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Abstract

For the class of continuous games where a, and/fo,, <p(ol aN)} are the strategy of and payoff
to player 1 for 1 = 1 N, it is proved that the set of weak type I optima defined in Paper I
coincide with the set of solutions of a matrix condition. The latter condition restricts the equilibrium
solutions of an adjustment process. Numerical results for N = 2 and N = 3 indicate that the set of
all equilibrium solutions coincides with the above sets. The optima of types I to IV from Paper I are
described fairly completely for the given class of games.

1. Introduction

In the preceding paper [5] we considered general continuous games between N
players, where player / chooses a real number a, and receives a payoff Jfa)
depending on the o's of all the players, (a,, a2, . . . , aN) = a. In an economics
context, this describes quantity-variation competition between N firms market-
ing the same product, where firm 1 produces a quantity a, per business period
and makes a profit 7, per business period. We defined some new optima for this
competition and showed that they are closely related to the equilibrium solu-
tions of the adjustment process of [3] in which firms with no knowledge of the
J/'s vary their outputs over successive business periods in an attempt to maxi-
mize their individual profits.
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188 D. J. Gates and M. Westcott [21

In the present paper this relationship is shown to be much closer for a
particular class of profit functions. These functions, which have special eco-
nomic relevance, are

JM-M'iM*)} (1-0
for / = 1, 2, . . . , N. (In the case of 2 firms, this is no restriction on the 7,'s).
Often the function <f>(&) could be regarded as the common price which the
consumers pay for the product, and might depend only on the total output
aT = a, + a2 + • • • +aN of the firms, perhaps a decreasing function of aT.
Then a commonly studied version of (1.1) is /, = o$ — c,, where c((o,) is the
cost to firm / of producing the quantity a,.

It is plausible however that the price received by firm i has an additional
dependence on a,, since specific buyers may go to specific firms, due to some
attractive feature or personal preference. Similarly, the costs of firm i may have
an additional dependence on aT, since the price of raw materials may depend on
the total demand of all the firms, which may in turn depend on aT. All of these
possibilities are included in the form (1.1) of the profit functions.

Besides their economic relevance, payoffs of the form (1.1), by a fortunate
coincidence, enable one to specify fairly completely and explicitly both the
optima of Paper I and the equilibrium solutions of the adjustment process of [3]
and to prove various correspondences. The results are given in Sections 3 and 4,
while their proofs are contained in Sections 6 to 9. Section 5 outlines various
simulations of the adjustment process for 3 players.

2. Recapitulation of concepts and definitions

We suppose throughout that the functions/ and <f> in (1.1) are differentiable in
all their variables, so that the /,'s themselves are differentiable. We normally
think of the profits and outputs as applying to one business period (a month
perhaps). Firm i has direct control only over its own output o(. We repeat some
definitions from Paper I.

DEFINITION 1. The market is said to be in state a when the outputs are given by
a.

DEFINITION 2. A coalition is a subset of the set A = (1, 2, . . . , N) of firms.

We write JtJ for 3y,/9ay, and As for the determinant of the submatrix J,j for
i,j G S, where S C A is any subset of the firms. Thus A, = Ju and AA is the
determinant of the whole JtJ matrix.
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[ 3 J Optima and equilibria for games. II 189

D E F I N I T I O N 3. Firm i is weakly disciplinable by coalition C if

A,ACAC U I. < 0. (2.1)

The set of such states a is denoted by D ^ .

As explained at length in Paper I, the condition A,AcACu/ < 0 is essentially
equivalent to the condition that firm / can be disciplined by a coalition C in the
sense that: either firm i cannot make an adjustment (an infinitesimal change in
its output a,), which increases its own profit, or if it does make a profit increasing
adjustment then some coalition C of the other firms can conspire to make
adjustments which restore their own individual profits while leaving firm / with a
net reduction in profit.

Weak optima O™ to O ^ of types I to IV are defined by sets in <x-space.
O/*': a G Z>,£ for at least one / G A and at least one C C A - /.
Oft: a G D.A- , for at least one i G A.
O^: a G D™c for every i G A and at least one C C A - / for each i.
O{£: a G £>,*£_, for every i G A.
In these optima, various firms are (weakly) disciplinable by various coalitions

if they make any adjustments. Consequently, firms tend not to make adjust-
ments, and so the states are optimal in this sense. The type IV optimum is the
most stable or acceptable to all firms, because here every firm is not only
reluctant to move through fear of being disciplined, but also belongs to every
disciplining coalition and is consequently always protected. The other optima
I, II and III apply when firms have less information. In this paper we shall refer
only briefly to the strong optima and the original unqualified optima of Paper I.

