch. 4]. Eventually, we are interested in the asymptotics of
quantities of the form m(Sn(f ) ≤ zn) and Em(Vn(Sn(f ))) as n → ∞, where zn ∈ R and
Vn : R → R are from a suitable class of observables, and to obtain these asymptotics, we
exploit the relation in equation (2.3).

We denote

A = lim
n→∞ Em

(
Sn(f , T )

n

)
and σ 2 = lim

n→∞ Em

(
Sn(f , T ) − n A√

n

)2

for the asymptotic mean and the asymptotic variance of Birkhoff sums, Sn(f , T ),
respectively. Under the assumptions we impose on T in §2.2, A and σ 2 are independent of
the choice of m because each initial measure m converges weakly to the unique absolutely
continuous invariant probability measure (acip) under the action of T̂ , and we may focus
on zero average observables by considering f := f − A instead of f.

We call f to be T-cohomologous to a constant in the function space F if there exist
� ∈ F and a constant c such that

f = � ◦ T − � + c

and T-coboundary in F if there exists � ∈ F such that

f = � ◦ T − �.

We say f is non-arithmetic in F if it is not T-cohomologous in F to a sublattice-valued
function, that is, if there exists no triple (γ , B, θ) with γ : X → R, B a closed proper
subgroup of R and a constant θ such that f + γ − γ ◦ T ∈ θ + B.

Given a Banach space B1, the C-valued continuous linear functionals are denoted by
B ′

1 and given another Banach space B2, L(B1, B2) denotes the space of bounded linear
operators from B1 to B2. When B1 = B2, we write L(B1, B1) as L(B1). When B1 ⊂ B2,
B1 ↪→ B2 denotes continuous embedding of Banach spaces, that is, there exists c > 0 such
that ‖ · ‖B2 ≤ c‖ · ‖B1 .

Given a set D ⊆ X, its complement X \ D is denoted by Dc, and D̊ denotes its inte-
rior. Given a function f : D → R, set f+ := max{f , 0} and f− := max{−f , 0}. Given
g : D → R, g � f denotes that there exists constant K > 0 such that g(x) ≤ Kf (x) for
all x ∈ D. Let Q1, Q2 be R+

0 valued functionals acting on a class of functions G1 and G2,
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the inequality Q1(g) � Q2(h) for all g ∈ G1 and h ∈ G2 is written to denote that there
exists K independent of the choices of g and h such that Q1(g) ≤ KQ2(h). Finally, given
two numbers a, b ∈ R, a ≈ b means that 0 ≤ a − b ≤ 10−3.

We denote the standard Gaussian density and the corresponding distribution function by

n(x) = 1√
2π

e−x2/2 and N(x) =
∫ x

−∞
n(y) dy,

respectively.

2.2. The classes of dynamical systems. Let I = [0, 1] and λ be the Lebesgue measure
(on R) and λI its restriction to I. We use λI as the reference measure on I and let
I = ⋃k−1

j=0[cj , cj+1] be a partition of I with c0 = 0 and ck = 1. We consider the class
of maps ψ : I → I satisfying the following conditions.
(1) There are ψj+1 : [cj , cj+1] → I such that for all j, ψj+1 ∈ C2, |ψ ′

j+1| > 1,
Range(ψj+1) = I and

ψj+1|(cj ,cj+1) = ψ |(cj ,cj+1).

(2) For all j, the derivative of ψ−1
j+1 is uniformly ϑ-Hölder, that is, there exists c such that

for all j, for all ε > 0, for all z ∈ I and for all x, y ∈ Bε(z) := [z − ε, z + ε] ∩ [0, 1],

|(ψ−1
j+1)

′(x) − (ψ−1
j+1)

′(y)| ≤ c|(ψ−1
j+1)

′(z)|εϑ .

Remark 2.1. The full-branch assumption was made to simplify our calculations. Later on,
we will be particularly interested in the doubling map that is conjugate to the Boolean type
transformation, a transformation over the real line.

Since the maps studied here are C2, Markov and topologically mixing, each map has
one and only one acip, and it is exact [4, Theorem 6.1.1]. We denote this acip by π . Since
ψ ′

j+1 are C1, there exists η+ < ∞ such that

max
j

‖ψ ′
j+1‖∞ = η+.

Also, since |ψ ′
j+1| > 1, there exists η− > 1 such that

max
j

‖(ψ−1
j+1)

′‖∞ = 1/η−.

Remark 2.2. If f ∈ F is a ψ-coboundary in the space of measurable functions, then it is a
ψ-coboundary in the class of piecewise C2 functions, see [20, 30].

Without loss of generality, we assume that ψ ′ > 0 and we have

ψ̂is(ϕ)(x) =
k−1∑
j=0

e
isχ(ψ−1

j+1x)

ψ ′(ψ−1
j+1x)

ϕ(ψ−1
j+1x), (2.5)

see, for example, [15] for a proof of this fact.
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Limit theorems for unbounded observables 7

2.3. The Banach spaces. For a measurable function f : I → R and a Borel subset S
of I, we define the oscillation on S by

osc(f , S) := ess sup
x,y∈S

|f (x) − f (y)|

and we set osc(f , ∅) := 0. For a complex valued function f, we generalize the definition to

osc(f , S) := osc(Rf , S) + osc(If , S),

where Rf and If refer to real and imaginary parts of f, respectively. Also, in the case
of a complex valued function f, up to a constant, this is equivalent to the more intuitive
definition

osc(f , S) := ess sup
x,y∈S

|f (x) − f (y)|.

This can be easily seen. We have |f (x) − f (y)| ≤ |�f (x) − �f (y)| + |�f (x) − �f (y)|
and, thus, osc(f , S) ≤ osc(f , S). However, we have osc(f , S) ≤ 2 max{osc(�f , S),
osc(�f , S)} ≤ 2 osc(f , S). In what follows, we use osc as the standard definition.

For α ∈ R, define Rα , an operator on the space of measurable functions, by

Rαf (x) :=
{
xα · (1 − x)α · f (x) if |f (x)| < ∞,
0 otherwise,

denote by Bε(x) the ε-ball around x in I and define a seminorm

|f |α,β := sup
ε∈(0,ε0]

ε−β

∫
osc(Rαf , Bε(x)) dλI (x),

where ε0 is sufficiently small (to be chosen later). Let

‖ · ‖α,β,γ := ‖ · ‖γ + | · |α,β

and set

Lγ := {f : I → C : ‖f ‖γ < ∞}, Vα,β,γ := {f : I → C : ‖f ‖α,β,γ < ∞}.
Finally, by V ′

α,β,γ , we denote the set of C-valued continuous linear functionals on Vα,β,γ .

Remark 2.3. It is shown in Appendix A that for α ∈ [0, 1), β ∈ (0, 1] and γ ≥ 1, Vα,β,γ

is a Banach space. Similar real Banach spaces were considered in [2, 21, 23]. In all these
cases, their spaces correspond to our spaces with α = 0, and hence, are embedded in L∞;
see Lemma A.4.

Due to the dampening operation Rα , which was first introduced by the second author
in [36], the observables in Vα,β,γ may be unbounded and oscillate heavily near 0 and 1.
It was used to establish a CLT. However, there was a critical mistake in the proof: the
normed vector space considered there to study the spectrum of the transfer operator is not
complete. In what follows, we not only correct this mistake but also establish an MLCLT
for the Birkhoff sum given by equation (2.20).

Moreover, we remark that depending on the application, one could consider different
damping operators and use the ideas presented here to prove other limit theorems.
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It is clear that due to the structure of Rα , the oscillating singularity can occur precisely
at the fixed points 0 and 1. In the case where the map ψ has more than two branches,
and hence, fixed points 0 = a0 < a1 < · · · < ak−2 < ak−1 = 1, the proofs could easily
be generalized to a Banach space with additional dampening at a1, . . . , ak−2. In this case,
we would consider Rαf (x) = ∏k−1

j=0 |x − aj |αf (x). However, these calculations would
make the proof even more technical and, hence, we decided to restrict ourselves to the
observables only oscillating at 0 and at 1.

Allowing for singularities of f at a point y that is not a fixed point of ψ , that is,
introducing a damping function |x − y|α , would still result in a Banach space. However,
under ψ , the singularity of f would move and Vα,β,γ would no longer be closed under
the action of the transfer operator ψ̂ , a condition fundamental for proofs using transfer
operator techniques. In the case of y being a periodic point of period d, considering ψd

instead of ψ should work.

Remark 2.4. In the literature, there are a number of Banach spaces that also allow for
unbounded observables, e.g. [1, 5, 28]. Those are seemingly more general than the Banach
space we introduce because they do not have the restriction that the singularity can only
occur on a fixed point.

However, the norm of the Banach spaces are defined in an implicit way, e.g. as

‖h‖ = sup
‖ϕ‖α≤1

∣∣∣∣ ∫ 1

0
ϕ′(x)h(x) dx

∣∣∣∣
in [28] with ϕ out of a certain space (Bα , ‖ · ‖α), and similarly, in an implicit way in [1, 5].
It is not clear and not an easy task to check whether the observables we are interested in,
or even more elementary observables like x−c sin(1/x), c > 0, belong to Banach spaces
in the literature [29]. From this point of view, the proposed Banach spaces are interesting
because the conditions are relatively easy to check. Moreover, for the method used in our
paper, a sequence of Banach spaces is necessary. This would introduce additional technical
difficulties if we were to use other Banach spaces in the literature.

2.4. Results for the unit interval. Now, we are ready to state the limit theorems for
Sn(χ) := Sn(χ , ψ) over dynamical systems ψ defined as in §2.2. Though we do not state
this explicitly, it will later turn out that the χ specified in the following theorems belongs
to an appropriate Vα,β,γ .

We first state the CLT in the stationary case.

THEOREM 2.5. Suppose χ is continuous and the right and left derivatives of χ exist on I̊ ,
χ is not a coboundary and there exist constants a, b > 0 such that

|χ(x)| � x−a(1 − x)−a and max{|χ ′(x+)|, |χ ′(x−)|} � x−b(1 − x)−b. (2.6)

Assume

a < min
{
ϑ ,

1
b

,
1
2

}
· min

{
1,

log η−
log η+

}
. (2.7)
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Then, the following CLT holds:

π

(
Sn(χ) − n π(χ)

σ
√

n
≤ x

)
− N(x) = o(1) for all x ∈ R as n → ∞. (2.8)

Now, we discuss sufficient conditions for the MLCLT.

THEOREM 2.6. Suppose χ is continuous, and the right and left derivatives of χ exist on I̊ ,
χ is not arithmetic, and there exist constants a, b > 0 such that equations (2.6) and (2.7)
are true. Then, Sn(χ) satisfies the following MLCLT: for all 0 < α0 < α1 < β, M ≥ 1,
U ∈ Vα0,β,M , V : R → R a compactly supported continuous function, m ∈ M1(I ) being
absolutely continuous with respect to λI , and W ∈ L1 such that (W · m) ∈ V ′

α1,β,M , we
have

lim
n→∞ sup

�∈R

∣∣∣∣σ√
2πn Em(U ◦ ψn V (Sn(χ) − �) W)

− e−�2/2nσ 2
Em(W) Eπ (U)

∫
V (x) dx

∣∣∣∣ = 0. (2.9)

Remark 2.7. In particular, it is possible to choose m = π for all W ∈ LM̄ , where
M−1 + M̄−1 = 1. In fact, under our assumptions, there exists ρ ∈ BV such that π = ρλI ;
see, for example, [27]. Therefore, |W · π(h)| = | ∫

(hW)ρ dλI | ≤ ‖ρ‖∞|Wh|L1 ≤
‖ρ‖∞‖W‖M̄‖h‖M ≤ C‖h‖α1,β,M with C = ‖ρ‖∞‖W‖M̄ , and hence, W · π ∈ V ′

α1,β,M ,
as required.

Next, we discuss the first-order asymptotics of the CLT with no assumptions on the
stationarity. In particular, under the conditions of the theorem, we have the CLT for initial
measures that are not necessarily invariant.

THEOREM 2.8. Suppose χ is continuous, and the right and left derivatives of χ exist on
I̊ , χ is arithmetic, and there exist constants a, b > 0 such that equations (2.6) and

3 min{2a, max{a, a + b − 2}} < min
{
ϑ ,

1
b

,
1
2

}
· min

{
1,

log η+
log η−

}
(2.10)

are true. Then, Sn(χ) satisfies the first-order Edgeworth expansion, that is, for all
m ∈ M1(I ) being absolutely continuous with respect to λI , there exists a quadratic
polynomial P whose coefficients depend on the first three asymptotic moments of Sn(χ),
but not on n such that

sup
x∈R

∣∣∣∣m(
Sn(χ) − n π(χ)

σ
√

n
≤ x

)
− N(x) − P(x)√

n
n(x)

∣∣∣∣ = o(n−1/2) as n → ∞.

Remark 2.9. Note that from equations (2.10) and (2.6) with the corresponding choices of
a and b, it follows that χ ∈ L3. So, Em(|Sn(χ)|3) < ∞ for each n. Our proof shows that
the third asymptotic moment
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lim
n→∞ Em

(
Sn(χ) − n π(χ)√

n

)3

does, indeed, exist.

Finally, we provide a concrete example of a class of observables that satisfies our
conditions.

Example 2.10. Let χ(x) = x−c sin(1/x) and define η̃ = min{1, log η−/log η+}.
(1) If 0 ≤ c < min

{√
1 + η̃ − 1, ϑη̃

}
, then Sn(χ) satisfies the CLT and MLCLT.

(2) If 0 ≤ c < min{√1 + η̃/6 − 1, ϑη̃/6}, then Sn(χ) admits the first-order Edgeworth
expansion.

If ψ is the doubling map, that is, ψ(x) = 2x mod 1, then the conditions simplify in the
following way.
(1a) If c <

√
2 − 1 (≈ 0.414), then Sn(χ) satisfies the CLT and MLCLT.

(2a) If c <
√

7/6 − 1 (≈ 0.080), then Sn(χ) admits the first-order Edgeworth
expansion.

2.5. The application to the Boolean-type transformation. For the following, we define
the Boolean-type transformation φ : R → R as

φ(x) :=
⎧⎨⎩

1
2

(
x − 1

x

)
if x �= 0,

0 if x = 0,
(2.11)

and μ the φ-invariant probability measure absolutely continues with respect to Lebesgue
and defined by

dμ(x) := 1
π · (x2 + 1)

dλ(x). (2.12)

We are interested in limit theorems for Birkhoffs sums S̃n(h) := Sn(h, φ), where
h : R → R. To study these systems, we go back to an easier system that fulfils all our
properties of the last section.

Let ψ : I → I be given by ψ(x) := 2x mod 1 and ξ : I → R be given by
ξ(x) := cot(πx). Note that ξ is almost surely bijective. An elementary calculation yields
that the dynamical systems (R, BR, μ, φ) and (I , BI , λI , ψ) are isomorphic via ξ , i.e.

(φ ◦ ξ)(x) = (ξ ◦ ψ)(x)

for all x ∈ I , and additionally ξ and ξ−1 are measure preserving, i.e. for all B ∈ BR, it
holds that μ(B) = λI (ξ

−1B) and for all B ∈ BI , it holds that λI (B) = μ(ξB). To simplify
the notation, we define σ̃ 2 := σ 2(h, φ).

Hence, instead of studying the Birkhoff sum
∑N−1

n=0 (h ◦ φn)(x) with x ∈ R, we can
study the sum

∑N−1
n=0 (h ◦ ξ ◦ ψn)(y) for y ∈ I . Since the transformations φ and ψ are

isomorphic, we conclude that

μ

( N−1∑
n=0

(h ◦ φn)(x) ∈ B

)
= λI

( N−1∑
n=0

(h ◦ ξ ◦ ψn)(y) ∈ B

)
(2.13)
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for all sets B ∈ BR. Formally, we define χ : I → R by χ(x) := (h ◦ ξ)(x) and consider
then the Birkhoff sum Sn(χ). Then, our task reduces to transferring the conditions we
have for χ to conditions for h.

Let F be the class of functions h : R → R such that the left and right derivatives exist,
and there exist u, v ≥ 0 fulfilling

h(x) � |x|u and max{|h′(x−)|, |h′(x+)|} � |x|v (2.14)

and u(2 + v) < 1 . Analogously to f , we define h = h − μ(h). Easy examples for
functions h ∈ F are h(x) = xa with 0 ≤ a < (

√
5 − 1)/2 or h(x) = xa sin(xb) with

a, b > 0 and a(1 + a + b) < 1.
Under the non-coboundary condition on φ, we have the CLT.

PROPOSITION 2.11. Suppose h ∈ F is not φ-cohomologous to a constant. Then, the
following CLT holds:

μ

(
S̃n(h) − n μ(h)

σ̃
√

n
≤ x

)
− N(x) = o(1) for all x ∈ R as n → ∞ (2.15)

with σ̃ 2 ∈ (0, ∞).

Under a non-arithmeticity condition on φ, we have the MLCLT.

PROPOSITION 2.12. Let h ∈ F be non-arithmetic. Let 0 < α0 < α1 < β and M ≥ 1.
Then, the following MLCLT holds: for V : R → R compactly supported and continuous,
U such that U ◦ ξ ∈ Vα0,β,M , W such that W ◦ ξ ∈ L1 for all m ∈ M1(R) being absolutely
continuous with respect to λ such that (W ◦ ξ · ξ∗m) ∈ V ′

α1,β,M , we have

lim
n→∞ sup

�∈R

∣∣∣∣σ√
2πn Em(U ◦ ψn V (S̃n(h) − �) W)

− e−�2/2nσ̃ 2
Em(W) Eμ(U)

∫
V (x) dx

∣∣∣∣ = 0. (2.16)

Finally, we state a set of sufficient conditions that implies the Edgeworth expansions
for φ.

PROPOSITION 2.13. Let h : R → R be such that the left and right derivatives exist, and
there exist u, v ≥ 0 fulfilling equations (2.14) and

min{2u(2 + v), (u + v)(2 + v)} < 1/3, (2.17)

and h is not arithmetic. Then, there exists a quadratic polynomial P whose coefficients
depend on the first three asymptotic moments of S̃n(h) but not on n such that for all
m ∈ M1(R) being absolutely continuous with respect to λ, we have

sup
x∈R

∣∣∣∣m(
S̃n(h) − n μ(h)

σ̃
√

n
≤ x

)
− N(x) − P(x)√

n
n(x)

∣∣∣∣ = o(n−1/2) as n → ∞. (2.18)

Remark 2.14. The condition in equation (2.17) forces that 0 ≤ u < 1 and u < v.
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12 K. Fernando and T. I. Schindler

2.6. Sampling the Lindelöf hypothesis. In this section, we apply the results from the last
subsection to the context of sampling the Lindelöf hypothesis. Let ζ : C \ {1} → C be the
Riemann zeta function defined by

ζ(s) :=
∞∑

n=1

n−s , �(s) > 1

and by analytic continuation elsewhere except s = 1. The Lindelöf hypothesis states that
the Riemann zeta function does not grow too quickly on the critical line �z = 1/2. More
precisely, it is conjectured that

ζ1/2(t) := ζ( 1
2 + it) = O(tε), t → ±∞ (2.19)

for all ε > 0, that is, limt→±∞ |ζ1/2(t)|/tε < ∞. To date, the best estimates are due to
Bourgain in [3], where it is proved that this is true for all ε > 13/84 ≈ 0.154. It is worth
noting that the Riemann hypothesis implies the Lindelöf hypothesis and the latter is a
substitute for the former in some applications.

