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Bieberbach's conjecture, proposed in 1916 and still unsolved, states
that if f{z) = zJt-a2z

2->r • • • is holomorphic and univalent in the disc \z\ < 1
then \an\ ̂  n for each n ̂  2, with equality for some n only if f(z) is the
Koebe function

k(z) = zl(l-z)2 =

or is obtained from this function by a rotation. Very recently Bombieri has
succeeded in showing that if f(z) is sufficiently close to the Koebe function,
then 8fca.n 2S n with equality only if f{z) = k(z). This had previously been
proved by Garabedian, Ross and Schiffer [3] for even values of n.

In the announcement [1] Bombieri proves this result for functions
f£(z) depending analytically on a parameter s with fo(z) = k(z). The basis
of the proof is the fact that the quadratic form

(1) RN=^n(N-n)xl+2 £ (N-m-n)xmxn
n—l m+n<N

is positive definite, and Bombieri deduces this from the new integral
inequality

(2) J ^ (l-x*)f*(x)dx+2 jjx+yito (x+y)f(x)f(y)dxdy 2> 0,

valid for all f{x) eZ2(—1, 1). In the present paper a different proof of the
inequality (2) is given, using Legendre polynomials. Moreover it is shown
that equality holds only if f(x) = 0 almost everywhere. The positive defi-
niteness of the quadratic form RN is also proved directly, without recourse
to integrals, by using polynomials which are orthogonal over a finite set.

THEOREM. / / f(x) e L2(—l, 1) and 0 ^ X ̂  2, then

J(X) = j \ (l-x*)f*(x)dx+ljjx+^o (x+y)f(x)f(y)dxdy ^ 0,

with equality only if f(x) = 0 almost everywhere. If X < 0 or X > 2 there exist
functions f(x) e L2(— 1, 1) for which J(X) < 0.

Put

F(x) = - \]
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Since F(x) is absolutely continuous, it has a convergent expansion

n=0
where

is the normalised Legendre polynomial and

By integrating by parts and using the differential equation for the Legendre
polynomials we obtain

Wil-x^fWP'^dx = n(n+l)an.
In particular,

j1_i(l-x*)P'm(x)P'n(x)dz = n(n+l)dmn.

Thus the polynomials P'n(x) (n 2: 1) form an orthogonal system with respect
to the weight function w(x) = 1—a;2. Since the interval is finite, this system
is complete. Therefore we have the Parseval relation

^j1_i(l-x^(x)dx = f n(n+l)al
n = l

On the other hand, by integrating by parts we get

= j ^ xf(x) j'_x f(y)dydx+ j \ f(x) J^ yf{y)dydx

= - \ \ xf(x)F(-x)dx+F(x) jl yf(y)dy\1_i + j \ F(x)xf{-x)dx

= J_\ x[F(x)f(-x)-f(x)F(-x)]dx

= - J^ x[F(x)F(-x)]'dx

= j1_iF(x)F(-x)dx,

since .F(l) = 0. Since Pn(—x) = (— \)nPn{x) it follows from the Parseval
relation for the system of Legendre polynomials that

j 2 = | (-i)»«*.
n=0

https://doi.org/10.1017/S144678870000731X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000731X


[3] On an inequality of Bombieri 401

Thus

n=l

This shows that /(A) ^ 0 if 0 ^ A ^ 2. Moreover if /(A) = 0 and 0 ^ A < 2
then aB = 0 (M ^ 1) and hence /(x) = 0 a.e. If J(X) = 0 and A = 2 then
a0 = 0 and an = 0 (w 5: 2). The vanishing of an for n ^ 2 implies that
/(#) is constant a.e. Since

= - l\f(x)dx-\\xf{x)dx

this constant must be 0.
Now write

hN=Y ^— PW 2 log Â  f or iV ^ oo

and let /(x) be the polynomial defined by taking

(2»+l)i /»(»+l) for 1 ^ w ̂  AT,
' 0 for w > A7.

Since .F(l) = 0 we have

Hence
/(A) = ^ + A [

If A < 0 it follows that J{X) < 0 for sufficiently large N. On the other hand,
if we define an in the same way as before for w ̂  2 but take

«i = -3-*(A*-f) ,
then a0 = 0 and

n = l

If X > 2 it follows that /(A) < 0 for sufficiently large N. This completes
the proof of the theorem.

To prove the positive definiteness of the quadratic form RN directly,
without using the inequality (2), we need the analogues of the Legendre
polynomials for a discrete variable. Cebysev has defined, for each positive
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integer N, a finite sequence of polynomials tn{x) (n = 0, 1, • • •, N—l) with
the following properties (see [2]):

(i) tn(x) has degree n in x,

(ii) Orthogonality

(3) NZUx)tn{x) = pndnn,
x=0

where

ft, = iV(iV2-l2)(2V2-22) • • • (iV2-«2)/(2«+l),

(iii) Symmetry

(4) tn(N-l-x) = (~l)"tn(x),

(iv) Difference equation

(5) Alx(x-N)Atn(x-l)]-n(n+l)tn(x) = 0.
We will also require an orthogonality property of the first differences

Atn(x). By partial summation we get for m, n = 1, • • •, N—l

N^x{x-N)Atm{x-\)Atn{x~\) = -N:£tm{x)A{x{x-N)Atn{x-l)}

(6) = - » ( » + ! ) I U*)U«)

= -n(n+l)pjmn.

Let f(x) be the uniquely determined polynomial of degree <N— 1
such that /(«—1) = xn(n = 1, • • -,N—1). There exists a unique polynomial
F(x) of degree < N such that F(0) = 0 and

We can write

(7) * » =N2
n=0

with suitable coefficients «„. Then

(8) /(^) = 2an
n=l

We wish to evaluate the sum

5 (k) = S1

X = l
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By (8) and (6)

^

n=l

By the definition of F(x) and by partial summation

N-2 N-l-x N-2 N-l-x

St = J,(N-z)f(x-l) 2 f(y-i)-2f(x-l) 2 yf{y-l)
x=l v=l x=X v=l
N-2 N-2

= 2 {N—x)f(x—l)F(N—l-x)— 2 {N—l—x)f(N—2-x)F{x)
x=l x=l

N-2

= 2 (N-l-x)[f(x)F(N-2-x)~f{N-2-x)F(x)]
x=0

= J,xU(N-~i--x)F(x-l)-f{x-l)F(N-l-x)]
x°=l

= -2xA[F{x-l)F{N-x)}
x=l

= 2F(x)F(N-l-x).

Therefore, by the symmetry property (4) and the orthogonality property (3),

n=0

Thus

n=l

Hence S(A) ^ 0 if 0 < X rgj 2, with equality only when a0 = 0 and
an = 0 (2 5g n ̂  iV—1). The vanishing of «„ for » 2̂  2 implies that /(a;) is
a constant. Since

a;=0

JV-1

it follows that /(a;) ̂  0. In particular, for X = 2, this shows that the quad-
ratic form RN is positive definite.
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[Added in proof: The complete proof of Bombieri's contribution to
the Bieberbach conjecture has now appeared in Inventiones Math. 4 (1967),
26—27.]
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