The optima I to IV include various standard optima and game theory
solutions, such as the Pareto optimum, as shown in Paper I. A major feature of
our new optima is their connection with the equilibrium states E of the adjust-
ment process of [3]. These states were proved to satisfy the new condition: there
exists a (symmetric) non-zero, positive-semi-definite matrix Atj such that

2 A,JJ,J = 0 for all i G A. (2.2)

This condition does not appear to be of any standard type nor amenable to any
standard technique, algebraic or numerical. Our main result, Theorem 1, gives
all solutions of (2.2) for profit functions of the form (1.1).

3. The main results

It is clear that

(3.i)
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190 D. J. Gates and M. Westcott f41

and

OK C Og C Or- (3-2)

In Paper I (Theorem 5) we proved that for general Jt's,

O r C M, (3.3)

where M is the set of all solutions a of (2.2). We proved also (Theorem 6) that

for 2 firms (N = 2),

i - ° I I = °m = °iv = M< (3-4)
so we need not deal further with this case. Our main new result now is

THEOREM 1. For the profit functions (1.1), o r = M.

The proof is given in Section 8. Since O r is given through (2.1) in terms of the
7,'s alone, we consequently have all the solutions M of (2.2), if not in explicit
form. These solutions and the other optima are illustrated more explicitly in the
following section.

THEOREM 2. For the profit functions (1.1) and the case of "3 firms (N = 3),

Or=OITuOm, (3.5)
but not necessarily for 4 or more firms.

The main part of the proof is implied by Table 1 below, while the remaining
part is given in Section 9. This theorem shows that, for 3 firms, a type I optimum
is more stable or acceptable than was apparent at first. Any firm in such a state
a can either be disciplined (<r G O/^) or is protected by belonging to a disciplin-
ing coalition (a G O/f).

The main significance of Theorems 1 and 2 arises from their relationship with
the adjustment process of [3]. It was proved there (Theorem 1) that every
equilibrium state of that process satisfies the matrix condition (2.2), under fairly
weak conditions. Thus

E C M, (3.6)

where E is the set of equilibrium solutions of the adjustment process. It follows
from (3.4) that, for N = 2, every equilibrium state is an optimum of the
equivalent types I to IV, as discussed already in Paper I. From Theorems 1 and
2 we have the new result

COROLLARY 1. For the profit functions (1.1),

(a) E C 0,^ for all N (3.7)
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and

(b) £ C O,T U O£ for N = 3. (3.8)

Thus equilibrium states of the adjustment process are always optima of one
type or another. We think this rather remarkable, mathematically; in the
adjustment process each firm's sole action is to maximize a crude estimate of its
profit function, taking no account of other firms, while the optima seem to imply
greater knowledge and a bargaining between the firms. This was discussed
further in Paper I, although we have no deep understanding of the paradox. On
the other hand, Corollary 1 supports the kind of belief, implicit in much of
economic theory (for example, [1]), that firms acting independently with little
knowledge of the market structure (the 7f's) can arrive at an optimum solution of
the underlying market game.

Convergence of the adjustment process was proved in [3] only for a one-
parameter family of initial conditions and fork's of the form

(3-9)

where the a, and b0 are constants (Theorem 4, Appendix A of that paper). Thus
E is known to be non-empty in this case. Other cases where convergence can be
proved are given in [4] and [2].

However, in the case of 2 firms with Jt of the form (3.9), numerical simulation
of the adjustment process indicates that convergence is achieved under a wide
range of sensible conditions and, further, that every solution of the matrix
conditions (2.2) is a possible equilibrium state, that is,

E = M forN = 2. (3.10)

The simulation described in Section 5 for 3 firms strongly indicates that E = M
for 7,'s of the form

/, = a,a,(l - b,o, - ctaT), (3.11)

where

aT= o, + a2 + • • • +aN. (3.12)

It is our conjecture that E = M for all N if the 7,'s have this form. Given this
jconjecture, all equilibrium states are known, and by Theorems 1 and 2 every f

state, and for N = 3 very Off state and O& state, is attainable as an equilibrium
state of the adjustment process. The optima then specify the equilibrium states
completely.
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4. Description of the optima

The optima can be found more explicitly here than previously. We define the
new variables

f o r i - l , . . . , i V , (4.1)

for gj =£ 0, where

ft(o) = G,{a,, 4>(o)}, h,(a) = H,{at, <t>(*)}, </>,(») = 3*(«r)/3tf,,

<?,(«,-c) = 3/,(u, v)/du, Ht{u, v) = 3/,(«, v)/dv, (4.2)

and/ and <f> are the functions defining /, in (1.1).
We shall show that our disciplining set £>,*£ is essentially equivalent to the

condition

(l-^Xl-^cXl-^cu-^O. (4-3)

where

ys = 2 yy <4-4)