The conjecture is related to the value distribution of ζ1/2(t) as t → ±∞. To obtain
more information about this tail behaviour, one can study ergodic averages of ζ1/2 sampled
over the orbits of heavy-tailed stochastic processes. This approach to Lindelöf hypothesis
was initiated by Lifschitz and Weber in [26]. In particular, they prove that when {Yj }j≥0

are independent Cauchy distributed random variables and Xk = ∑k−1
j=0 Yj (the Cauchy

random walk), then for all b > 2,

1
n

n−1∑
k=0

ζ1/2(Xk) = 1 + o

(
(log n)b√

n

)
, n → ∞,

almost surely, where we denote an = o(bn) if limn→∞ |an|/bn = 0. This work was
later generalized by Shirai, see [37], where Xk was taken to be a symmetric α-stable
process with α ∈ [1, 2). Since Xk are heavy tailed, that is, E(|Xk|p) = ∞ when p = �α�
(including the Cauchy case α = p = 1), the α-stable process samples large values with
high probability. So, this result illustrates that the values of ζ1/2(t) are small on average,
even for large values of |t |.

Similarly, in the deterministic setting, the Birkhoff sums

n−1∑
k=0

ζ1/2(φ
kx), (2.20)

where φ : R → R is the Boolean-type transformation given in equation (2.11), are studied
in [38]. Since φ preserves the ergodic probability measure μ given in equation (2.12) (the
law of a standard Cauchy random variable) and ζ1/2 is integrable with respect to μ, it
follows from Birkhoff’s pointwise ergodic theorem that for almost every (a.e.) x ∈ R,

lim
n→∞

1
n

n−1∑
k=0

ζ1/2(φ
kx) =

∫
ζ1/2(x)

dx

π(1 + x2)
= ζ1/2(3/2) − 8/3 ≈ −0.054. (2.21)

This too illustrates that most of the values of ζ1/2 are not too large.
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Sampling the Lindelöf hypothesis has two other theoretical underpinnings. On the one
hand, it is known that the Lindelöf hypothesis is true if and only if for all m ∈ N and for
a.e. x ∈ R, the following limit exists:

lim
n→∞

1
n

n−1∑
k=0

|ζ1/2(φ
kx)|2m =

∫
|ζ1/2(x)|2m dx

π(1 + x2)
.

On the other hand, the Riemann hypothesis is true if and only if for a.e. x ∈ R,

lim
n→∞

1
n

n−1∑
k=0

log|ζ1/2((φ
kx)/2)| = 0.

In both cases, evidence can be gathered numerically, see [38, Theorems 4.1 and 4.2] for
details.

The results by Steuding have also been generalized, both by replacing ζ and replacing
φ: in [9], Elaissaoui and Guennoun used log |ζ | as the observable and a slight variation
of φ as the transformation, and in [25], Lee and Suriajaya studied different classes of
meromorphic functions such as Dirichlet L-functions or Dedekind ζ functions while taking
φ to be an affine version of the Boolean-type transformation. Maugmai and Srichan
gave further generalizations of these results, see [31]. It must also be mentioned that
these transformations φ have been studied earlier in a solely ergodic theoretic context by
Ishitani(s) in [18, 19].

In what follows, we will use the results of the last subsection to further understand the
value distribution of the Birkhoff averages on the critical strip given by equation (2.20)
around their asymptotic mean A = ζ1/2(3/2) − 8/3 and also study the Birkhoff averages
of ζ(s + i · ) for other values s ∈ (0, 1) of the critical strip. In particular, we will state a
CLT and MLCLT for the above setting.

Recall F the class of functions h : R → R such that the left and right derivatives exist
and there exist u, v ≥ 0 fulfilling

h(x) � |x|u and max{|h′(x−)|, |h′(x+)|} � |x|v

and u(2 + v) < 1 . Since |� ζ (s + i ·)|a , |� ζ (s + i ·)|a , |ζ (s + i ·)|a ∈ F, for some suit-
able choices of s and a, we obtain two corollaries that improve the existing results on
sampling the Lindelöf hypothesis.

COROLLARY 2.15. Let s ∈ (3 − 2
√

2, 1) and define h : R → R as follows:
• h(x) = � ζ(s + ix);
• h(x) = � ζ(s + ix); or
• h(x) = |ζ(s + ix)|.
If h is not φ-cohomologous to a constant, then the CLT, equation (2.15), holds. Moreover,
if h is non-arithmetic, then the MLCLT, equation (2.16), holds.

Remark 2.16. See [36, §2.5] for a discussion, where it is shown using numerics that for
ζ1/2, all of the above choices of h are not coboundaries. Similarly, for a fixed value of s, one
can numerically check whether h is not a ψ-coboundary by calculating the sum of values
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14 K. Fernando and T. I. Schindler

of χ = h ◦ ξ over some appropriate periodic orbit of the doubling map and showing that
it is not equal to 0.

COROLLARY 2.17. Let h : R → R be as follows:
• h = |R ζ1/2|a ;
• h = |I ζ1/2|a ; or
• h = |ζ1/2|a ,
where 1 ≤ a < 84/13(

√
2 − 1) (≈ 2.677). If h is not φ-cohomologous to a constant,

then the CLT, equation (2.15), holds. Moreover, if h is non-arithmetic, then the MLCLT,
equation (2.16), holds.

Remark 2.18. The best estimates in the literature for ε in equation (2.19) (for example, [3])
are not sufficient to conclude that the Riemann zeta function, more precisely, �ζ1/2, �ζ1/2

and |ζ1/2|, satisfy the conditions of Proposition 2.13 on the existence of the first-order
Edgeworth expansion, albeit a slight improvement of results in [3] will provide us with
what is required. In fact, our theorem shows that if the Lindelöf hypothesis is true, then the
first-order Edgeworth expansion has to hold.

Remark 2.19. On the one hand, the Lindelöf hypothesis states that |ζ1/2(x)| � xε holds for
all ε > 0, and hence, if it is true, the above statement of Corollary 2.17 has to hold for any
a > 0. On the other hand, sampling |ζ(s + iφk(x))|a with larger values of a and obtaining
normally distributed samples provides further evidence that the Lindelöf hypothesis is
indeed true. The same holds for the first-order Edgeworth expansion: under the condition
that h is non-arithmetic with h as in Corollary 2.15 and assuming the Lindelöf hypothesis
holds, also a first-order Edgeworth expansion has to hold. A numerical simulation is not
part of this paper. However, observing convergence or not gives a further hint whether the
Lindelöf hypothesis holds or not.

3. Review of abstract results for limit theorems
One known technique used to establish limit theorems for ergodic sums with unbounded
observables is a combination of the Keller–Liverani perturbation result (see [22]) applied
to a sequence of Banach spaces as in [11, 16, 33]. We have stated elementary criteria for
the CLT and the MLCLT to exist below as propositions adapted from [16, Corollary 2.1
and Theorem 5.1] to our setting.

PROPOSITION 3.1. Let T : X → X be a dynamical system that has an ergodic invariant
probability measure m̃. Let f ∈ L2(m̃) be such that m̃(f ) = 0 and

∑
n≥0 T̂ n(f ) converges

in L2(m̃). Then, we have the following CLT:

lim
n→∞ m̃

(
Sn(f )√

n
≤ x

)
= N

(
x

σ

)
for all x ∈ R as n → ∞, (3.1)

where σ 2 = σ 2(f , T ) can be written as

σ 2 = Em̃(f 2) + 2
∞∑

k=1

Em̃(f · f ◦ T k) ∈ [0, ∞).
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Here, σ = 0 if and only if f is a T-coboundary and, in this case, N(x/σ) := 1[0,∞) and
Sn(f )/

√
n → δ0 in distribution as n → ∞.

Proof. This follows due to Gordin [12]. See [16, Corollary 2.1 and Proposition 2.4] for
details.

PROPOSITION 3.2. Let T : X → X be a non-singular dynamical system with respect to
a probability measure m. Suppose T has an ergodic invariant probability measure m̃

absolutely continuous with respect to m and that there exist two, not necessarily distinct,
Banach spaces X and X (+) such that

X ↪→ X (+) ↪→ L1(π) (3.2)

each containing 1X and satisfying the following.
(I) For all s ∈ R, T̂is ∈ L(X ) ∩ L(X (+)).

(II) The map s �→ T̂is ∈ L(X , X (+)) is continuous on R.
(III) Either X = X (+) or there exist κ ∈ (0, 1) and δ > 0 such that for all

z ∈ Dκ := {z ∈ C||z| > κ , |z − 1| > (1 − κ)/2}
and for all s ∈ (−δ, δ), we have

(zId − T̂is)
−1 ∈ L(X ) and sup

|s|<δ

sup
z∈Dκ

‖(zId − T̂is)
−1‖X→X < ∞.

(IV) limn→∞ ‖T̂ n(·) − m̃(·)1X‖X0→X0 = 0.
(V) The CLT, equation (3.1), holds with σ > 0.

(VI) For all s �= 0, the spectrum of the operators T̂is acting on X is contained in the
open unit disc, {z ∈ C | |z| < 1}.

Then, for all U ∈ X , V : R → R a compactly supported continuous function, m ∈ M1(X)

being absolutely continuous with respect to m and W ∈ L1 such that (W · m) ∈ X (+) ′, we
have

lim
n→∞ sup

�∈R

∣∣∣∣σ√
2πn Em(U ◦ T n V (Sn(χ) − �) W)

− e−�2/2nσ 2
Em(U) Em̃(W)

∫
V (x) dx

∣∣∣∣ = 0. (3.3)

Proof. This follows from a modified version of [16, Theorem 5.1]. The condition (CLT)
there is assumed here in assumption (V).

Also, the condition (K̃) there follows from our assumptions (I)–(IV) because condition
(K1) is assumption (IV), condition (K̃1) is assumption (II), and finally, condition (K̃2)

can be replaced by assumption (III) (see Remark 3.4).
Our assumptions (II) and (VI) yield that on any compact set K ⊂ R \ {0}, there exist

ρ ∈ (0, 1) and CK > 0 such that

sup
s∈K

‖T̂ n
is‖X→X+ ≤ CKρn
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for all n ∈ N (see, for example, [11, Proposition 1.13] for a proof). This replaces the
non-lattice condition (S) there.

So, for all U ∈ X , V : R → R a compactly supported continuous function and W ∈ L1

such that (W · m) ∈ X (+) ′, we have the MLCLT due to [16, Theorem 5.1].

Finally, we state a result that gives us sufficient conditions for the first-order Edgeworth
expansion. It is adapted from [11, 16] to our setting (compare with [16, Propositions 7.1
and A.1] and [11, Corollary 1.8 and Proposition 1.12]).

PROPOSITION 3.3. Let T : X → X be a non-singular dynamical system with respect to
a probability measure m. Suppose T has an ergodic invariant probability measure m̃

absolutely continuous with respect to m and that there exists a sequence of, not necessarily
distinct, Banach spaces

X0 ↪→ X (+)
0 ↪→ X1 ↪→ X (+)

1 ↪→ X2 ↪→ X (+)
2 ↪→ X3 ↪→ X (+)

3 (3.4)

each containing 1X, X (+)
3 ↪→ L1 and satisfying the following.

(I) For each space C in equation (3.4), s ∈ R, T̂is ∈ L(C).
(II) For all a = 0, 1, 2, 3, the map s �→ T̂is ∈ L(Xa , X (+)

a ) is continuous on R.
(III) For all a = 0, 1, 2, the map s �→ T̂is ∈ L(X (+)

a , Xa+1) is C1 on (−δ, δ).
(IV) Either all spaces in equation (3.4) are equal, or there exist κ ∈ (0, 1) and δ > 0

such that for all

z ∈ Dκ := {z ∈ C||z| > κ , |z − 1| > (1 − κ)/2},
for all s ∈ (−δ, δ) and for each space C in equation (3.4),

(zId − T̂is)
−1 ∈ L(C) and sup

|s|<δ

sup
z∈Dκ

‖(zId − T̂is)
−1‖C→C < ∞.

(V) T̂ has a spectral gap of (1 − κ) on each space C in equation (3.4).
(VI) For all s �= 0, the spectrum of the operators T̂is acting on either X0 or X (+)

0 is
contained in the open unit disc, {z ∈ C | |z| < 1}.

(VII) The sequence { n−1∑
k=0

f ◦ T k

}
n∈N

,

where f := f − A has an L2-weakly convergent subsequence.
(VIII) f is not T-cohomologous to a constant.
Then, for all m ∈ M1(X) being absolutely continuous with respect tp m, there exists a
quadratic polynomial P whose coefficients depend on the first three asymptotic moments
of Sn(χ) such that the following asymptotic expansion holds:

sup
x∈R

∣∣∣∣m̃(
Sn(f )

σ
√

n
≤ x

)
− N(x) − P(x)√

n
n(x)

∣∣∣∣ = o(n−1/2) as n → ∞. (3.5)

Remark 3.4. In [11, 16], instead of the condition (IV) above, the following stronger
condition of a uniform DFLY inequality is assumed.
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Either all spaces in equation (3.4) are equal, or there exist C̃ > 0, κ̃1 ∈ (0, 1) and p0 ≥ 1
such that, for every C in equation (3.4),

for all h ∈ C, sup
|s|<δ

‖T̂ n
ish‖C ≤ C̃(̃κn

1 ‖h‖C + ‖h‖Lp0 (ν̄)). (3.6)

However, the proof of the key theorem, [11, Proposition 1.11], is based on [16,
Proposition A, Corollary 7.2], which use the hypothesis D(m) in [16, Appendix A] that
contains the much weaker condition (IV) instead of the condition in equation (3.6). There-
fore, all the results in [11] based on [11, Proposition 1.11] including [11, Proposition 1.12]
remain true with this replacement. We refer the reader to [16] for more details.

Remark 3.5. For an elementary illustration of the proof of the CLT based on the classical
Nagaev–Guivarc’h approach, we refer the reader to [13], where the C2 regularity of
s �→ T̂is along with the spectral gap of T̂ on a single Banach space (instead of a chain)
is used. This corresponds to the C2 regularity of the characteristic function in the IID case.
When it comes to the MLCLT in the IID setting, a non-lattice assumption is necessary. In
our case, the equivalent assumption is assumption (VI).

Proof of Proposition 3.3. We apply results in [11] restricted to a single dynamical system
with r = 1 there, that is, when [11, §1.2, Assumptions (0) and (A)[1](1-2)]FP are trivially
true. This case is, thus, similar to the r = 1 case of [11, Proposition 1.12] which implies
[11, Corollary 1.8] which, in turn, gives the first-order Edgeworth expansion. This is
because our assumptions above imply [11, §1.2, Assumptions (A)[1] and (B)]FP, except
for Assumption (A)[1](4) that is equivalent to equation (3.6). However, as discussed in
Remark 3.4, [11, Corollary 1.8] remains true because the key ingredient of the proof in [11]
is our assumption (IV) (implied by the much stronger Assumption (A)[1](4)).

4. Twisted transfer operators ψ̂is

4.1. Properties of twisted transfer operators. We first prove Lγ norm estimates for ψ̂is .

LEMMA 4.1. For all γ > 1, s ∈ R and ϕ ∈ Lγ , there exists a constant Cγ > 1 that
depends only on ψ and γ such that

‖ψ̂is(ϕ)‖1 ≤ ‖ψ̂is(ϕ)‖γ ≤ Cγ ‖ϕ‖γ .

Proof. The first inequality follows from a direct application of Hölder’s inequality. The
second one is a straightforward application of Minkowski’s inequality,( ∫

|ψ̂is(ϕ)|γ dλI

)1/γ

≤
( ∫

ψ̂(|ϕ|)γ dλI

)1/γ

=
( ∫ ( k−1∑

j=0

|ϕ| ◦ ψ−1
j+1

|ψ ′ ◦ ψ−1
j+1|

)γ

dλI

)1/γ

≤
k−1∑
j=0

( ∫ ( |ϕ| ◦ ψ−1
j+1

|ψ ′ ◦ ψ−1
j+1|

)γ

dλI

)1/γ
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=
k−1∑
j=0

( ∫ ( |ϕ|
|ψ ′|

)γ

1[cj ,cj+1]|ψ ′| dλI

)1/γ

≤ k

η
1−γ
−

( ∫
|ϕ|γ dλI

)1/γ

.

Put Cγ = k · η
γ−1
− . Then,

‖ψ̂is(ϕ)‖γ ≤ Cγ ‖ϕ‖γ .

Next, we have the following result on the required regularity of the transfer operators.

COROLLARY 4.2. Let 0 ≤ α0, α∗, α∗∗, β ≤ 1 and γ0, γ ≥ 1. Put

α1 = α0 + α∗α2 = α1 + max{α∗∗, α∗},
1 ≤ γ1 ≤ γ01 ≤ γ2 ≤ (γ −1

1 + γ −1)−1

and consider the chain of Banach spaces

Vα0,β,γ0 ↪→ Vα1,β,γ1 ↪→ Vα2,β,γ2 . (4.1)

Suppose that for all s ∈ R, |eisχ |0,β < ∞. Then:
(1) for s ∈ R, ψ̂is is a bounded linear operator on each of the Banach spaces in

equation (4.1).
Suppose, in addition, that lims→0 |1 − eisχ |α∗,β = 0. Then:
(2) s �→ ψ̂is is continuous as a function from R to L(Vα0,β,γ0 , Vα1,β,γ1).
Finally, suppose that

lim
s→0

∣∣∣∣eisχ − 1 − isχ

s

∣∣∣∣
α∗∗,β

= 0 and ‖χ‖γ < ∞.

Then:
(3) s �→ ψ̂is is continuously differentiable as a function from R to L(Vα1,β,γ1 , Vα2,β,γ2).

Proof. Since ψ̂ is a bounded linear operator on each of the Banach spaces in equation (4.1)
(in particular, due to the DFLY inequality below), the corollary follows from Lemmas A.11
and 4.1.

4.2. DFLY inequalities. In this section, we prove DFLY inequalities for the family ψ̂is .
First, we state and prove two preparatory lemmas. Throughout this section, we assume that
χ is continuous, and the right and left derivatives of χ exist on I̊ and that there exists a
constant b > 0 such that

max{|χ ′(x+)|, |χ ′(x−)|} � x−b(1 − x)−b. (4.2)

LEMMA 4.3. Let α, β ∈ (0, 1) and let γ̄ ∈ [1, 1/α). Suppose the constant b > 0 in
equation (4.2) is such that

min{γ̄ −1 + (α − β)b, γ̄ −1 + α − βb} > 0. (4.3)
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Then, there exists Cε0 > 0 independent of γ̄ such that

sup
ε∈(0,ε0]

ε−β‖Rα osc(eisχ , Bε(·))‖γ̄ ≤ Cε0 (4.4)

for all s ∈ R.

Remark 4.4. We note that if b > 1, then γ̄ −1 + α − βb > 0 �⇒ γ̄ −1 + (α − β)b > 0
and if b < 1, then γ̄ −1 + (α − β)b > 0 �⇒ γ̄ −1 + α − βb > 0.

Proof of Lemma 4.3. Since eisχ is 2π periodic in s, we will estimate

sup
s∈[0,2π]

sup
ε∈(0,ε0]

ε−β‖Rα osc(eisχ , Bε(·))‖γ̄ .

Note that

sup
ε∈(0,ε0]

‖Rα osc(eisχ , Bε(·))‖γ̄ · ε−β

≤ sup
ε∈(0,ε0]

( ∫ 1/2

0
(Rα osc(eisχ , Bε(x)))γ̄ dλI (x)

)1/γ̄

· ε−β

+ sup
ε∈(0,ε0]

( ∫ 1

1/2
(Rα osc(eisχ , Bε(x)))γ̄ dλI (x)

)1/γ̄

· ε−β .

We will only estimate the first summand as the estimation of the second follows anal-
ogously. Using the definition osc(h, A) = osc(�h, A) + osc(�h, A) and |eit1 − eit2 | ≤
min{2, |t1 − t2|}, we note that for any measurable set A, we have osc(eisχ , A) ≤
min{4, 4s/π osc(χ , A)}. Due to equation (4.2), there exists C > 0 such that for all s > 0,
for all ε > 0 and all x ∈ [ε, 1/2], we have

osc(eisχ , Bε(x)) ≤ 8|s|ε
π

sup
y∈Bε(x)

max{|χ ′(y+)|, |χ ′(y−)|} ≤ 8C|s|ε
π

(x − ε)−b.

We have that 8C|s|ε(x − ε)−b/π ≤ 4 if and only if

x ≥
(

2C|s|ε
π

)1/b

+ ε =: Kε > ε.

Since Kε > ε, on [Kε, 1/2], we use 8C|s|ε
π

(x − ε)−b and on [0, Kε), we use 4 as upper
bounds for osc(eisχ , Bε(x)), to obtain

sup
ε∈(0,ε0]

( ∫ 1/2

0
(Rα osc(eisχ , Bε(x)))γ̄ dλI (x)

)1/γ̄

· ε−β

≤ sup
ε∈(0,ε0]

(
4Kε sup

[0,Kε]
Rα1 · ε−β

+
( ∫ 1/2

Kε

(
8C|s|ε1−β

π
Rα1 · (x − ε)−b

)γ̄

dλI (x)

)1/γ̄ )
≤ sup

ε∈(0,ε0]
4Kε

1+αε−β + sup
ε′∈(0,ε0]

8C|s|ε1−β

π

( ∫ 1/2

Kε

(xα(x − ε)−b)γ̄ dλI (x)

)1/γ̄

.

(4.5)
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For the first summand of equation (4.5), we have that there exists C̃ε0 > 0 such that

sup
ε∈(0,ε0]

4Kε
1+αε−β ≤ 8 sup

ε∈(0,ε0]
max

{(
2C|s|

π

)(1+α)/b

ε(1+α)/b−β , ε1+α−β

}
≤ C̃ε0(1 + |s|(1+α)/b) < ∞,

which follows from the fact that β < (1/γ̄ + α)/b < (1 + α)/b and β ≤ 1.
For the second summand of equation (4.5), we use γ̄ < 1/α and (x + ε)αγ̄ ≤

xαγ̄ + εαγ̄ to compute

sup
ε∈(0,ε0]

8C|s|ε1−β

π

( ∫ 1/2

Kε

(xα(x − ε)−b)γ̄ dλI (x)

)1/γ̄

≤ 8C|s|
π

sup
ε∈(0,ε0]

ε1−β

( ∫ 1/2

(2Csε/π)1/b

(x + ε)αγ̄ x−bγ̄ dλI (x)

)1/γ̄

≤ 8C|s|
π

sup
ε∈(0,ε0]

(
ε1−β

( ∫ 1/2

(2Csε/π)1/b

xγ̄ (α−b)dλI (x)

)1/γ̄

+ ε1+α−β

( ∫ 1/2

(2Csε/π)1/b

x−bγ̄ dλI (x)

)1/γ̄ )
� |s| sup

ε∈(0,ε0]

(
ε1−β max

{
1
2

,
(

2Csε

π

)1/b}1/γ̄+α−b

+ ε1+α−β max
{

1
2

,
(

2Csε

π

)1/b}1/γ̄−b)
� |s| sup

ε∈(0,ε0]
(max{ε1−β , |s|1/(γ̄ b)+α/b−1ε1/(γ̄ b)+α/b−β}

+ max{ε1+α−β , |s|1/(γ̄ b)−1ε1/(γ̄ b)+α−β})
≤ C̃ε0 |s|(1 + |s|1/(γ̄ b)+α/b−1 + |s|1/(γ̄ b)−1)

for some constant C̃ε0 > 0. This follows from the assumption that 1/(γ̄ b) + α/b − β > 0
and 1/(γ̄ b) + α − β > 0.

Finally, combining this with the first step and using symmetry, we have that

sup
s∈[0,2π]

sup
ε∈(0,ε0]

‖Rα osc(eisχ , Bε(·))‖γ̄ · ε−β

≤ C̃ε0 sup
s∈[0,2π]

(1 + |s| + |s|1/(γ̄ b)+α/b + |s|1/(γ̄ b) + |s|(1+α)/b)

≤ Cε0

for some Cε0 > 0 that is independent of γ̄ ≥ 1.

For the following, for all j = 0, . . . , k − 1, let R̄j+1 : [cj , cj+1] → R be given by

R̄j+1 = (Rα1) ◦ ψj+1

Rα1
and the following lemma is independent of the choice of χ .
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LEMMA 4.5. R̄j+1 is bounded for all j. (In fact, they are α-Hölder continuous. See
Appendix B.) Further, let 0 < ε < δ and α ∈ (0, 1). Then, for all j, there is a constant
C that is independent of ε and δ such that

sup
x∈[cj +δ+ε,cj+1−δ−ε]

(
(Rα1)(x) sup

Bε(x)

|R̄′
j+1|

)
≤ C · δα−1. (4.6)

Proof. First, we notice that for all j,

R̄j+1(x) = ψj+1(x)α(1 − ψj+1(x))α

xα(1 − x)α
≤ max

{
(ψj+1(x) − 0)α

xα
,
(1 − ψj+1(x))α

(1 − x)α

}
≤ max

{
((x − 0)η+)α

xα
,
((1 − x)η+)α

(1 − x)α

}
≤ ηα+, (4.7)

where the first inequality holds true, because at most one of the arguments in the maximum
can be larger than 1. Hence, for all j, R̄j+1 is bounded.

We know from part (1) in the proof of Lemma B.1 that R̄′
1 is bounded at 0 and R̄′

k−1
is bounded at 1. We can infer from the representation in equation (B.2) that there exist
K ′

3, K3 > 0 such that

|R̄′
j+1(x)| ≤ K ′

3
(ψj+1(x)(1 − ψj+1(x)))1−α

≤ K3

((x − cj )(cj+1 − x))1−α
(4.8)

for all j ∈ {1, . . . , k − 2}. This can be deduced as follows: We assume we are in the inter-
val [δ0, 1 − δ0] with δ0 as in part (1) of the proof of Lemma B.1. Then, the subtrahend of
equation (B.2) has to be bounded as it only has a pole at 0 and 1. Furthermore, considering
the minuend, it is easy to notice that the factor αψ ′

j+1(x)(1 − 2ψj+1(x))/(x(1 − x))α has
to be bounded on [δ0, 1 − δ0] as well. This leaves the remaining factor as in the middle
term of equation (4.8).

To verify the second inequality, we notice that ψj+1(x) ∈ [η−(x − cj ), η+(x − cj )],
which follows from the fact that limε→0 ψj+1(cj + ε) = 0 and from the bound on the
derivative. With a similar argumentation, using that limε→0 ψj+1(cj+1 − ε) = 1, we
obtain 1 − ψj+1(x) ∈ [η−(cj+1 − x), η+(cj+1 − x)].

In addition, from the proof of Lemma B.1,

|R̄′
1(x)| ≤ K3

(c1 − x)1−α
and R̄′

k(x) ≤ K3

(x − ck−1)1−α
.

Hence,

sup
x∈[cj +δ+ε,cj+1−δ−ε]

(
(Rα1)(x) sup

Bε(x)

|R̄′
j+1|

)

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup

1
[(x ± δ − cj )(cj+1 − x ± δ)]1−α

, j /∈ {0, k − 1},

sup
1

(c1 − x ± δ)1−α
, j = 0,

sup
1

(x ± δ − ck−1)1−α
, j = k − 1,

(4.9)

� δα−1.

Now, we are ready to prove the main lemma.
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LEMMA 4.6. Let 0 ≤ α < β < min {1/2, ϑ , 1/b} be such that

κ := ηα+
η

β
−

< 1 and max{|χ ′(x+)|, |χ ′(x−)|} � x−b(1 − x)−b.

Then, for all 1 ≤ γ < 1/α, there exist C, C̃ > 0 and γ̄ with γ < γ̄ < 1/α such that for all
s ∈ R, we have that for all h ∈ Vα,β,γ and for all n ∈ N,

‖ψ̂n
ish‖α,β,γ ≤ C̃(κn‖h‖α,β,γ + Cn‖h‖γ̄ ). (4.10)

Remark 4.7. In the linear expanding case, that is, η+ = η− > 1, the condition κ < 1
reduces to β > α. Also, the constant C is independent of γ̄ .

Remark 4.8. Restricting γ̄ to (γ , 1/α) ensures that h ∈ Vα,β,γ implies h ∈ Lγ̄ . To see
this, observe that |Rαh| � 1, which yields that |h|γ̄ � R−αγ̄ 1, and since γ̄ α < 1, R−αγ̄ 1
is integrable.

Proof of Lemma 4.6. Let s ∈ R and h ∈ Vα,β,γ be R-valued. We estimate |ψ̂ish|α,β :

osc
(
Rα(ψ̂ish), Bε(x)

) = osc
(

Rα

k−1∑
j=0

(
eisχ · h
|ψ ′|

)
◦ ψ−1

j+11ψ[cj ,cj+1], Bε(x)

)

≤
k−1∑
j=0

osc
(

Rα

(
eisχ · h

|ψ ′|
)

◦ ψ−1
j+1, Bε(x)

)

≤
k−1∑
j=0

osc
(

Rα1 ◦ ψj+1

Rα1
· Rα

eisχ · h

|ψ ′| , ψ−1
j+1Bε(x) ∩ [cj , cj+1]

)

≤
k−1∑
j=0

osc
(
Rα1 ◦ ψj+1

Rα1
· Rα

eisχ · h

|ψ ′| , Bε/η−(ψ−1
j+1x) ∩ [cj , cj+1]

)

=
k−1∑
j=0

osc
(

R̄j+1 · eisχ

|ψ ′| · Rαh, Dj+1(x, ε/η−)

)
,

where Dj+1(x, ε) := Bε(ψ
−1
j+1x) ∩ [cj , cj+1]. So, by [35, Proposition 3.2 (iii)], there

exists c > 0 such that

osc(Rα(ψ̂ish), Bε(x))

≤
k−1∑
j=0

osc(Rαh, Dj+1(x, ε/η−)) sup
Dj+1(x,ε/η−)

∣∣∣∣R̄j+1 · eisχ

|ψ ′|
∣∣∣∣

+
k−1∑
j=0

osc
(∣∣∣∣R̄j+1 · eisχ

|ψ ′|
∣∣∣∣, Dj+1(x, ε/η−)

)
inf

Dj+1(x,ε/η−)
|Rαh|
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≤ (1 + c(εη−1− )ϑ )

k−1∑
j=0

osc(Rαh, Bε/η−(ψ−1
j+1x))

|ψ ′|(ψ−1
j+1x)

sup
Dj+1(x,ε/η−)

|R̄j+1|

+
k−1∑
j=0

osc
(∣∣∣∣R̄j+1 · eisχ

|ψ ′|
∣∣∣∣, Dj+1(x, ε/η−)

)
|Rαh(ψ−1

j+1x)|.

The last inequality follows from the fact that ψ−1 is C1 and its derivative is uniformly
ϑ-Hölder.

Hence, using the upper bound in equation (4.7) and then using the definition of the
transfer operator ψ̂ , we have

osc(Rα(ψ̂ish), Bε(x)) ≤ (1 + c(εη−1− )ϑ )ηα+ψ̂(osc(Rαh, Bε/η−( · )))(x)

+
k−1∑
j=0

|Rαh(ψ−1
j+1x)| osc

(∣∣∣∣R̄j+1 · eisχ

|ψ ′|
∣∣∣∣, Dj+1(x, ε/η−)

)
.

(4.11)

Taking the integral over the first term in equation (4.11) and multiplying by ε−β , we obtain

ε−β

∫
(1 + c(εη−1− )ϑ )ηα+ψ̂(osc(Rαh, Bε/η−( · )))(x) dλI (x)

≤ ε−β(1 + c(εη−1− )ϑ )ηα+
∫

ψ̂(osc(Rαh, Bε/η−( · )))(x) dλI (x)

= ε−β(1 + c(εη−1− )ϑ )ηα+
∫

osc(Rαh, Bε/η−( · ))(x) dλI (x)

≤ (1 + c(εη−1− )ϑ )ηα+η
−β
− |h|α,β

≤ (1 + c(ε0η
−1− )ϑ )κ‖h‖α,β,γ (4.12)

for all γ ≥ 1. Next, we analyse the second term in equation (4.11). Again, by [35,
Proposition 3.2 (iii)], we have

osc
(∣∣∣∣R̄j+1 · eisχ

|ψ ′|
∣∣∣∣, Dj+1(x, ε/η−)

)
≤ osc

(
1

|ψ ′| , Bε/η−(ψ−1
j+1x)

)(
ess sup

Bε/η− (ψ−1
j+1x)

|�R̄j+1e
isχ | + ess sup

Bε/η− (ψ−1
j+1x)

|�R̄j+1e
isχ |

)
+ osc(R̄j+1e

isχ , Dj+1(x, ε/η−)) inf
Dj+1(x,ε/η−)

1
|ψ ′|

≤ c(εη−1− )ϑηα+
1

|ψ ′|(ψ−1
j+1x)

+ (1 + c(εη−1− )ϑ )
osc(R̄j+1e

isχ , Dj+1(x, ε/η−))

|ψ ′|(ψ−1
j+1x)

.

(4.13)
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Note that

ε−βc(εη−1− )ηηα+
∫ k−1∑

j=0

|Rαh(ψ−1
j+1x)|

|ψ ′|(ψ−1
j+1x)

dλI (x) = ε−βc(εη−1− )ϑηα+
∫

ψ̂(|Rαh|) dλI (x)

= ε−βc(εη−1− )ϑηα+
∫

|Rαh| dλI (x)

≤ K1ε
ϑ−β‖Rα1‖γ1‖h‖γ̄ , (4.14)

where γ −1
1 + γ̄ −1 = 1, K1 := cη−ϑ− ηα+‖Rα1‖γ̄ and β < ϑ . So, the contribution from the

first summand of equations (4.13)–(4.11) is under control.
To estimate the contribution from the second summand of equations (4.13)–(4.11), we

note that for all j and for all A ⊂ [cj , cj+1], we have

osc(R̄j+1e
isχ , A) = osc

( k−1∑
j=0

R̄j+1e
isχ1[cj ,cj+1), A

)
,

and therefore, we can bound this contribution by

(1 + c(εη−1− )ϑ )

k−1∑
j=0

|Rαh(ψ−1
j+1x)|

|ψ ′|(ψ−1
j+1x)

osc(F , Bε/η−(ψ−1
j+1x))

= (1 + c(εη−1− )ϑ )ψ̂(|Rαh| osc(F , Bε/η−( · ))), (4.15)

where

F(x) = eisχ(x)

k−1∑
j=0

R̄j+1(x)1[cj ,cj+1)(x) = eisχ(x)

k−1∑
j=0

Rα1 ◦ ψj+1(x)

Rα1(x)
1[cj ,cj+1)(x).

This is bounded by

(1 + c(εη−1− )ϑ )

∫
ψ̂(|Rαh| osc(F , Bε/η−( · )))(x) dλI (x)

= (1 + c(εη−1− )ϑ )

∫
|Rαh|(x) osc(F , Bε/η−(x)) dλI (x)

= (1 + c(εη−1− )ϑ )

∫
|h(x)| · (Rα osc(F , Bε/η−(x))) dλI (x). (4.16)

To estimate the integral, we split it as follows.∫
|h(x)| · (Rα osc(F , Bε/η−(x))) dλI (x)

=
( k−1∑

j=1

∫ cj +ει+ε

cj −ει−ε

+
k∑

j=1

∫ cj −ε−ει

cj−1+ει+ε

+
∫ ε+ει

0
+

∫ 1

1−ε−ει

)
|h(x)|

· (Rα osc(F , Bε/η−(x))) dλI (x),

where we choose for ι any number fulfilling

β

1 − α
< ι <

1 − β

1 − α
. (4.17)
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Because β < 1/2, such a choice is possible. Note that for j = 1, . . . k − 1, x ∈
[cj − ει − ε, cj + ει + ε],

osc(F , Bε/η−(x)) ≤ 2(sup R̄j + sup R̄j+1) ≤ 4K

and for x ∈ [0, ε + ει) ∪ (1 − ε − ει, 1],

osc(F , Bε/η−(x)) ≤ 2(sup R̄0 + sup R̄k) ≤ 4K ,

where K := supj sup Rj+1 < ∞. So,

k∑
j=0

∫ (cj +ει+ε)∧1

(cj −ει−ε)∨0
|h(x)| · (Rα osc(F , Bε/η−(x))) dλI (x)

≤ ‖h‖γ̄

k∑
j=0

( ∫ (cj +ει+ε)∧1

(cj −ει−ε)∨0
(Rα osc(F , Bε/η−(x)))γ1 dλI (x)

)1/γ1

≤ Kαει/γ1‖h‖γ̄ , (4.18)

where γ −1
1 + γ̄ −1 = 1 and Kα = 4ι/γ12−2αK . Here, we choose γ̄ such that

max
{
γ ,

ι

ι − β
,

1
1 − bβ + α

,
1

1 − b(β − α)

}
< γ̄ <

1
α

. (4.19)

We will see later in the proof why these restrictions on γ̄ are needed.
Now, we show that such a choice is possible. Since we were assuming that ι > β/(1 −

α), we have ι/(ι − β) < 1/α. We note that when b ≤ 1, 1 − bβ + α ≥ 1 − b(β − α), and
it is enough to see whether α < 1 − b(β − α). In fact, this is true because b(β − α) <

β − α < 1 − α. In contrast, when b > 1, we have 1 − bβ + α < 1 − b(β − α), and it is
enough to see whether α < 1 − bβ + α. This is true because β < 1/b.