This simple form makes the optima relatively simple to specify in the y-space
rather than the «r-space. To make the equivalence precise however, one needs to
deal with the cases where g, = 0, for which (4.1) does not apply. In simple
practical examples it is usually clear how to deal with these cases, but the
general problem requires some care. Curiously, the condition g, = 0 does not
seem to have any compelling game-theoretic or economic significance. It corre-
sponds to a set of zero measure in the A^-dimensional a or y spaces.

We define the set

T5 = {a: gj ̂  0 for ally G 5 }, (4.5)

so that (4.3) is meaningful for all a G F C u / . To deal with the remaining cases we
define the sets

Z,,s = ia: Si = 0, h& * 0, gj + 0 for ally G S - /} (4.6)

for / G S. The remaining set of &s conditioning gj and hfe iorj G S is denoted
byEs.

THEOREM 3. IfJ, has the form (1.1) then Df%. is equivalent to the set defined by:

(4.3) holds if a G r c u i ,
yc>\ifcreZiCui, (4.7)

yt > 1 if a G Z / C u / , where j G C,

or a G ECui.
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We repeat that this is simply a more complete version of (4.3). The proof of
Theorem 3 is given in Section 6. We denote the set (4.7) by SiC. We can now
replace D™c everywhere by H,c in the definitions of the optima Ox

w to Oj% when
the Jj have the form (1.1). More formally, one can write

or- U U s,,c o{T= U V . (4-8)
ie.fi. CQA-i IEA

and so on. Thus the optima are known explicitly in the y-space. For example, if
N = 2 all the optima reduce to essentially

-yi- yj <

1 and.y,

1 and.y,

landy,

y2

y2

y2

(i - >-,)(! -
which admits only the solutions

yx < \,y2

yx < \,y2

yx > \,y2

and

illustrated by the shaded regions in Figure 1.
More generally, we define the sets

5 o = {ys < 1 for alls' C A},
Bi = {ys > ! f o r all 5 3 / and>-s < 1 for all S

Co = {yt > 1 for all / G A},

Q = {yt < 0 andyA_; > 1 if i G S,yj > 1 Uj•< <£ S,yA < 1),

for all 5 C A, and

CA = {0 < y, < l,yA_i < 1 for all i G A,^A > 1}.

(4.9)

/},
(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Figure 1. All the weak optima under profit functions (1.1) for the case of two firms.
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We find that, for / / s of the form (1.1), the disallowed regions in y-space for type
I optima are given essentially by

Bo u 5 , u B2 u • • • U BN = %, say, (4.16)

and the allowed regions for type IV optima are given essentially by

C0U U Q u C A = e , s a y . (4.17)
SCA

Regions corresponding to Off and O{Jj are rather laborious to specify for
general N. The reader may find them by following the methods of Section 7. To
give precise versions of (4.16) and (4.17) one must, as in Theorem 3, deal with
cases where theyt are not defined. We refer to the definitions of Ts and ZlS.

THEOREM 4. If the Jt have the form (1.1) then
(a) — Oj*' is equivalent to the set defined by

ys < I for all S C A - /»/a G Z, A, where i G A,

and no other a values.
(b) Oj^ is equivalent to the set defined by

a G 6 oryA =\ifa& TA,
y} > 1 for allj G A - / if a G Z, A, where / G A, \ • '

all a G EA.

The proof of Theorem 4 is given in Section 7. One can make similar
statements about the strong optima Of and O^ of Paper I. One essentially
replaces strict inequalities by non-strict ones, and vice versa. In some ways Ofv
is more appealing than 0 ^ because all of its points have /i-dimensional
neighbourhoods in Ofv.