To estimate the remaining terms we note, using equation (4.7) and [35, Proposition
3.2(iii)], that for all j = 0, . . . , k − 1, for all x ∈ [cj + ει + ε, cj+1 − ει − ε],

osc(F , Bε/η−(x))

= osc(eisχ R̄j+1, Bε/η−(x))

≤ sup
Bε(x)

(�|eisχ | + �|eisχ |) osc(R̄j+1, Bε/η−(x))

+ osc(eisχ , Bε/η−(x)) inf
Bε(x)

R̄j+1

≤ 2 sup
Bε(x)

|R̄′
j+1|

ε

η−
+ osc(eisχ , Bε/η−(x)) ηα+,

and thus,

k−1∑
j=0

∫ cj+1−ει−ε

cj +ει+ε

|h(x)| · (Rα osc(F , Bε/η−(x))) dλI (x)

≤ 2ε

η−

∥∥∥∥|h|
k−1∑
j=0

1[cj +ει+ε,cj+1−ει−ε]

∥∥∥∥
1

sup
x∈[cj +ει+ε,cj+1−ει−ε]

Rα sup
Bε(x)

|R̄′
j+1|
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+ ηα+
∥∥∥∥ k−1∑

j=0

1[cj +ει+ε,cj+1−ε−ει] · |h|(Rα osc(eisχ , Bε/η−(·)))
∥∥∥∥

1

≤ 2ε

η−
‖h‖1 sup

x∈[cj +ει+ε,cj+1−ει−ε]
Rα sup

Bε(x)

|R̄′
j+1| + ηα+‖h‖γ̄ ‖Rα osc(eisχ , Bε/η−(·))‖γ̄ .

Now, to estimate the first summand taking the maximum over j of the supremum in
equation (4.6) above with δ = ει yields that the outer supremum above is bounded by
Cει(α−1) for some constant C > 0. For the second summand, from equation (4.19), we
have that γ̄ −1 < 1 − bβ + α, which implies that bβ < 1 − γ̄ −1 + α = γ̄ −1 + α, and
hence, when b > 1, we have the condition in equation (4.3). Also from equation (4.19),
γ̄ −1 < 1 − b(β − α), which implies that bβ < γ̄ −1 + bα, and hence, when b ≤ 1, we
have equation (4.3). Therefore, we can apply Lemma 4.3 with α, β, b, γ̄ , ε/η− to conclude

‖Rα osc(eisχ , Bε/η−(·))‖γ̄ ≤ Cε0ε
βη

−β
− ,

where Cε0 is independent of γ̄ . Therefore, for all s �= 0,

k−1∑
j=0

∫ cj+1−ει−ε

cj +ει+ε

|h(x)| · (Rα osc(F , Bε/η−(x))) dλI (x)

≤ C̄ε0ε
min{1−ι(1−α),β}‖h‖γ̄ . (4.20)

Finally, combining equations (4.18) and (4.20), we estimate equation (4.16) multiplied by
ε−β by

ε−β(1 + c(εη−1− )ϑ )

∫
ψ̂(|Rαh| osc(F , Bε/η−( · )))(x) dλI (x)

≤ ε(ι/γ̄∧(1−ι(1−α))∧β)−βCε0‖h‖γ̄ ≤ Cε0‖h‖γ̄ . (4.21)

To justify the last inequality, we analyse the exponent of ε. By equation (4.19) and
the relation γ −1

1 + γ̄ −1 = 1, we have ι/γ1 > ι(1 − γ̄ −1) > ι(1 − (ι − β)/ι)) = β.
Furthermore, the second inequality of equation (4.17) implies that 1 − ι(1 − α) > β.

Combining equations (4.11), (4.12), (4.14) and (4.21), we have

|ψ̂ish|α,β = sup
ε∈(0,ε0)

∫
osc(Rα(ψ̂ish), Bε(x))

εβ
dλI (x)

≤ (1 + c(ε0η
−1− )ϑ )κ‖h‖α,β,γ + Cε0‖h‖γ̄

for all γ ≥ 1. Therefore, for all γ̄ chosen appropriately,

‖ψ̂ish‖α,β,γ = |ψ̂ish|α,β + ‖ψ̂ish‖γ

≤ (1 + c(ε0η
−1− )ϑ )κ‖h‖α,β,γ + Cε0‖h‖γ̄ + Cγ ‖h‖γ

≤ κ̄‖h‖α,β,γ C̄‖h‖γ̄ ,

where κ̄ = (1 + c(ε0η
−1− )η)κ < 1 for sufficiently small ε0, and C̄ = Cε0 + Cγ , where Cγ

is given in Lemma 4.1.
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Iterating, we obtain the following DFLY inequality: for all h ∈ Vα,β,γ ,

sup
s

‖ψ̂n
ish‖α,β,γ ≤ κ‖ψ̂n−1

is h‖α,β,γ + C̄‖ψ̂n−1
is h‖γ̄

≤ κ2‖ψ̂n−2
is h‖α,β,γ + κC̄‖ψ̂n−2

is h‖γ̄ + C̄C̄n−1‖h‖γ̄

≤ κn‖h‖α,β,γ + C̄‖h‖γ̄

n−1∑
j=0

κj C̄n−1−j

≤ κn‖h‖α,β,γ + CC̄n+1‖h‖γ̄

for some C > 0.
In the proof above, we assumed that h is R-valued. When h = h1 + ih2, where

hj , j = 1, 2 are R-valued, using linearity of the operator

‖ψ̂n
ish‖α,β,γ ≤ ‖ψ̂n

ish1‖α,β,γ + ‖ψ̂n
ish2‖α,β,γ ,

and also, ‖hj‖α,β,γ ≤ ‖h‖α,β,γ and ‖hj‖γ̄ ≤ ‖h‖γ̄ for all j = 1, 2. So, applying the
DLFY inequality proven above in the R-valued case to h1 and h2, we conclude that DFLY
in the general case of h holds up to a constant multiple.

5. Proofs of the main theorems
Finally, we give the proofs of our main theorems. We start with the theorems from §2.4.

5.1. Proofs of limit theorems for expanding interval maps.

Proof of Theorem 2.5. From equation (2.7), we obtain that there exist α, β fulfilling

a < α < β · min
{

1,
log η−
log η+

}
< min

{
ϑ ,

1
b

,
1
2

}
· min

{
1,

log η−
log η+

}
. (5.1)

Furthermore, since α > a, the inequality β < 1/b, which we can deduce immediately from
equation (5.1) that 1/b < 1/(b − a). So, by Lemma A.18, we obtain |χ |α,β < ∞ and also
χ ∈ Vα,β,2 ↪→ L2. Furthermore, from the second inequality of equation (5.1), we obtain
ηα+/η

β
− < 1.

Since ψ is a piecewise C2 uniformly expanding and covering map of the interval, it
has a unique absolutely continuous invariant mixing probability (acip) with a bounded
invariant density; see [27]. Let us call this acip π . Then, L2 ↪→ L2(π) because∫

|h|2 dπ =
∫

|h|2 dπ

dλI

dλI ≤
∥∥∥∥ dπ

dλI

∥∥∥∥∞

∫
|h|2 dλI .

We claim that ψ̂ has a spectral gap in Vα,β,γ with γ = 2. In Appendix A.2, we show
that Vα,β,2 is continuously embedded in Lγ̄ , where γ̄ ∈ (2, 1/α), and that the unit ball
of Vα,β,2 is relatively compact in Lγ̄ . A suitable γ̄ exists by the condition α < 1/2 from
equation (5.1). So, the claim follows from [7, Lemma B.15] due to the DFLY inequality in
equation (4.10) with s = 0 and Remark A.9.
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Now, the CLT (in the stationary case) follows directly from Proposition 3.1 applied to
χ − π(χ). That is, from equation (3.1), we have

Pπ

(
Sn(χ) − n π(χ)

σ
√

n
≤ x

)
− N(x) = o(1) as n → ∞

with σ 2 > 0 because χ is not a coboundary.

Next, we will continue with the proof of Theorem 2.8 as the proof of Theorem 2.6 will
need similar methods to those of Theorem 2.8.

Proof of Theorem 2.8. Equation (2.10) implies that there exist α, β such that α > a and

3ᾱ : = 3 min{2α, max{α, α + b − 2}}
< β · min

{
1,

log η+
log η−

}
< min

{
ϑ ,

1
b

,
1
2

}
· min

{
1,

log η+
log η−

}
.

Since either b < a + 1 or 1/b < (1 + α − a)/(b − a), we obtain by Lemma A.18 that
|χ |α,β < ∞ and additionally, we obtain by the last inequality that:
(a) 0 < 3ᾱ < β < min{ϑ , 1/b, 1/2};
(b) η3ᾱ+ < η

β
−.

Hence, under our assumptions, we have the following.
(1) The second inequality in equation (2.6) and |χ |α,β < ∞ imply that |eisχ |0,β < ∞ for

all s > 0 (see Remark A.13). So, due to Corollary 4.2(1), we have ψ̂is ∈ L(Vα̃,β,γ̃ )

for all 0 < α̃ < β and γ̃ ≥ 1.
(2) Since |χ |α,β < ∞, from Remark A.15, for all α∗ > 0 close to 0,

lim
s→0

|1 − eisχ |α∗,β = 0.

Along with Corollary 4.2(2), this yields that for all 0 ≤ α0 < β, γ0 ≥ 1,

s �→ ψ̂is ∈ L(Vα0,β,γ0 , Vα1,β,γ1)

is continuous for α1 = α∗ + α0 and 1 ≤ γ1 ≤ γ0.
(3) From the second inequality in equation (2.6) and |χ |α,β < ∞, for all α∗∗ >

min{2α, max{α + b − 2, α}},

lim
s→0

∣∣∣∣eisχ − 1 − isχ

s

∣∣∣∣
α∗∗,β

= 0

due to Remark A.17. Then, we have that for all 0 ≤ α1 < β and γ1 ≥ 1,

s �→ ψ̂is ∈ L(Vα1,β,γ1 , Vα2,β,γ2)

is continuously differentiable for all α2 = α∗ + max{α∗, α∗∗} + α1 and 1 ≤ γ2 ≤
(γ −1

1 + γ −1)−1 due to Corollary 4.2(2) and (3).
Next, we define the following chain of spaces to invoke Proposition 3.3 with r = 1:

Vα0,β,γ0 ↪→ Vα1,β,γ1 ↪→ Vα2,β,γ2 ↪→ Vα3,β,γ3 ↪→ Vα4,β,γ4

↪→ Vα5,β,γ5 ↪→ Vα6,β,γ6 ↪→ Vα7,β,γ7 ,
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where α0 = 0, α2j − α2j−1 ≥ min{2α, max{α + b − 2, α}} for j = 1, 2, 3, α2j+1 > α2j

for j = 0, 1, 2, 3, and α7 < β. By assumption (a), such a choice is possible. Furthermore,
we assume that the γj values are chosen such that γ0 = M � 1 sufficiently large,
γ2j+1 = γ2j and γ2j < (α−1 + γ −1

2j−1)
−1.

Now, to prove the theorem, we verify the conditions in Proposition 3.3 for the above
sequence of Banach spaces. We notice that if for some observable ϕ it holds that
|ϕ|α,β < ∞, then ‖ϕ‖α,β,γ < ∞ as long as γ < 1/α. We next verify that it is possible
to construct valid spaces with the above choice of parameters. First, we notice that by
assumption (a), it is possible to construct α0 ≤ · · · ≤ α7 with the above properties that
α7 < β and thus αj < β for all j. Furthermore, by assumption (a), we have α < 1/3. Thus,
it is possible that 1 ≤ γ2j ≤ (γ −1 + γ −1

2j−1) holds together with 1/γj > αj . Moreover,

under assumption (b), we have that η
αj

+ /η
β
− < 1 holds for all j.

With that, it becomes immediate from applying the conditions of this theorem on the
parameters in the Banach spaces and from the calculations in parts (1)–(3) applied to all
indices j that conditions (I)–(III) of Proposition 3.3 are satisfied.

For each j, we apply Lemma 4.6 with γ = γj and we choose γ̄ = γ̄j as in the proof
of the lemma. In Appendix A.2, we show that Vαj ,β,γj

is continuously embedded in
Lγ̄j and that the unit ball of Vαj ,β,γj

is relatively compact in Lγ̄j . Also, we recall
from Lemma 4.1 that for all h ∈ Lγ̄j , ‖ψ̂is(h)‖γ̄j

≤ Cγ̄j
‖h‖γ̄j

, where Cγ̄j
> 1. Therefore,

‖ψ̂n
is(h)‖γ̄j

≤ Cγ̄j
‖ψ̂n−1

is (h)‖ ≤ Cn
γ̄j

‖h‖γ̄j
, which gives us ‖ψ̂n

is‖L
γ̄j →L

γ̄j ≤ Cn
γ̄j

. Choose

κ = max
0≤j≤7

η
αj

+ η
−β
− < 1. Also, by our previous constructions, we have that γj < 1/αj for

all j. So, due to Lemma 4.6, we have the DFLY inequality: for all h ∈ Vαj ,β,γj
,

‖ψ̂n
ish‖αj ,β,γj

≤ C̃(κn‖h‖αj ,β,γj
+ Cn‖h‖γ̄j

)

for some γj < γ̄j < 1/αj and C uniform in j and s. Therefore, we have the first conclusion,
[22, Theorem 1, equation (8)] uniformly over all spaces. That is, there exist v and w such
that

sup
z∈Dκ

‖(zId − ψ̂is)
−1h‖Vαj ,β,γj

→Vαj ,β,γj
≤ v‖h‖αj ,β,γj

+ w‖h‖γ̄j

for all space pairs Vαj ,β,γj
↪→ Lγ̄j and s ∈ R. This gives condition (IV) of Proposition 3.3.

Conditions (V)–(VII) of Proposition 3.3 are equivalent to [11, §I.1.2, Assumption (B)]
for a single dynamical system, that is, when [11, §I.1.2, Assumptions (0) and (A)(1)] are
trivially true. Moreover, as discussed in [11], [11, Lemma 4.5] implies Assumption (B).
Therefore, we verify the conditions (with a slight modification) in [11, Lemma 4.5] to
establish conditions (V)–(VII).
• We have assumed that χ is non-arithmetic.
• Due to Remark A.9 and the DFLY inequality in equation (4.10), we can apply

[7, Lemma B.15] to conclude that for all s, the essential spectral radius of ψ̂is on
Vαj ,β,γj

is at most κ . This is precisely the conclusion of [11, Proposition 4.3].
• We know that Vαj ,β,γj

↪→ L1 for all j, and that ‖ψ̂ish‖1 ≤ ‖ψ̂h‖1 ≤ ‖h‖1 for all
h ∈ L1. So, the spectral radius of ψ̂is on L1, and hence, on Vαj ,β,γj

for all j, is at
most 1.
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• Since ψ is a uniformly expanding, piecewise C2 and a full branch map with finitely
many branches, ψ is exact (cf. [17, Theorem 3]) and ψ−1x is finite for all x.

• [11, Assumption (A)(1)] is trivially true because there is only a single dynamical
system in [11, Figure 2].

Hence, conditions (V) and (VI) are true due to the first part of [11, Lemma 4.5].
To establish condition (VII), we need a slight modification of the second part of
[11, Lemma 4.5]. First, we note that χ ∈ Vα,β,γ ↪→ L2 for γ ≥ 3, and ψ̂ has a spec-
tral gap on Vα,β,γ . So, we can repeat the argument in the first part of the proof of
[11, Lemma 4.5] to conclude that

∑n−1
k=0 χ̄ ◦ ψk is L2-bounded. So, it has an L2-weakly

convergent subsequence. This establishes condition (VII).
Finally, the non-arithmeticity of χ implies that χ is not cohomologous to a constant,

and hence, we have condition (VIII) of Proposition 3.3.

Proof of Theorem 2.6. To prove this theorem, we use Proposition 3.2. By Theorem 2.5,
we immediately obtain condition (V) of Proposition 3.2.

Next, we define the following chain of spaces:

Vα0,β,M ↪→ Vα1,β,M ↪→ Lp ↪→ L1(π)

with p ≤ M , where the choices correspond to 0 ≤ α0 < α1 < β and γ0 = γ1 = M ≥ 1 in
the proof of Theorem 2.8. Then, the conditions (I)–(IV) and (VI) of Proposition 3.2 follow
as in the proof of Theorem 2.8 due to Corollary 4.2(2) and [11, Lemma 4.5].

Proofs of the results in Example 2.10. We first note that

|χ ′(x)| � x−c(1 − x)−c

and

|χ ′(x)| =
∣∣∣∣ − cx−c−1 sin

(
1
x

)
− x−c−2 cos

(
1
x

)∣∣∣∣ � x−c−2(1 − x)−c−2.

So, we obtain a = c and b = c + 2 in the notation of Theorems 2.5, 2.6 and 2.8. To prove
condition (1) we note that equation (2.7) then simplifies to

c < min
{
ϑ ,

1
2 + c

}
min

{
1,

log η−
log η+

}
.

So, on the one hand, we have the requirement c < ϑη̃ and, on the other hand, we
have the condition c < η̃/(c + 2) which, given that we assume c ≥ 0, is equivalent to
c <

√
1 + η̃ − 1 giving condition (1). Furthermore, in the doubling map case, we have

ϑ = 2 and η̃ = 1 implying condition (1a).
Next, we notice that equation (2.10) in our case simplifies to

3c < min
{
ϑ ,

1
2 + c

}
min

{
1,

log η+
log η−

}
.

With a similar calculation as above, applying Theorem 2.8 gives condition (2) and, as
above, we get condition (2a).
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5.2. Proofs of limit theorems for the Boolean-type transformation. Now, we give the
proofs from §2.5. We start with the following technical lemmas.

LEMMA 5.1. For all r ∈ N, the rth asymptotic moments of both Sn(χ) and S̃n(h) are equal.

Proof. It is enough to show that Eμ(S̃r
n(h)) = EλI

(Sr
n(χ)) for all r. In fact, due to

equation (2.13),

Eμ(h ◦ φj1 h ◦ φj2 · · · h ◦ φjk ) = EλI
(h ◦ ξ ◦ ψj1 h ◦ ξ ◦ ψj2 · · · h ◦ ξ ◦ ψjk )

= EλI
(χ ◦ ψj1 χ ◦ ψj2 . . . χ ◦ ψjk )

for all j1, . . . , jk ∈ N0 such that j1 + · · · + jk = r .

LEMMA 5.2. Let h : R → R be such that the left and right derivatives exist, and there
exist u, v ≥ 0 fulfilling

h(x) � |x|u and max{|h′(x−)|, |h′(x+)|} � |x|v ,

and let χ : I → R be given by χ = h ◦ ξ with ξ(x) := cot(πx), then we have

|χ(x)| � x−u(1 − x)−u

and

max{|χ ′(x+)|, |χ ′(x−)|} � x−b(1 − x)−b, b = 2 + v.

Further, if

α > u ,

β < (1 + α − u)/(2 + v − u) or 1 + v < u and (5.2)

1 ≤ γ < 1/u,

then ‖χ‖α,β,γ < ∞. In particular, if u < 1/(2 + v − u), then there exist 0 < α < β < 1
such that |χ |α,β < ∞.

Proof. We will apply Lemma A.18. First, we note that

lim
x→0

ξ(x)x = 1/π and lim
x→1

ξ(x)(1 − x) = 1/π .

This and equation (2.14) imply

|χ(x)| � x−u(1 − x)−u (5.3)

and, in particular, χ ∈ Lγ with 1 ≤ γ < 1/u.
For simplicity, we assume χ is differentiable. Otherwise, at a point where χ is not

differentiable, both one-sided derivatives will exist and the following estimates do hold for
them.

Note that we have |h′(ξ(x))| � x−v(1 − x)−v . Using the chain rule, |χ ′(x)| =
|h′(ξ(x))||ξ ′(x)|. Since ξ ′(x) = −π/ sin2(πx), we have that

|χ ′(x)| � x−2−v(1 − x)−2−v . (5.4)
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So, we have |χ ′(x)| � x−b(1 − x)−b with b = 2 + v > 2. The lemma then follows
immediately by applying Lemma A.18.

With this, we are able to prove the results from §2.5.

Proof of Proposition 2.11. To prove the statement, it is enough to prove its counterpart for
Sn(χ , ψ), where χ = h ◦ ξ and ψ is the doubling map.

From Lemma 5.2, we have

|χ(x)| � x−u(1 − x)−u and max{|χ ′(x+)|, |χ ′(x−)|} � x−b(1 − x)−b, b = 2 + v.

Now, we invoke Theorem 2.5 with ψ , η+ = η− = 2 and log η−/ log η+ = 1. Since ψ is
linear, ϑ = 1. Hence, equation (2.7) simplifies to u < 1/(2 + v). Also, the assumption that
h is not an L2(μ) coboundary implies that χ is not an L2(λ) coboundary.

Therefore, χ and ψ satisfy the conditions of Theorem 2.5 and, hence, satisfy the CLT
given by equation (2.8) with

σ 2 = Eλ(χ
2) + 2

∞∑
k=1

Eλ(χ · χ ◦ ψk) ∈ (0, ∞).

From Lemma 5.1, σ̃ 2 = σ 2 and Eμ(h) = EλI
(χ). As a direct consequence of

equation (2.13), we obtain the required CLT given by equation (2.15).

We next prove the MLCLT for a class of observables in F.

Proof of Proposition 2.12. Our assumption allows us to apply Theorem 2.6 to the Birkhoff
sum Sn(χ) = ∑n−1

k=0 χ ◦ ψk with χ = h ◦ ξ and ψ the doubling map, and conclude

sup
�∈R

∣∣∣∣σ√
2πn Eξ∗m(U ◦ ξ ◦ ψn V (Sn(χ) − �) W ◦ ξ)

− e−�2/2nσ 2
Eπ (U ◦ ξ) Eξ∗m(W ◦ ξ)

∫
V (x) dx

∣∣∣∣ = o(1).

From Lemma 5.1 and the fact that ξ is a conjugacy, we have

sup
�∈R

∣∣∣∣̃σ√
2πn Em(U ◦ φn V (S̃n(h) − �) W)

− e−�2/2nσ̃ 2
Eμ(U) Em(W)

∫
V (x) dx

∣∣∣∣ = o(1).

This is because the two left-hand sides are exactly the same.

Now, we prove that corollaries that show the validity of the CLT and MLCLT for the real
part, imaginary part and the absolute value of the Riemann zeta function when sampled
over the trajectories of φ.

Proof of Corollary 2.15. To apply Proposition 2.11, we have to show the existence of u, v

as in equation (2.14). It is well known that for any s ∈ (0, 1), for any δ > 0,

max{|ζ |(s + ix), |ζ ′|(s + ix)} � |x|(1−s)/2+δ; (5.5)

see, for example, [39].
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So, we pick u = v = (1 − s)/2 + δ and this is possible when ((1 − s)/2 + δ)((1 − s)/

2 + δ + 2) < 1 and such δ > 0 exists if and only if (1 − s)(5 − s) < 4 if and only if
s ∈ (3 − 2

√
2, 1). So, for such choices of s, we can apply Proposition 2.11 and obtain

the CLT provided that h is not φ-cohomologous to a constant. The MLCLT follows from
Proposition 2.12 analogously, when φ is non-arithmetic.

Proof of Corollary 2.17. To apply Proposition 2.11, we have to show the existence
of u, v as in equation (2.14). We assume a ≥ 1 and set h̃(x) = h(x)1/a . Note that
h′(x) = ah̃(x)a−1h̃′(x). Since we restrict ourselves to the critical line, s = 1/2, |h̃(x)| �
|x|13/84+δ and |h̃′(x)| � |x|13/84+δ for all δ > 0, due to equation (5.5). So, we can take
u = 13a/84 + δ and v = 13(a − 1)/84 + 13/84 + δ = 13a/84 + δ, and the condition
in Proposition 2.11 for u, v reduces to (13a/84)(13a/84 + 2) < 1. This is equivalent to
1 ≤ a < 84/13(

√
2 − 1). So, for such choices of a, we can apply Proposition 2.11 and

obtain the CLT provided that h is not φ-cohomologous to a constant. The MLCLT follows
from Proposition 2.12 analogously, when φ is non-arithmetic.

Finally, we look at the proof for the first-order Edgeworth expansion for observables
over the Boolean-type transformation.

Proof of Proposition 2.13. We follow the proof of Proposition 2.11 and invoke
Theorem 2.8.

Consider Sn(χ , ψ), where χ = ξ ◦ h and ψ is the doubling map. Remember that from
Lemma 5.2, we have

|χ(x)| � x−u(1 − x)−u and max{|χ ′(x+)|, |χ ′(x−)|} � x−b(1 − x)−b, b = 2 + v.

Next, to apply Theorem 2.8, we observe that η+ = η− = 2 and log η−/ log η+ = 1
and since ψ is linear ϑ = 1. Hence, equation (2.10) simplifies to equation (2.17). Also,
the assumption that h is not an L2(μ) coboundary implies that χ is not an L2(λ)

coboundary.
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A. Appendix. The Banach spaces Vα,β,γ

The spaces Vα,β with their particular norm considered in [36] are not complete, and thus,
are not Banach spaces. However, with the norm we introduce here, we can construct a
family of Banach spaces Vα,β,γ , α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1, and use it to correct the
proofs in [36], and even generalize the results appearing there.

First, we show that ‖ · ‖α,β,γ is indeed a norm.

LEMMA A.1. For all α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1, we have that ‖ · ‖α,β,γ is a norm.

Proof. We have for f , g ∈ Vα,β that

|f + g|α,β = sup
ε∈(0,ε0]

∫
osc(Rα(f + g), Bε(x))

εβ
dλI (x)

= sup
ε∈(0,ε0]

∫
osc(Rαf + Rαg, Bε(x))

εβ
dλI (x)

≤ sup
ε∈(0,ε0]

∫
osc(Rαf , Bε(x))

εβ
dλI (x) + sup

ε∈(0,ε0]

∫
osc(Rαg, Bε(x))

εβ
dλI (x)

= |f |α,β + |g|α,β

and thus

‖f + g‖α,β,γ = ‖f + g‖γ + |f + g|α,β

≤ ‖f ‖γ + ‖g‖γ + |f |α,β + |g|α,β = ‖f ‖α,β,γ + ‖g‖α,β,γ .

It is obviously true that ‖af ‖α,β,γ = a‖f ‖α,β,γ for any positive a. Since ‖ · ‖γ is already
a norm and |f |α,β = 0 if f = 0 almost surely, we know that ‖f ‖α,β,γ = 0 if and only if
f = 0 almost surely.

A.1. Completeness. Here, we verify that Vα,β,γ are, in fact, Banach spaces.

LEMMA A.2. For α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1, Vα,β,γ is complete.

Proof. Let (fn) be a Cauchy sequence with respect to ‖ · ‖α,β,γ . Then, in particular, (fn)

is also a Cauchy sequence with respect to ‖ · ‖γ , we set f as its limit. Also, there exists a
subsequence, say (fnr ), that converges to f pointwise almost everywhere.

Since (fn) is a Cauchy sequence with respect to ‖ · ‖α,β,γ , for each δ > 0, we can choose
L > 0 such that ‖fk − f�‖α,β,γ < δ for all k, � > L. Let δ > 0 and choose k, � sufficiently
large so that nk , n� > L. Then,

‖fnk
− fn�

‖α,β,γ = ‖fnk
− fn�

‖γ + sup
ε∈(0,ε0]

∫
osc(Rα(fnk

− fn�
), Bε(x)) dλI (x)

εβ
< δ.

Then, by Fatou’s lemma, ‖fnk
− f ‖γ ≤ lim inf�→∞ ‖fnk

− fn�
‖γ and∫

osc(Rα(fnk
− f ), Bε(x)) dλI (x)

εβ

≤
∫

lim inf�→∞ osc(Rα(fnk
− fn�

), Bε(x)) dλI (x)

εβ
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≤ lim inf
�→∞

∫
osc(Rα(fnk

− fn�
), Bε(x)) dλI (x)

εβ

≤ lim inf
�→∞ sup

ε∈(0,ε0]

∫
osc(Rα(fnk

− fn�
), Bε(x)) dλI (x)

εβ
.

As a result, for all k sufficiently large so that nk > L,

‖fnk
− f ‖α,β,γ

≤ lim inf
�→∞ ‖fnk

− fn�
‖γ + lim inf

�→∞ sup
ε∈(0,ε0]

∫
osc(Rα(fnk

− fn�
), Bε(x)) dλI (x)

εβ

≤ lim inf
�→∞

(
‖fnk

− fn�
‖γ + sup

ε∈(0,ε0]

∫
osc(Rα(fnk

− fn�
), Bε(x)) dλI (x)

εβ

)
≤ δ.

Now, choose r sufficiently large so that nr > L and k > L. Then,

‖fk − f ‖α,β,γ ≤ ‖fk − fnr ‖α,β,γ + ‖fnr − f ‖α,β,γ < 2δ.

Thus, f ∈ Vα,β,γ and (fn) converges to f with respect to ‖ · ‖α,β,γ giving
completeness.

Now, we discuss properties of Vα,β,γ that are relevant for the application of
Proposition 3.3 to our setting. First, we prove that constant functions belong to the spaces
we consider.

LEMMA A.3. For α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1, the constant function, 1 ∈ Vα,β,γ .

Proof. Since ‖1‖γ = 1, we only have to show that |1|α,β < ∞. Observe that Rα1 is
bounded by 2−2α , symmetric about x = 1/2 and strictly increasing on [0, 1/2] with a
strictly decreasing derivative. Hence, for any 0 < ε ≤ ε0 < 1/4,∫

osc(Rα1, Bε(x))dλI (x) ≤
∫ 1−2ε

2ε

osc(Rα1, Bε(x)) dλI (x)

+ 2−2α

( ∫ 2ε

0
dλI (x) +

∫ 1

1−2ε

dλI (x)

)
≤ 4ε

∫ 1/2

2ε

max
Bε(x)

|(Rα1)′| dλI (x) + 22−2αε

= 4ε

∫ 1/2

2ε

(Rα1)′(x − ε) dλI (x) + 22−2αε

= 4ε(Rα1(1/2 − ε) − Rα1(ε)) + 22−2αε ≤ 23−2αε.

This implies that |1|α,β ≤ 23−2αε
1−β

0 .

Next, we state two lemmas about the inclusion properties of Vα,β,γ .

LEMMA A.4. For β ∈ (0, 1] and γ ≥ 1,

V0,β,γ ↪→ V0,β,1 ↪→ L∞.
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Proof. This follows from [35, Proposition 3.4] applied to the real and imaginary parts of
functions in V0,β,1 and the fact that Lγ ↪→ L1.

Remark A.5. Note that, if f ∈ Vα,β,γ , then Rαf ∈ V0,β,γ . So, ess sup Rαf < ∞. This
fact will be useful in proofs.

LEMMA A.6. Suppose 0 < α1 ≤ α2 < 1, 0 < β2 ≤ β1 ≤ 1 and 1 ≤ γ2 ≤ γ1. Then,

Vα1,β1,γ1 ↪→ Vα2,β2,γ2 ↪→ L1.

Proof. Since ‖f ‖γ2 ≤ ‖f ‖γ1 , it is enough to show that |f |α2,β2 � ‖f ‖α1,β1,γ1 . By apply-
ing [35, Proposition 3.2(iii)] to the real and imaginary parts of f, we have

osc(Rα2f , Bε(x)) = osc(Rα2−α11 · Rα1f , Bε(x))

≤ ess sup |Rα1f | · osc(Rα2−α11, Bε(x))

+ osc(Rα1f , Bε(x)) · sup
Bε(x)

Rα2−α11,

and due to Lemma A.4,

ess sup |Rα1f | � |Rα1f |0,β1 + ‖Rα1f ‖1 ≤ |f |α1,β1 + ‖Rα11‖γ̄ ‖f ‖γ1 � ‖f ‖α1,β1,γ1

with γ̄ = (1 − γ −1
1 )−1. Therefore,

ε−β2 osc(Rα2f , Bε(x))

� ε−β1osc(Rα2−α11, Bε(x))‖f ‖α1,β1,γ1 + sup
Bε(x)

Rα2−α11 · ε−β1osc(Rα1f , Bε(x)).

Integrating and taking the supremum over ε,

|f |α2,β2 � ‖f ‖α1,β1,γ1 ,

and the inclusion follows.

A.2. Continuous inclusion and relative compactness. To apply Hennion–Nassbaum
theory, see [7, 22], we have to show that our weak spaces, Lp, are continuously embedded
in strong spaces, Vα,β,γ , and that the closed bounded sets in strong spaces are compact
with respect to weak norms.

LEMMA A.7. Let α ∈ (0, 1), β ∈ (0, 1] and γ ≥ 1. Then, for all γ̄ such that γ < γ̄ <

1/α, Lγ̄ is continuously embedded in Vα,β,γ .

Proof. Due to Remark 4.8 and the assumption γ̄ < 1/α, if h ∈ Vα,β,γ , then h ∈ Lγ̄ .
So, Vα,β,γ ⊆ Lγ̄ . To show that this inclusion is continuous, we need to show that
if fn → 0 in Vα,β,γ , then fn → 0 in Lγ̄ . Let ‖fn‖α,β,γ → 0. Then, |Rαfn| ∈ V0,β,1

and ‖Rαfn‖0,β,1 → 0. However, V0,β,1 ↪→ L∞. So, ‖Rαfn‖∞ → 0. Therefore, ‖f γ̄
n ‖1 ≤

‖R−αγ̄ 1‖1‖Rαfn‖γ̄∞ → 0 proving the claim.

LEMMA A.8. Let α, β, γ and γ̄ be as in the previous lemma. Then, the closed unit ball of
Vα,β,γ is compact in Lγ̄ .
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Proof. Let {fn} be such that ‖fn‖α,β,γ ≤ 1. It is enough to show that there is f ∈ Vα,β,γ

such that ‖f ‖α,β,γ ≤ 1 and {fn} converges to f in Lγ̄ over a subsequence. To do this,
we recall from [21, Theorem 1.13] that closed subsets of V0,β,γ are compact in Lγ . Since
{Rαfn} ⊂ V0,β,γ is a bounded sequence, it has an Lγ convergent subsequence, and in
turn, it has a pointwise almost everywhere convergence subsequence. Let us call this
subsequence {Rαfnk

} and its point-wise limit f.
We claim fnk

→ R−αf in Lγ̄ . Observe that fnk
→ R−αf point-wise almost

everywhere, and since V0,β,γ ↪→ L∞, |fnk
| ≤ |R−α1||Rαfnk

| ≤ C|R−α1| ∈ Lγ̄ . So,
fnk

→ R−αf in Lγ̄ if αγ̄ < 1. Moreover, we claim ‖R−αf ‖α,β,γ ≤ 1. To see this,
observe that since Lγ̄ convergence implies Lγ convergence, we apply [21, Lemma 1.12] to
conclude that lim infk |fnk

|α,β = lim infk |Rαfnk
|0,β ≥ |f |0,β = |R−αf |α,β . Since strong

convergence implies weak convergence, we have lim infk ‖fnk
‖γ ≥ ‖R−αf ‖γ , and finally,

‖R−αf ‖α,β,γ = |R−αf |α,β + ‖R−αf ‖γ

≤ lim inf
k

|fnk
|α,β + lim inf

k
‖fnk

‖γ

≤ lim inf
k

(|fnk
|α,β + ‖fnk

‖γ ) = lim inf
k

‖fnk
‖α,β,γ ≤ 1,

as claimed.

Remark A.9. In particular, the above implies that ‖ · ‖α,β,γ -bounded sequences have ‖ ·
‖γ̄ -Cauchy subsequences.

A.3. Multiplication in Vα,β,γ .

A.3.1. Multiplication by eisχ . In this section, we prove some properties of multiplica-
tion by eisχ in Vα,β,γ that are necessary for our proofs.

Observe that the spaces Vα,β,γ , as opposed to spaces usually used in ergodic theory
such as L∞, BV[0, 1] or C1[0, 1], are not Banach algebras. Hence, s �→ ψ̂is ∈ L(Vα,β,γ )

may not be continuous. The following lemma will allow us to establish its continuity as a
function from R to L(Vα1,β1,γ1 , Vα2,β2,γ2) for some good choices of indices.

LEMMA A.10. Suppose g ∈ Vα1,β1,γ1 , h ∈ Vα2,β2,γ2 , and α3 = α1 + α2, β3 ≤ min{β1, β2}
and γ3 ≤ (γ −1

1 + γ −1
2 )−1. Then,

‖gh‖α3,β3,γ3 � ‖g‖α1,β1,γ1‖h‖α2,β2,γ2

with the proportionality constant independent of g and h, but dependent on αj , βj , γj ,
j = 1, 2, 3.

Proof. First, suppose g and h are real valued. Then,

osc(Rαu, Bε(x)) = osc(Rαu−, Bε(x)) + osc(Rαu+, Bε(x)). (A.1)

By applying [35, Proposition 3.2(iii)] to the positive and negative parts of g,

osc(Rα3(gh), Bε(x))

= osc(Rα3(g+ − g−)h, Bε(x))
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= osc(Rα1(g+ − g−) · Rα2h, Bε(x))

≤ osc(Rα1g+ · Rα2h, Bε(x)) + osc(Rα1g− · Rα2h, Bε(x))

≤
∑
r=±

(osc(Rα1gr , Bε(x)) · ess sup |Rα2h| + osc(Rα2h, Bε(x)) · ess sup |Rα1gr |)

≤ osc(Rα1g, Bε(x)) ess sup |Rα2h| + 2 · osc(Rα2h, Bε(x)) ess sup |Rα1g|.
If g is complex valued, using the definition of osc, we have

osc(Rα3(gh), Bε(x))

≤ osc(Rα1g, Bε(x)) ess sup |Rα2h|
+ 2 · osc(Rα2h, Bε(x))(ess sup |Rα1�g| + ess sup |Rα1�g|),

≤ osc(Rα1g, Bε(x)) ess sup |Rα2h| + 2
√

2 · osc(Rα2h, Bε(x)) ess sup |Rα1g|.
If h is not real valued, repeating the argument for the real and imaginary parts of h, we
obtain

osc(Rα3(gh), Bε(x))

≤ 2
√

2 · osc(Rα1g, Bε(x)) ess sup |Rα2h| + 2
√

2 · osc(Rα2h, Bε(x)) ess sup |Rα1g|.
Now, we use the inclusion of L∞ in V0,βr ,1, where r = 1, 2, to conclude that∫

osc(Rα3(gh), Bε(x)) dλI (x)

�
∫

osc(Rα1g, Bε(x)) dλI (x) · ‖Rα2h‖0,β2,1

+
∫

osc(Rα2h, Bε(x)) dλI (x) · ‖Rα1g‖0,β1,1

� εβ1 |g|α1,β1(|h|α2,β2 + ‖Rα2h‖1) + εβ2 |h|α2,β2(|g|α1,β1 + ‖Rα1g‖1).

This gives us that for all ε ∈ (0, 1],

ε−β3

∫
osc(Rα3(gh), Bε(x)) dλI (x)

� |g|α1,β1 |h|α2,β2 + |g|α1,β1‖h‖γ2 + |h|α2,β2 |g|α1,β1 + |h|α2,β2‖g‖γ1 .

Taking the supremum over ε and combining with ‖gh‖γ3 ≤ ‖g‖γ1‖h‖γ2 implies the
result.

Due to the linearity of the operator ψ̂ , to show regularity of s �→ ψ̂is = ψ(eisχ × · ),
it is enough to show the regularity of the one-parameter group of multiplication operators
s �→ eisχ × · . Our next lemma provides general conditions that guarantees this.

LEMMA A.11. Let 0 ≤ α0, β ≤ 1 and γ0 ≥ 1. For each s ∈ R, consider the multiplication
operator, Hs(·) = eisχ × ·, on Vα0,β,γ0 .
(1) Suppose there is β̄ ≥ β such that, for all s ∈ R, |eisχ |0,β̄ < ∞. Then, for all s ∈ R,

Hs ∈ L(Vα0,β,γ0).
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(2) Suppose, in addition to the conditions in part (1), there exists 0 < α∗ < β such that

lim
s→0

|1 − eisχ |α∗,β = 0. (A.2)

Put α1 = α0 + α∗ and γ1 ≤ γ0. Then, s �→ Hs ∈ L(Vα0,β,γ0 , Vα1,β,γ1) is continuous.
(3) Suppose, in addition to the conditions in parts (1) and (2), there exist 0 < α∗∗ < β

and γ ≥ 1 such that

lim
s→0

∣∣∣∣eisχ − 1 − isχ

s

∣∣∣∣
α∗∗,β

= 0 and ‖χ‖γ < ∞. (A.3)

Put α2 = α0 + max{α∗, α∗∗} and γ2 ≤ (γ −1
1 + γ −1)−1. Then, the function

s �→ Hs ∈ L(Vα0,β,γ0 , Vα2,β,γ2) is differentiable with the derivative

H ′
s(·) = (iχ)eisχ × · .

(4) Suppose, the conditions in parts (1), (2) and (3) are true. Put α3 = α2 + α∗ and
γ3 ≤ γ2. Then, s �→ Hs ∈ L(Vα0,β,γ0 , Vα3,β,γ3) is continuously differentiable.

Remark A.12. It would be possible to have some more flexibility on the parameter β and
change it for different spaces. However, we only use the version of the lemma as stated that
also keeps a simpler notation.

Proof of Lemma A.11. Proof of part (1). We note that for all g ∈ Vα0,β,γ0 , ‖Hs(g)‖γ0 =
‖g‖γ0 and due to [35, Proposition 3.2(iii)],

osc(Rα0(e
isχg), Bε(x)) ≤ osc(Rα0(e

isχg+), Bε(x)) + osc(Rα0(e
isχg−), Bε(x))

� osc(Rα0g, Bε(x)) + osc(eisχ , Bε(x)) · ess sup(|Rα0g|)
� osc(Rα0g, Bε(x)) + osc(eisχ , Bε(x))‖g‖α0,β,γ0 and

ε−β osc(Rα0(e
isχg), Bε(x)) � ε−β osc(Rα0g, Bε(x)) + ε−β osc(eisχ , Bε(x))‖g‖α0,β,γ0 .

The first � is due to adding up the positive and negative part of g, the second is due to the
inclusion V0,β,γ0 ↪→ L∞. Integrating and taking the supremum over ε, we have

|Hs(g)|α0,β � |g|α0,β + |eisχ |0,β‖g‖α0,β,γ0 ,

which gives

‖Hs(g)‖α0,β,γ0 ≤ (1 + |eisχ |0,β)‖g‖α0,β,γ0 . (A.4)

Therefore, for all s, Hs maps Vα0,β,γ0 to itself and is a bounded linear operator on Vα0,β,γ0 .
Proof of part (2). We note that Htg − Hsg = (Id − Hs−t )Htg and if g ∈ Vα0,β,γ0 , then

Htg ∈ Vα0,β,γ0 . Hence, due to Lemma A.10, it is enough to prove that

lim
s→0

‖Id − Hs‖Vα0,β,γ0→Vα1,β,γ1
= 0.

To this end, let g ∈ Vα0,β,γ0 be such that ‖g‖α0,β,γ0 ≤ 1. Then,

lim
s→0

‖(Id − Hs)g‖γ1
γ1

= lim
s→0

∫
|(1 − eisχ )g|γ1 dλI = 0
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by the dominated convergence theorem. Moreover, by [35, Proposition 3.2 (iii)],

osc(Rα1(Id − Hs)g, Bε(x))

= osc(Rα∗(1 − eisχ )Rα0g, Bε(x))

� osc(Rα0g, Bε(x)) · ess sup |Rα∗(1 − eisχ )|
+ osc(Rα∗(1 − eisχ ), Bε(x)) · ess sup |Rα0g|,

where � is due to the fact that we have to consider the positive and negative part of g
separately. Because V0,β,1 ↪→ L∞, we have

ε−β osc(Rα1(Id − Hs)g, Bε(x))

� ε−β osc(Rα0g, Bε(x))(|1 − eisχ |α∗,β + ‖Rα∗(1 − eisχ )‖1)

+ ε−β osc(Rα∗(1 − eisχ ), Bε(x))‖g‖α0,β,γ0 .

Integrating, taking the sup over ε and, finally, using ‖g‖α0,β,γ0 ≤ 1, we get

|(Id − Hs)g|α1,β � |1 − eisχ |α∗,β + ‖Rα∗(1 − eisχ )‖1.

By the bounded convergence theorem, lims→0 ‖Rα∗(1 − eisχ )‖1 = 0. Therefore,

lim
s→0

|(Id − Hs)g|α1,β = 0.

Hence, we have the continuity of s �→ Hs .
Proof of part (3). First, we show that for all g ∈ Vα1,β1,γ1 such that ‖g‖α1,β1,γ1 ≤ 1,

lim
h→0

∥∥∥∥(
Hs+h − Hs − H ′

sh

h

)
g

∥∥∥∥
α2,β,γ2

= lim
h→0

∥∥∥∥(
Hh − Id − iχh

h

)
Hsg

∥∥∥∥
α2,β,γ2

= 0.

Due to Lemma A.10, it is enough to show that

lim
h→0

∥∥∥∥(
Hh − Id − iχh

h

)
1
∥∥∥∥

α∗∗,β,γ
= lim

h→0

∥∥∥∥eihχ − 1 − iχh

h

∥∥∥∥
α∗∗,β,γ

= 0.

From the dominated convergence theorem, we have

lim
h→0

∥∥∥∥eihχ − 1 − iχh

h

∥∥∥∥
γ

= 0.

The assumption in equation (A.3) completes the proof of differentiability.
Finally, picking h �= 0 sufficiently close to 0, applying the estimate in part (1), part (2)

with γ1 = γ0, and Lemma A.10, we note that for all g ∈ Vα1,β,γ1 and for all s,
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‖H ′
s(g)‖α2,β,γ2

=
∥∥∥∥eihχ − 1 − ihχ

h
eisχg + 1

h
(1 − eihχ )eisχg

∥∥∥∥
α2,β,γ2

≤
∥∥∥∥eihχ − 1 − ihχ

h
eisχg

∥∥∥∥
α2,β,γ2

+ 1
h

‖(1 − eihχ )eisχg‖α2,β,γ2

≤
∥∥∥∥eihχ − 1 − ihχ

h

∥∥∥∥
α∗∗,β,γ

‖Hs(g)‖α0,β,γ0 + 1
h

‖(1 − eihχ )‖α∗,β,γ ‖Hs(g)‖α0,β,γ0

�
(∥∥∥∥eihχ − 1 − ihχ

h

∥∥∥∥
α∗∗,β,γ

+ ‖(1 − eihχ )‖α∗,β,γ

)
(1 + |eisχ |0,β)‖g‖α0,β,γ0 .

So, H ′
s is, in fact, a bounded linear operator in L(Vα0,β,γ0 , Vα2,β,γ2).

Proof of part (4). Since Vα2,β,γ2 ↪→Vα3,β,γ3 , we have that s → Hs ∈L(Vα0,β,γ0 , Vα3,β,γ3)

is differentiable. So, we need to check whether s → H ′
s is continuous. Note that for all

g ∈ Vα0,β,γ0 and for all s > 0, H ′
s(g) ∈ Vα2,β,γ2 , and for all h > 0,

‖(H ′
s+h − H ′

s)g‖α3,β,γ3 = ‖(eihχ − 1)H ′
s(g)‖α3,β,γ3

� ‖(Hh − H0)1‖α∗,β,γ0‖H ′
s(g)‖α2,β,γ2 → 0,

as h → 0 due to part (2). Hence, we have the continuity of the derivative.

A.3.2. Sufficient conditions for Lemma A.11. We limit our scope by providing sufficient
conditions for the assumptions in Lemma A.11.

LEMMA A.13. Let β̄ > 0. Suppose χ is continuous, and the right and left derivatives of χ

exist on I̊ . If there exists a constant b ∈ [0, 1/β̄) such that

max{|χ ′(x+)|, |χ ′(x−)|} � x−b(1 − x)−b, (A.5)

then

|eisχ |0,β̄ < ∞
holds for all s > 0.

Proof. We have

|eisχ |0,β̄ ≤ sup
ε∈(0,ε0]

∫ 1/2

0

osc(eisχ , Bε(x))

εβ̄
dλI (x)

+ sup
ε′∈(0,ε0]

∫ 1

1/2

osc(eisχ , Bε′(x))

ε′β̄ dλI (x).

We will only estimate the first summand as the estimation of the second follows
analogously. Using the definition osc(h, A) = osc(�h, A) + osc(�h, A), we note that for
any measurable set A, we have

osc(eisχ , A) ≤ min{4, 4s/π osc(χ , A)}. (A.6)
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By equation (A.5), there exists C > 0 such that for all ε > 0 and all x ∈ [ε, 1/2], we have

osc(eisχ , Bε(x)) ≤ 8|s|ε
π

sup
y∈Bε(x)

max{|χ ′(y+)|, |χ ′(y−)|} ≤ 8C|s|ε
π

(x − ε)−b.

We have that 8C|s|ε/π(x − ε)−b ≤ 4 if and only if

x ≤
(

2C|s|ε
π

)1/b

+ ε =: Kε.

Hence, we split the integral on [0, 1/2] into two, one on [0, Kε] and the other on [Kε, 1/2].
For the first range, we use the first bound in equation (A.6) and for the second range, we
use the second bound. Then,

sup
ε∈(0,ε0]

∫ 1/2

0

osc(eisχ , Bε(x))

εβ̄
dλI (x)

≤ sup
ε∈(0,ε0]

(
4Kεε

−β̄ +
∫ 1/2

Kε

8C|s|ε1−β̄

π
(x − ε)−bdλI (x)

)

≤ sup
ε∈(0,ε0]

4Kεε
−β̄ + sup

ε∈(0,ε0]

∫ 1/2

Kε

8C|s|ε1−β̄

π
(x − ε)−bdλI (x). (A.7)

For the first summand, we have

sup
ε∈(0,ε0]

4Kεε
−β̄ ≤ 8 sup

ε∈(0,ε0]
max

{(
2C|s|

π

)1/b

ε1/b−β̄ , ε1−β̄

}
< ∞,

which follows from the fact that b < 1/β̄ and β̄ ≤ 1. For the second summand of equation
(A.7), we have

sup
ε∈(0,ε0]

∫ 1/2

Kε

8C|s|ε1−β̄

π
(x − ε)−bdλI (x)

≤ 8C|s|
π

sup
ε∈(0,ε0]

ε1−β̄

∫ 1/2

(2Csε/π)1/b

x−bdλI (x)

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8C|s|

π
sup

ε∈(0,ε0]

ε1−β̄

|1 − b| max
{

1
2

,
(

2C|s|ε
π

)1/b}1−b

, b �= 1,

8C|s|
π

sup
ε∈(0,ε0]

ε1−β̄ log
(

π

2C|s|ε
)

, b = 1,

= 8C|s|
π

max
{

ε
1−β̄

0
21−b|1 − b| ,

(
2C|s|

π

)1/b−1 ε
1/b−β̄

0
|1 − b| , ε

1−β̄

0 log
(

π

2C|s|ε0

)}
< ∞,

which again follows from the fact that β̄ ≤ 1 and b < 1/β̄.

Remark A.14. The above lemma combined with Corollary 4.2 gives a sufficient condition
on χ for the operator Hs , and hence, ψ̂is to be a bounded linear operator on Vα,β,γ for all
α ≥ 0, β ≤ β̄ and γ ≥ 1.
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Next, we state a lemma that gives sufficient condition on χ for the operator valued
function s �→ Hs , and hence, s �→ ψ̂is to be continuous.

LEMMA A.15. Suppose |χ |α,β < ∞ with 0 ≤ α ≤ β < 1/(1 + α) and there exists b ∈
[0, 1/β) such that equation (A.5) holds. Then, for all α∗ ∈ (0, 1),

lim
s→0

|1 − eisχ |α∗,β = 0.

Proof. We will do the calculation only for the real part �(1 − eisχ ) = 1 − cos(sχ) and
the calculations for the imaginary part �(1 − eisχ ) = − sin(sχ) follow analogously,
and we mention these estimates briefly. Furthermore, we use the splitting of the positive
and negative part as in equation (A.1). Also, since �(1 − eisχ )− = 0, it does not contribute
to the estimates.

For δ ∈ (0, ε0), to be specified later depending on ε and s, we have

|�(1 − eisχ )+|α∗,β = sup
ε≤ε0

∫
osc(Rα∗�(1 − eisχ )+, Bε(x)) dλI (x)

εβ

≤ sup
ε≤ε0

∫
osc(Rα∗�(1 − eisχ )+1[0,δ+ε], Bε(x)) dλI (x)

εβ
(A.8)

+ sup
ε≤ε0

∫
osc(Rα∗�(1 − eisχ )+1(δ+ε,1−δ−ε), Bε(x)) dλI (x)

εβ

(A.9)

+ sup
ε≤ε0

∫
osc(Rα∗�(1 − eisχ )+1[1−δ−ε,1], Bε(x)) dλI (x)

εβ
, (A.10)

where we assume that s and ε0 are so small that δ + ε < 1 − δ − ε.
We start by estimating that the middle summand in equation (A.9) [35, Proposition

3.2(ii)] yields

osc(Rα∗�(1 − eisχ )+1(δ+ε,1−δ−ε), Bε(x))

≤ osc(Rα∗�(1 − eisχ )+, (δ + ε, 1 − δ − ε) ∩ Bε(x))1(δ+ε,1−δ−ε)(x)

+ 2
[

ess sup
(δ+ε,1−δ−ε)∩Bε(x)

Rα∗�(1 − eisχ )+
]
1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c)(x).

(A.11)

We first investigate the first summand of equation (A.11). For the following, we set

D(δ, ε, x) := (δ + ε, 1 − δ − ε) ∩ Bε(x). (A.12)

For x ∈ (δ + ε, 1 − δ − ε),

osc(Rα∗(1 − cos(sχ)), D(δ, ε, x)) ≤ 2ε sup
D(δ,ε,x)

[Rα∗(1 − cos(sχ))]′

≤ 2ε
[

sup
D(δ,ε,x)

|(Rα∗1)′| (1 − cos(sχ)) + sup
D(δ,ε,x)

(Rα∗1) |(1 − cos(sχ))′|
]
. (A.13)

Both of the above calculations follow analogously for the imaginary part with |sin(sχ)|
instead of 1 − cos(sχ).
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We set δ = δ(ε, s) = εκ · |s|ι with κ ∈ (0, 1) and ι > 0 to be specified later. Since
|χ |α,β < ∞ implies that Rαχ is essentially bounded, we can conclude that there exists
K(χ) ∈ (0, ∞) such that |χ(x)| ≤ K(χ) · x−α(1 − x)−α almost everywhere. Recall
that there is C > 0 such that max{|1 − cos(x)}|, |sin(x)|} ≤ C|x|. Combining this with
(Rα∗1)′ = α∗(xα∗−1(1 − x)α

∗ + xα∗
(1 − x)α

∗−1), we have

sup
D(δ,ε,x)

|(Rα∗1)′| max{1 − cos(sχ), |sin(sχ)|} � |s|
(x − ε)1+α−α∗ , (A.14)

when x ≤ 1/2. The estimates for x ≥ 1/2 follow from replacing (x − ε) by (1 − x + ε),
and the final estimates remain unchanged. So, we restrict our attention to the former case.

It follows that

lim
s→0

sup
ε∈(0,ε0]

1
εβ

∫ 1/2

δ+ε

2ε sup
D(δ,ε,x)

(|(Rα∗1)′|(1 − cos(sχ)))1(δ,1−δ)(x) dλI (x)

� lim
s→0

|s| sup
ε∈(0,ε0]

ε1−β

∫ 1/2

δ+ε

(x − ε)α
∗−1−α dλI (x)

� lim
s→0

|s| sup
ε∈(0,ε0]

ε1−β

∫ 1/2−ε

δ

xα∗−1−α dλI (x)

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim
s→0

ε
1−β+κ(α∗−α)

0 lim
s→0

|s|1+ι(α∗−α), α∗ < α,

ε
1−β

0 (|log(1/2 − ε0)| + κ|log(ε0)|) lim
s→0

|s| + ιε
1−β

0 lim
s→0

|s| |log |s||, α∗ = α,

ε
1−β

0 lim
s→0

|s|, α∗ > α,

= 0 (A.15)

provided that under the condition α∗ < α, we have

1 − β + κ(α∗ − α) > 0 ⇐⇒ κ < (1 − β)/(α − α∗),
ι(α∗ − α) + 1 > 0 ⇐⇒ ι < 1/(α − α∗).

(A.16)

Analogously, under the same conditions,

lim
s→0

sup
ε∈(0,ε0]

1
εβ

∫
2ε sup

D(δ,ε,x)

(|(Rα∗1)′|(sin(sχ))±)1(δ+ε,1−δ−ε)(x) dλI (x) = 0.

To estimate the second summand of equation (A.13), we use (1 − cos(sχ))′ = sin(sχ) ·
sχ ′, (sin(sχ))′ = cos(sχ) · sχ ′, |cos(sχ)| ≤ 1, |sin(sχ)| ≤ 1 and our assumption
about χ ′. Then, we have

sup
D(δ,ε,x)

max{(Rα∗1) |(1 − cos(sχ))′|, (Rα∗1)|(sin(sχ)±)′|}

�
{

|s|(x − ε)α
∗−b, α∗ < b,

|s| · 1, α∗ ≥ b
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for x ≤ 1/2. Also, note that for x ≤ 1/2 and the estimate for x ≥ 1/2 is the same with
(x − ε) replaced by (1 − x + ε). Thus, if α∗ < b,

lim
s→0

sup
ε∈(0,ε0]

1
εβ

∫ 1/2

δ+ε

2ε sup
D(δ,ε,x)

((Rα∗1) |(1 − cos(sχ))′|)1(δ+ε,1−δ−ε)(x) dλI (x)

� lim
s→0

sup
ε∈(0,ε0]

ε1−β |s|
∫ 1/2−ε

δ

xα∗−bdλI (x)

�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε
1−β+κ(1+α∗−b)

0 lim
s→0

|s|1+ι(1+α∗−b), b > 1 + α∗,

ε
1−β

0 (|log(1/2 − ε0)| + κ|log(ε0)|) lim
s→0

|s|
+ιε

1−β

0 lim
s→0

|s| |log |s||, b = 1 + α∗,

ε
1−β

0 lim
s→0

|s|, b < 1 + α∗,

= 0, (A.17)

where, in the case of b > 1 + α∗, we have assumed that

1 − β + κ(1 + α∗ − b) > 0 ⇐⇒ κ < (1 − β)/(b − 1 − α∗),
1 + ι(1 + α∗ − b) > 0 ⇐⇒ ι < 1/(b − 1 − α∗).

(A.18)

The α∗ ≥ b case is similar to the b < 1 + α∗ case above. Analogously, under the same
assumptions on κ and ι, we obtain

lim
s→0

sup
ε∈(0,ε0]

1
εβ

∫
2ε sup

D(δ,ε,x)

(Rα∗1 |(sin(sχ)±)′|)1(δ+ε,1−δ−ε)(x) dλI (x) = 0.

Hence, combining equations (A.15) and (A.17), we can conclude

lim
s→0

sup
ε∈(0,ε0]

1
εβ

∫
osc(Rα∗�(1 − eisχ )+, D(δ, ε, x))1(δ,1−δ)(x) dλI (x) = 0. (A.19)

Also, the analogous result for the imaginary part, �(1 − eisχ )±, follows.
Next, we will estimate the second summand in equation (A.11). We note that

Bε((δ + ε, 1 − δ − ε)) ∩ Bε((δ + ε, 1 − δ − ε)c) = Bε(δ + ε) ∪ Bε(1 − δ − ε)

and, hence,

1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c) = 1Bε(δ+ε)∪Bε(1−δ−ε). (A.20)

It follows that

sup
D(δ,ε,x)

Rα∗(1 − cos(sχ)) �
{

|s|(x − ε)α
∗−α , α∗ < α,

|s|(x + ε)α
∗−α , α∗ ≥ α.

(A.21)

Due to the symmetry around x = 1/2, we obtain

lim
s→0

sup
ε∈(0,ε0]

1
εβ

∫
sup

D(δ,ε,x)

Rα∗�(1 − eisχ )+

· 1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c)(x) dλI (x)
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= lim
s→0

sup
ε∈(0,ε0]

1
εβ

( ∫ δ+2ε

δ

+
∫ 1−δ

1−δ−2ε

)
sup

D(δ,ε,x)

Rα∗(1 − cos(sχ)) dλI (x)

� lim
s→0

sup
ε∈(0,ε0]

|s|ε−β

∫ δ+2ε

δ

max{(δ + ε)α
∗−α , (δ + 2ε)α

∗−α} dλI (x)

�

⎧⎨⎩ lim
s→0

ε
1−β−κ(α−α∗)
0 |s|1−ι(α−α∗), α∗ < α,

lim
s→0

ε
1−β

0 |s|, α∗ ≥ α,

= 0 (A.22)

where, in the case of α∗ < α, we assume that

1 − β − κ(α − α∗) > 0 ⇐⇒ κ < (1 − β)/(α − α∗),
1 − ι(α − α∗) > 0 ⇐⇒ ι < 1/(α − α∗).

(A.23)

Combining this with equations (A.11) and (A.19) yields that the summand in equation (A.9)
tends to zero for s → 0 and the same is true for the imaginary part, �(1 − eisχ )±, because
the same assumptions on κ and ι along with |sin(x)| � |x| and equation (A.21) yield

lim
s→0

sup
ε∈(0,ε0]

1
εβ

∫
osc((sin(sχ))±, D(δ, ε, x))1(δ+ε,1−δ−ε)(x) dλI (x) = 0,

lim
s→0

sup
ε∈(0,ε0]

1
εβ

∫
sup

D(δ,ε,x)

Rα∗(sin(sχ))±

· 1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c) dλI (x) = 0.

Finally, we investigate into the first summand in equation (A.8). As the calculation
for the summand in equation (A.10) is very similar, we will only give the details for
equation (A.8). We split the integral into

lim
s→0

sup
ε≤ε0

1
εβ

∫
osc(Rα∗�(1 − eisχ )1[0,δ+ε], Bε(x)) dλI (x)

= lim
s→0

sup
ε≤ε0

1
εβ

( ∫
[0,δ)

+
∫

[δ,δ+2ε]

)
osc(Rα∗(1 − cos(sχ))1[0,δ+ε], Bε(x)) dλI (x).

(A.24)

For the first summand of equation (A.24), we write

D̄(δ, ε, x) := [0, δ + ε] ∩ Bε(x), (A.25)

and we note that �(1 − eisχ ) ∈ (0, 2) and

osc(Rα∗(1 − cos(sχ))1[0,δ+ε], Bε(x))

≤ 2 · supD̄(δ,ε,x)Rα∗1 ≤ 2Rα∗1(x + ε) ≤ 2(x + ε)α
∗
. (A.26)

Now, we have

lim
s→0

sup
ε≤ε0

1
εβ

∫ δ

0
osc(Rα∗(1 − cos(sχ))1[0,δ+ε], Bε(x)) dλI (x) = 0 (A.27)
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under the condition

ι > 0 and κ >
β

1 + α∗ (A.28)

due to the following sub-lemma.

SUB-LEMMA A.16. Define

�1 := lim
s→0

sup
ε≤ε0

1
εβ

∫ δ

0
osc(Rα∗�(1 − eisχ )+, D̄(δ, ε, x)) dλI (x)

and

�2 := lim
s→0

sup
ε≤ε0

1
sεβ

∫ δ

0
osc(Rα∗�(1 − eisχ )+, D̄(δ, ε, x)) dλI (x)

with α∗ ≥ 0, δ = δ(ε, s) = εκsι, where ι, κ > 0 and with D̄ as in equation (A.25). Suppose
|χ |α,β < ∞ with 0 ≤ α < β ≤ 1.
(1) If

ι > 0 and κ ≥ β

α∗ + 1
, (A.29)

then �1 = 0.
(2) If

ι > 1 and κ ≥ β

α∗ + 1
, (A.30)

then �2 = 0.

Proof of Sub-Lemma A.16. Without loss of generality, we assume that s > 0. Note that
due to equation (A.26), we have

�1 ≤ lim
s→0

sup
ε≤ε0

∫ δ

0 2(x + ε)α
∗
dλI (x)

εβ

= lim
s→0

sup
ε≤ε0

2((δ + ε)α
∗+1 − εα∗+1)

(α∗ + 1)εβ
= lim

s→0
L(s, ε0),

where

L(s, ε0) := 2
(α∗ + 1)

sup
ε≤ε0

J (s, ε)

and

J (s, ε) := (δ + ε)α
∗+1 − εα∗+1

εβ
= (εκsι + ε)α

∗+1ε−β − εα∗+1−β .

First, we note that

(εκsι + ε)α
∗+1ε−β = (εκ−β/(α∗+1)sι + ε1−β/(α∗+1))α

∗+1, (A.31)

and hence, for J (s, ε) to not blow up near ε = 0, we should have equation (A.29).
Due to the first inequality in equations (A.29) and (A.31), we have for given s > 0 that
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supε≤ε0
J (s, ε) = J (s, ε0) and thus J (0, ε) := lims→0 J (s, ε) = 0 for all ε. Therefore,

under the assumption in equation (A.29), �1 = 0 as claimed because

�1 ≤ lim
s→0

L(s, ε0) = 2
α∗ + 1

lim
s→0

J (s, ε0) = 0.

Now, using equation (A.26) and l’Hôpital’s rule, we obtain

�2 = lim
s→0

sup
ε≤ε0

∫
osc(Rα�(1 − eisχ )+, D̄(δ, ε, x))1[0,δ](x) dλI (x)

sεβ

≤ lim
s→0

1
s

sup
ε≤ε0

2((δ + ε)α
∗+1 − εα∗+1)

(α∗ + 1)εβ
= d

ds
L(s, ε0)

∣∣∣∣
s=0

.

We note that the last equality follows by the above calculation, namely that
supε≤ε0

J (s, ε) = J (s, ε0) holds because of 1 + α∗ > β, and the additional conditions
ι > 0 and κ ≥ β/(α∗ + 1).

Next, taking the derivative of L with respect to s, we obtain

d

ds
L(s, ε0) = 2

α∗ + 1
d

ds
(εκ

0 sι + ε0)
α∗+1ε

−β

0 = 2ι(εκ
0 sι + ε0)

α∗
ε
−β

0 εκ
0 sι−1.

Note that for �2 = 0, we should have d
ds

L(s, ε0)
∣∣
s=0 = 0 and this is true, if ι > 1.

Therefore, under equation (A.30), we have that �2 = 0, as claimed.

Next, to estimate the second summand of equation (A.24), we first note that for
x ∈ [δ, δ + 2ε],

sup
D̄(δ,ε,x)

Rα∗(1 − cos(sχ))1[δ,δ+ε]

� |s| sup
y∈D̄(δ,ε,x)∩[δ,δ+2ε]

yα∗−α ≤
{

|s|, α∗ ≥ α,

|s| · δα∗−α , α∗ < α.
(A.32)

Hence,

lim
s→0

sup
ε≤ε0

1
εβ

∫
[δ,δ+2ε]

osc(Rα∗(1 − cos(sχ))1[δ,δ+ε], Bε(x)) dλI (x)

� lim
s→0

sup
ε≤ε0

1
εβ

∫
[δ,δ+2ε]

sup
D̄(δ,ε,x)

(Rα∗(1 − cos(sχ))1[δ,δ+ε]) dλI (x)

�

⎧⎨⎩ε
1−β

0 lim
s→0

|s|, α∗ ≥ α,

ε
1−β+κ(α∗−α)

0 lim
s→0

|s|1+ι(α−α∗), α∗ < α,

= 0 (A.33)

provided that, in the case of α∗ < α,

1 − β + κ(α∗ − α) > 0 ⇐⇒ κ < (1 − β)/(α − α∗),
1 + ι(α∗ − α) > 0 ⇐⇒ ι < 1/(α − α∗).

(A.34)
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Next, by [35, Proposition 3.2(ii)], we have for x ∈ (δ, δ + 2ε],

osc(Rα∗(1 − cos(sχ))1[0,δ], Bε(x))

≤ osc(Rα∗(1 − cos(sχ)), Bε(x) ∩ [0, δ])1[0,δ](x)

+ 2 ess sup
Bε(x)∩[0,δ]

Rα∗(1 − cos(sχ))1[δ−ε∨0,δ+ε](x)

≤ 0 + 2 ess sup
[δ−ε∨0,δ]

Rα∗1 ≤ 2δα∗
.

Hence,

lim
s→0

sup
ε≤ε0

1
εβ

∫
[δ,δ+2ε]

osc(Rα∗(1 − cos(sχ))1[0,δ], Bε(x)) dλI (x)

� lim
s→0

sup
ε≤ε0

1
εβ

∫
[δ,δ+2ε]

δα∗
dλI (x) � lim

s→0
sup
ε≤ε0

ε1−β+κα∗
sια∗ = 0

under equation (A.28). This together with equation (A.33) imply

lim
s→0

sup
ε≤ε0

1
εβ

∫
[δ,δ+2ε]

osc(Rα∗(1 − cos(sχ))1[0,δ+2ε], Bε(x)) dλI (x) = 0.

Combining this with equations (A.24) and (A.27) implies that equation (A.8) tends to
zero for s tending to zero. The same is true for the imaginary part, �(1 − eisχ )±, as
�(1 − eisχ )± ≤ 1.

Finally, we discuss here possible values of α∗ and the implicit requirements on b that
ensure the existence of ι > 0 and κ > 0 used in the proof. There are four cases.

Note that in the case of α∗ < α and b > 1 + α∗, under equations (A.16), (A.18), (A.23),
(A.28) and (A.34), we have

β

α∗ + 1
< κ < min

{
1 − β

α − α∗ ,
1 − β

b − 1 − α∗ , 1
}

,

0 < ι < min
{

1
α − α∗ ,

1
b − 1 − α∗

}
.

First, we see that the conditions on ι are always fulfilled, because

0 <
1

α − α∗ and 0 <
1

b − 1 − α∗ .

Similarly, considering the inequalities that guarantee the existence of κ , we have

α > α∗ > max{αβ + β − 1, βb − 1}
is necessary and sufficient. Note that due to β < min{1/b, 1/(α + 1)}, we have
αβ + β − 1 < 0 and also βb − 1 < 0. So, 0 < α∗ < min{α, b − 1}, which is equivalent
to α∗ < α and b > 1 + α∗.

In the case of α∗ < α and b ≤ 1 + α∗, equation (A.18) poses no restrictions. So, under
equations (A.16), (A.23), (A.28) and (A.34), we have b − 1 < α∗ < α and b ≤ 1 + α,
which is equivalent to our assumptions α∗ < α and b ≤ 1 + α∗.

In the case of α∗ ≥ α, equations (A.16), (A.23) and (A.34) pose no restrictions.
So, when b < 1 + α∗, we have α∗ > max{α, b − 1} and when b > 1 + α∗, we have
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α < α∗ < b − 1 and b > 1 + α, and we do not obtain any additional restrictions
either.

The next lemma of this section gives a sufficient condition on χ for the operator valued
function s �→ Hs and, hence, s �→ ψ̂is to be differentiable.

LEMMA A.17. Suppose |χ |α,β < ∞ with 0 ≤ α ≤ β < 1/(1 + α) and there exists
b ∈ [0, 1/β) such that equation (A.5) holds. Then, for all α∗ > min{2α, max{α, α +
b − 2}}, we have

lim
s→0

∣∣∣∣eisχ − 1 − isχ

s

∣∣∣∣
α∗,β

= 0.

Proof. The proof follows very similarly to the proof of the previous lemma and we will
stick to the same notation. Again, we will do the calculations only for the non-negative real
part, only noting some differences for the imaginary part. We have

osc
(

Rα∗�
(

eisχ − 1 − isχ

s

)
, Bε(x)

)
= 1

s
osc(Rα∗(1 − cos(sχ)), Bε(x))

and

osc
(

Rα∗�
(

eisχ − 1 − isχ

s

)
, Bε(x)

)
= 1

s
osc(Rα∗(sin(sχ) − sχ), Bε(x)).

As in equations (A.8)–(A.10), we have for δ ∈ (0, ε0) (to be specified later and depending
on s and ε) that

|�(eisχ − 1 − isχ)|α∗,β = sup
ε≤ε0

∫
osc(Rα∗(1 − cos(sχ)), Bε(x)) dλI (x)

sεβ

≤ sup
ε≤ε0

∫
osc(Rα∗(1 − cos(sχ))1[0,δ+ε], Bε(x)) dλI (x)

sεβ

(A.35)

+ sup
ε≤ε0

∫
osc(Rα∗(1 − cos(sχ))1(δ+ε,1−δ−ε), Bε(x)) dλI (x)

sεβ

(A.36)

+ sup
ε≤ε0

∫
osc(Rα∗(1 − cos(sχ))1[1−δ−ε,1], Bε(x)) dλI (x)

sεβ
,

(A.37)

and similarly, for the imaginary part.
Now, we start by estimating the middle term in equation (A.36), and as in equation

(A.11), we use [35, Proposition 3.2(ii)] to obtain

osc(Rα∗(1 − cos(sχ))1(δ+ε,1−δ−ε), Bε(x))

≤ osc(Rα∗(1 − cos(sχ)), D(δ, ε, x))1(δ+ε,1−δ−ε)(x)

+ 2
[

sup
D(δ,ε,x)

Rα∗(1 − cos(sχ))
]
1Bε((δ+ε,1−δ−ε))∩Bε((δ+ε,1−δ−ε)c)(x). (A.38)
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For x ∈ (δ + ε, 1 − δ − ε),

osc(Rα∗(1 − cos(sχ)), D(δ, ε, x)) ≤ 2ε sup
D(δ,ε,x)

|[Rα∗(1 − cos(sχ))]′|

≤ 2ε
[

sup
D(δ,ε,x)

|(Rα∗1)′| (1 − cos(sχ)) + sup
D(δ,ε,x)

(Rα∗1)|(1 − cos(sχ))′|
]
. (A.39)

Both of the above calculations follow analogously for the imaginary part.
For the following, as in the previous proof, we set δ = δ(ε, s) = εκ · |s|ι with κ ∈ (0, 1),

ι > 0 and recall that there is C > 0 such that max{|1 − cos(x)|, |sin(x) − x|} ≤ C|x|2.
The latter fact and (Rα∗1)′ = α∗(xα∗−1(1 − x)α

∗ + xα∗
(1 − x)α

∗−1), imply that

sup
D(δ,ε,x)

|(Rα∗1)′| · max{1 − cos(sχ), |sin(sχ) − (sχ)|} � |s|2
(x − ε)1+2α−α∗ , (A.40)

when x ≤ 1/2. The estimates for x ≥ 1/2 follow from replacing (x − ε) by (1 − x + ε),
and the final estimates remain unchanged. So, we restrict our attention to the former case.

This implies that the contribution of the first term in equation (A.39) is

lim
s→0

sup
ε∈(0,ε0]

1
|s|εβ

∫ 1/2

δ+ε

2ε sup
D(δ,ε,x)

|(Rα∗1)′| (1 − cos(sχ))1(δ+ε,1−δ−ε)(x) dλI (x)

� lim
s→0

|s| sup
ε∈(0,ε0]

ε1−β

∫ 1/2−ε

δ

xα∗−1−2α dλI (x)

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε

1−β+κ(α∗−2α)

0 lim
s→0

|s|1+ι(α∗−2α) = 0, α∗ < 2α,

ε
1−β

0 (|log(1/2 − ε0)| + κ|log(ε0)|) lim
s→0

|s| + ιε
1−β

0 lim
s→0

|s| |log |s||, α∗ = 2α,

ε
1−β

0 lim
s→0

|s|, α∗ > 2α,

= 0

provided that, in the α∗ < 2α case,

1 − β + κ(α∗ − 2α) > 0 ⇐⇒ κ < (1 − β)/(2α − α∗),
1 + ι(α∗ − 2α) > 0 ⇐⇒ ι < 1/(2α − α∗)

(A.41)

and, similarly,

lim
s→0

sup
ε∈(0,ε0]

1
sεβ

∫
2ε sup

D(δ,ε,x)

|(Rα∗1)′| (sin(sχ) − sχ)±1(δ+ε,1−δ−ε)(x) dλI (x) = 0.

Next, we estimate the second summand of equation (A.39). Using (1 − cos(sχ))′ =
sin(sχ) · sχ ′, |sin(sχ)| ≤ |sχ |, and our assumption about χ and χ ′, we have

sup
D(δ,ε,x)

(Rα∗1) |(1 − cos(sχ))′| �
{

|s|2(x − ε)α
∗−(α+b), α∗ < α + b,

|s|2 · 1, α∗ ≥ α + b.
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Also note that the estimate for x ≤ 1/2 and for x ≥ 1/2 are the same with (x − ε) replaced
by (1 − x + ε). Thus, when α∗ < α + b,

lim
s→0

sup
ε∈(0,ε0]

ε

sεβ

∫ 1/2

δ+ε

sup
D(δ,ε,x)

(Rα∗1) |(1 − cos(sχ))′|1(δ+ε,1−δ−ε)(x) dλI (x)

� lim
s→0

sup
ε∈(0,ε0]

ε1−β |s|
∫ 1/2−ε

δ

xα∗−(α+b)dλI (x)

�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε
1−β+κ(1+α∗−α−b)

0 lim
s→0

|s|1+ι(1+α∗−α−b), α + b > 1 + α∗,

ε
1−β

0 (|log(1/2 − ε0)| + κ|log(ε0)|) lim
s→0

|s|
+ιε

1−β

0 lim
s→0

|s| |log |s||, α + b = 1 + α∗,

ε
1−β

0 lim
s→0

|s|, α + b < 1 + α∗,

= 0.

where, in the case of α + b > 1 + α∗, we have assumed that

1 − β + κ(1 + α∗ − α − b) > 0 ⇐⇒ κ < (1 − β)/(α + b − 1 − α∗),
1 + ι(1 + α∗ − α − b) > 0 ⇐⇒ ι < 1/(α + b − 1 − α∗).

(A.42)

Analogously, under the same assumptions on κ and ι, we obtain

lim
s→0

sup
ε∈(0,ε0]

ε

sεβ

∫
sup

D(δ,ε,x)

Rα∗1(x)|((sin(sχ) − sχ)±)′|1(δ+ε,1−δ−ε)(x) dλI (x) = 0

because |(sin(sχ) − sχ)′| = |cos(sχ) − 1| · |sχ ′| and |cos(sχ) − 1| ≤ |sχ |.
Next, we look at the second summand of equation (A.38). Using equation (A.20), our

assumption about χ and the symmetry around x = 1/2, the corresponding integral over
the second summand is dominated by

lim
s→0

sup
ε∈(0,ε0]

2
sεβ

( ∫ δ+2ε

δ

+
∫ 1−δ

1−δ−2ε

)
sup

D(δ,ε,x)

Rα∗(1 − cos(sχ)) dλI (x)

� lim
s→0

sup
ε∈(0,ε0]

|s|ε−β

∫ δ+2ε

δ

max{(δ + ε)α
∗−2α , (δ + 3ε)α

∗−2α} dλI (x)

� |s|1−ι(2α−α∗) lim
s→0

ε
1−β

0 |s|
= 0.

Here, in the case of α∗ < 2α, we have to assume additionally that

1 − β − κ(2α − α∗) > 0 ⇐⇒ κ < (1 − β)/(2α − α∗),
1 − ι(2α − α∗) > 0 ⇐⇒ ι < 1/(2α − α∗).

(A.43)

Analogously, under the same assumptions on κ and ι, using our assumption about χ , we
have

lim
s→0

sup
ε∈(0,ε0]

2
sεβ

( ∫ δ+2ε

δ

+
∫ 1−δ

1−δ−2ε

)
sup

D(δ,ε,x)

Rα∗(sin(sχ) − sχ)± dλI (x) = 0.
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Finally, we investigate equation (A.35). The estimations for equation (A.37) then follow
analogously. We split the integral as in equation (A.24).

For the first integral, due to Sub-Lemma A.16, we have

lim
s→0

sup
ε≤ε0

1
sεβ

∫
[0,δ)

osc(Rα∗(1 − cos(sχ))1[0,δ+ε], Bε(x)) dλI (x) = 0 (A.44)

provided that

κ(1 + α∗) − β > 0 ⇐⇒ κ > β/(1 + α∗),
ι − 1 > 0 ⇐⇒ ι > 1.

(A.45)

For the imaginary part, since we assumed α∗ ≥ α, we can use the following estimate:

supD̄(δ,ε,x)|Rα∗(sin(sχ) − sχ)1[0,δ+ε]|
� |s|supD̄(δ,ε,x)|Rα∗χ1[0,δ+ε]|
� |s| supD̄(δ,ε,x)Rα∗−α1[0,δ+ε] � |s| (x + ε)α

∗−α .

Then, repeating the argument leading to equation (A.30) with α∗ − α replacing α∗, we
have that

lim
s→0

sup
ε≤ε0

1
sεβ

∫
[0,δ)

osc(Rα∗(sin(sχ) − sχ)1[0,δ+ε], Bε(x)) dλI (x) = 0

provided that

κ(1 + α∗ − α) − β > 0 ⇐⇒ κ > β/(1 + α∗ − α),

ι − 1 > 0 ⇐⇒ ι > 1.
(A.46)

For the second integral, as in equation (A.32) but using equation (A.40) instead, we
obtain for all x ∈ (δ, δ + 2ε],

sup
D̄(δ,ε,x)

Rα∗(1 − cos(sχ))1[δ,δ+ε]

� s2 sup
y∈D̄(δ,ε,x)∩(δ,δ+2ε]

yα∗−2α ≤
{

s2, α∗ ≥ 2α,

s2 · δα∗−2α , α∗ < 2α.

Therefore,

lim
s→0

sup
ε≤ε0

1
sεβ

∫
(δ,δ+2ε]

osc(Rα∗(1 − cos(sχ))1[δ,δ+ε], Bε(x)) dλI (x)

�

⎧⎨⎩ε
1−β

0 lim
s→0

|s|, α∗ ≥ 2α,

ε
1−β+κ(α∗−2α)

0 lim
s→0

|s|1+ι(α−2α∗), α∗ < 2α,

= 0

provided that, in the case of α∗ < 2α,

1 − β + κ(α∗ − 2α) > 0 ⇐⇒ κ < (1 − β)/(2α − α∗),
1 + ι(α∗ − 2α) > 0 ⇐⇒ ι < 1/(2α − α∗).

(A.47)
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Due to [35, Proposition 3.2(ii)] and our assumption that α∗ > α, we have for
x ∈ (δ, δ + 2ε],

osc(Rα∗(1 − cos(sχ))1[0,δ], Bε(x))

≤ osc(Rα∗(1 − cos(sχ)), Bε(x) ∩ [0, δ])1[0,δ](x)

+ 2 ess sup
Bε(x)∩[0,δ]

Rα∗(1 − cos(sχ))1[δ−ε∨0,δ+ε](x)

≤ 0 + 2|s| ess sup
[δ−ε∨0,δ]

Rα∗χ ≤ 2|s|δα∗−α .

So,

lim
s→0

sup
ε≤ε0

1
sεβ

∫
(δ,δ+2ε]

osc(Rα∗(1 − cos(sχ))1[0,δ], Bε(x)) dλI (x)

� lim
s→0

sup
ε≤ε0

1
εβ

∫
(δ,δ+2ε]

δα∗−α dλI (x) � lim
s→0

ε
1−β+κα∗
0 sι(α∗−α) = 0

under equation (A.45). So, we have

lim
s→0

sup
sε≤ε0

1
εβ

∫
[δ,δ+2ε]

osc(Rα∗(1 − cos(sχ))1[0,δ+2ε], Bε(x)) dλI (x) = 0.

Finally, we discuss here values of α∗ and implicit restrictions on b that ensure the
existence of ι > 0 and κ ∈ (0, 1) used in the proof. There are four key cases to consider.

(1) α < α∗ < 2α and α + b > 1 + α∗: under equations (A.41), (A.42), (A.43), (A.45),
(A.46) and (A.47), we have

β

α∗ − α + 1
< κ < min

{
1 − β

2α − α∗ ,
1 − β

α + b − 1 − α∗

}
,

1 < ι < min
{

1
2α − α∗ ,

1
α + b − 1 − α∗

}
.

Considering the conditions for ι, we have α∗ > 2α − 1 and α∗ > α + b − 2. Since α >

2α − 1, the former is automatic. Next, considering each of the two inequalities that
guarantee the existence of κ , we obtain that

α∗ > max{β − 1 + βα + α, βb + α − 1} = α + max{β − 1 + βα, βb − 1}
is necessary. Note that β − 1 + βα < 0 and βb − 1 < 0 because β < min{1/b, 1/

(1 + α)}. So α∗ > α is a sufficient choice. Combining everything, we have that

max{α + b − 2, α} < α∗ < min{α + b − 1, 2α}
is sufficient.

(2) α < α∗ < 2α and α + b < 1 + α∗: equation (A.42) poses no extra restriction. So,
under equations (A.41), (A.43), (A.45), (A.46) and (A.47), we have α∗ > α as before.
Hence,

max{α + b − 1, α} < α∗ < 2α

is sufficient.
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(3) α∗ > 2α and α + b > 1 + α∗: equations (A.41), (A.43) and (A.47) pose no extra
restrictions. Under equations (A.42), (A.45) and (A.46), we have α∗ < α + b − 1 and
α∗ > βb + α − 1. Since βb + α − 1 < α < 2α, the latter is true. So,

2α < α∗ < α + b − 1

is sufficient.
(4) α∗ > 2α and α + b < 1 + α∗: equation (A.42) is not relevant, and both equations

(A.45) and (A.46) pose no extra restrictions. Hence,

max{2α, α + b − 1} < α∗

is sufficient.
We obtain from (1) and (2) that max{α + b − 2, α} < α∗ is sufficient if α∗ < 2α. From

(3) and (4), we obtain that α∗ > 2α is sufficient if α∗ > 2α. So,
α∗ > min{2α, max{α, α + b − 2}}

is sufficient.

LEMMA A.18. Assume χ is continuous, the right and left derivatives of χ exist on I̊ , and
there exist a ≥ 0, b > 0 such that

|χ(x)| � x−a(1 − x)−a and max{|χ ′(x+)|, |χ ′(x−)|} � x−b(1 − x)−b, (A.48)

then ‖χ‖α,β,γ < ∞ if

α > a,

β < (1 + α − a)/(b − a) or b < a + 1 and (A.49)

1 ≤ γ < 1/a.

Proof. The first inequality of equation (A.48) implies χ ∈ Lγ with 1 ≤ γ < 1/a.
For simplicity, we assume χ is differentiable. Otherwise, at a point where χ is not

differentiable, both one-sided derivatives will exist and the following estimates do hold for
them.

Now, we proceed as in the proof of Remark A.15; however, with δ = εκ to find the
minimal α and maximal β such that |Rαχ |0,β < ∞. Set g := Rαχ , then

g′(x) = α(1 − 2x)Rα−1χ(x) + Rαχ ′(x).

Choose ε sufficiently small and split the domain into three parts, [0, εκ + ε), (εκ + ε,
1 − ε − εκ) and (1 − ε − εκ , 1]. Due to the symmetry of the bounds, we only focus on
[0, 1/2].

On (εκ + ε, 1 − ε − εκ), we use [35, Proposition 3.2(ii)] implying

osc(g 1(εκ+ε,1−εκ−ε), Bε(x))

≤ osc(g, D(εκ , ε, x))1(εκ+ε,1−εκ−ε)(x)

+ 2
(

sup
D(εκ ,ε,x)

g
)
(1Bε(εκ+ε)∪Bε(1−εκ−ε)(x)) (A.50)

with D as in equation (A.12).
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For the following, we set α̃ = min{α − b + 1, α − a}. Then, the contribution from the
first term to |Rαχ |0,β is (up to a constant) bounded by

sup
0<ε≤ε0

ε1−β

∫ 1/2

εκ+ε

sup
D(εκ ,ε,x)

g′ dλI (x)

� sup
0<ε≤ε0

ε1−β

∫ 1/2

εκ+ε

(x − ε)−a+α−1 + (x − ε)−b+α dλI (x)

� sup
0<ε≤ε0

ε1−β

∫ 1/2

εκ

xᾱ−1 dλI (x)

�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup

0<ε≤ε0

ε1−β+κᾱ , α̃ < 1,

sup
0<ε≤ε0

ε1−β(log(1/2) − κ log(ε)), ᾱ = 1,

ε
1−β

0 , α̃ > 1.

In the α̃ ≤ 1 case, we require that

1 − β + κα̃ > 0 ⇐⇒ (κ < (1 − β)/(b − α − 1) or b < α + 1), (A.51)

where we have made use of the fact α > a. However, equation (A.51) is automatically
fulfilled if α̃ > 1, so we do not have to distinguish the cases any longer.

Since α > a, the contribution from the second term in equation (A.50) is bounded by

sup
ε∈(0,ε0]

1
εβ

∫ εκ+2ε

εκ

sup
D(εκ ,ε,x)

g dλI (x) � sup
ε∈(0,ε0]

ε−β

∫ εκ+2ε

εκ

1 dλI (x) � ε
1−β

0 .

Now, for x ∈ [0, εκ), we use the following estimate:

supD̄(εκ ,ε,x)|g| � supD̄(εκ ,ε,x)|Rα−a1[0,εκ+ε]| � (x + ε)α−a

with D̄ as in equation (A.25). Following the argument in Sub-Lemma A.16 with α − a

replacing α∗ and without the s → 0 limit but fixing s = 1, we have, since α − a + 1 > β

automatically holds, that

sup
ε≤ε0

1
εβ

∫
[0,δ)

osc(g, Bε(x)) dλI (x) � sup
ε≤ε0

2((εκ + ε)α−a+1 − εα−a+1)

(α − a + 1)εβ

= 2((εκ
0 + ε0)

α−a+1 − εα−a+1
0 )

(α − a + 1)ε
β

0

provided that

κ(1 + α − a) − β > 0 ⇐⇒ κ >
β

1 + α − a
.

So, together with equation (A.51), we require that there exists κ such that

β

1 + α − a
< κ <

1 − β

b − α − 1
or b < α + 1.
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This is true if and only if

(b − a)β < 1 + α − a or b < α + 1.

B. Appendix. Hölder continuity of R̄j+1

LEMMA B.1. For all j = 0, . . . , k − 1, let R̄j+1 : [cj , cj+1] → R be given by

R̄j+1 = (Rα1) ◦ ψj+1

Rα1
.

Then, R̄j+1 is bounded and α-Hölder continuous for all j.

Proof. Our strategy is to prove the following two steps.
(1) There exists δ0 > 0 such that R̄′

1 is bounded on the interval [0, c1 − δ0), R̄′
k+1 is

bounded on the interval (ck + δ0, 1] and R̄′
j+1, j = 1, . . . , k − 1 is bounded on the

interval (cj + δ0, cj+1 − δ0).
(2) Since R̄j+1(cj ) = R̄j+1(cj+1) = 0 for j = 1, . . . , k − 1, it is enough to show that

there exists C > 0 such that R̄j+1(cj + ε) ≤ Cεα and R̄j+1(cj+1 − ε) ≤ Cεα , for
all ε > 0.

We have

R̄′
j+1(x) = α · ψ ′

j+1(x)(1 − 2ψj+1(x))x(1 − x) − ψj+1(x)(1 − ψj+1(x))(1 − 2x)

(ψj+1(x)(1 − ψj+1(x)))1−α(x(1 − x))1+α
.

(B.1)

The numerator is bounded and for j = 1, . . . , k − 2, the denominator has zeros only at cj

and cj+1. So, we immediately get that R̄′
j+1 is bounded on (cj + δ0, cj+1 − δ0).

We only have to further consider the cases j = 0 and j = k − 1. We have to show
that R̄′

1(x) is bounded in a neighbourhood of 0. Since ψ1 has a bounded second
derivative, we can write ψ1(x) = ψ1(0) + ψ ′

1(0)x + O(x2) = ψ ′
1(0)x + O(x2). This

yields (ψ1(x)(1 − ψ1(x)))1−α(x(1 − x))1+α = �(x2).(f (x) = �(g(x)) as x → 0 if
lim infx→0 |f (x)|/g(x) > 0.) However, by simply multiplying out, we obtain

ψ ′
1(x)(1 − 2ψ1(x))x(1 − x) − ψ1(x)(1 − ψ1(x))(1 − 2x) = O(x2)

implying that limx→0 R̄1(x) < ∞. The calculation for limx→1 R̄k(x) follows analogously.
To analyse the behaviour for x → cj and x → cj+1 with x starting from [cj , cj+1], we

note that R̄′
j+1 can be written as

R̄′
j+1(x) = α · ψ ′

j+1(x)(1 − 2ψj+1(x))

(ψj+1(x)(1 − ψj+1(x)))1−α(x(1 − x))α

− α · (ψj+1(x)(1 − ψj+1(x)))α(1 − 2x)

(x(1 − x))1+α
. (B.2)

The minuend tends to ∞ for x → cj and to −∞ for x → cj+1 since ψj+1(x) and
1 − ψj+1(x) tend to zero, respectively, and the numerator remains bounded and is positive
near cj and negative near cj+1. The subtrahend is bounded on an interval [δ0, 1 − δ0].
Thus, R̄′

j+1(x) tends to ∞ for x → cj and to −∞ for x → cj+1 except if cj = 0 or
cj+1 = 1.
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Hence, we can conclude that |R̄j+1(x) − R̄j+1(y)| ≤ R̄j+1(cj + |x − y|) −
R̄j+1(cj ) = R̄j+1(cj + |x − y|) for x, y ∈ [cj , cj + δ0] and δ0 > 0 sufficiently small.
Similarly, we have |R̄j+1(x) − R̄j+1(y)| ≤ R̄j+1(cj+1 − |x − y|) − R̄j+1(cj+1) =
R̄j+1(cj+1 − |x − y|) for x, y ∈ [cj+1 − δ0, cj+1] and δ0 > 0 sufficiently small.
However, we have

R̄j+1(cj − ε) =
(

ψj+1(cj − ε)(1 − ψj+1(cj − ε))

(cj − ε)(1 − cj + ε)

)α

.

There exists Cj ,δ0 > 0 such that(
ψj+1(cj − ε)

(cj − ε)(1 − cj + ε)

)α

< Cj ,δ0

uniformly for all ε ∈ (0, δ0) and thus,

R̄j+1(cj − ε) ≤ Cj ,δ0(η+ε)α .

Similarly, we have

R̄j+1(cj−1 + ε) =
(

ψj+1(cj−1 + ε)(1 − ψj+1(cj−1 + ε))

(cj−1 + ε)(1 − cj−1 − ε)

)α

and there exists C̄j ,δ0 > 0 such that(
1 − ψj+1(cj−1 + ε)

(cj−1 + ε)(1 − cj−1 + ε)

)α

< C̄j ,δ0

uniformly for all ε ∈ (0, δ0) and thus,

R̄j+1(cj − ε) ≤ C̄j ,δ0(η+ε)α .

Setting C = maxj max{Cδ0,j , C̄δ0,j } concludes the proof of the lemma.
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