For the case of 3 firms we tabulate all the weak optima as follows. We
formally put

0 if ys < 1,

1 iiys > 1,
so that Is = 0 and 1 both admit ys = 1. Then a region in y-space is specified by
the string

All the strings which are not self-contradictory are listed in Table 1, and the
optimal sets Oj*' to O{£ to which they belong, if any, are indicated. Permutations
of 1, 2 and 3 always belong to the same sets by the symmetry of the definitions,
so such permutations are listed on the same line.
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TABLE 1

All the weak optima

* 000
* 000
* 000
* 000
* 000
* 000

001
001
001
001
001
001

* 001
* 001

on
on
on
on

* on
• 111

000
000
001
001
Oil
111
000
010
010
100
100
110
110
111
100
100
101
110
111
111

For 2 firms, where

0
1

o,
1,
1,
1,

o,
o,
1,

o,
1,
o,
1,
1,
0,
1,
1,
1,
1,
1

000
000
000

100
100
100
100
100
100
100
100
101
101
101
101
101

010
010
101

000
001
001
010
010
Oil
Oil
111
010
010
110
Oil
HI

all the optima
lent, the optima are readily

with / = 1,2 and
optima reduce to

Figure 2. All the

= o,
the shadec

weak

ar
• ~ ^

0

optim<

illustrated
•/,=
+ o2,

0,0
and

region in

----^

—-«

r

o -

A,2=O

i under

for the

0,
1,
1,

0,
o,
1,

o,
1,
0,

(

•t

9

I

>

for games. II

case

000
000
000

010
010
010
010
010
010
010
010
110
110
110
110
110

of three firms.

100
100
110

000
100
100
001
001
101
101
111
001
001
011
101
111

and the matrix
We take

- o, -
apply
Figure

• ^ - - ^

1 J

39

0.3ar),

;
0
1
1

;
0
0
1
0
1
0

(
1
)

]

]

]

]

I II
I II
I II
I III
I
[ II
[ II
[ II
[ II
[ II
t II

I II
[ II

[ II

t II
[ II
[ II

III
III

III
III

III

III
III

III
III
III
III
III

III
condition (2.2)

Theorem 3. As
2.

2 2=o

\A
•78 '

> shown

profit functions (4.21) for the case of 1

195

IV

IV

IV

IV
are equiva-

(4.21)
in [3], the

wo firms.
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For 3 firms, let us first consider the special case

/,. = o,(l - aT). (4.22)

Here (4.1) reduces to

y, = a,/(l-or). (4.23)

Since the a,'s are to be all non-negative, it follows that the>>, are all of the same
sign. Since all optima satisfy the matrix condition (2.2), we have, on substituting
(4.22) and (4.23) in (2.2),

(4.24)

Since Atj is positive-semi-definite we can put Atj — c, • c, giving

0, (4.25)

so that yt > 0 for all i. This restricts the possible strings to those labelled with a
star in Table 1. Thus the type I optimum excludes only the strings 000 000 0 and
the 3 permutations of 001 110 1. These readily transform into excluded regions
in a-space, namely the tetrahedron below aT = j , and the 3 tetrahedra

(2ar - a, < 1 and aT + a, > 1) (4.26)

Figure 3. Excluded regions for outputs for type I optima under profit functions (4.22) for the case of
three firms.

for i = 1, 2, 3. These are illustrated in Figure 3. Similarly the included regions
for type IV optima comprise the 2 strings 000 000 1 and 111 111 1, which
transform into the 2 tetrahedra

(2aT - o, < 1 for i = 1, 2, 3 and aT > \), (4.27)
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(o> + o, > 1 for / = 1, 2, 3 and aT < 1), (4.28)

where a, > 0 and J, > 0 (that is, aT < 1) for i = 1, 2, 3. These tetrahedra are
illustrated in Figure 4. The type II and HI optima can be obtained readily in
similar fashion.

Figure 4. Included regions for outputs for type IV optima under profit functions (4.22) for the case of
three firms.

For 3 firms with profit functions

J, = o,(l - a, - yoT) (4.29)

we must include yt < 0, so that all of Table 1 is required in order to give the
regions in <r-space for each optimum. These regions are rather difficult to
illustrate for (4.29): they are bounded by 3 planes A, = 0, 3 hyperbolae Ao = 0
of 2 sheets, and a cubic surface A,23 = 0 of 3 sheets. The regions are, by and
large, distorted versions of those obtained for J, = a,(l — oT). For example, the
regions excluded by O,"' comprise (a) a "tetrahedron" with faces a, = 0, a2 = 0,
a3 = 0 and the sheet of A123 = 0 nearest to a = 0, (b) 3 "tetrahedra" Tt with
faces Oj = 0, ak = 0, Ju = 0 and the sheet of Ajk = 0 nearest the o, axis, and (c) a
region above the upper sheets of the surfaces A12 = 0, A23 = 0, A31 = 0 and
A123 = 0. These regions are truncated by the surfaces Jf = 0.

For payoff functions of the form (4.29) the regions corresponding to the
various optima are all quite small if y is much less than 1. For example, if
y = 0.3 the largest of the regions, type I, occupies only about 9.7% of the volume
(asi 0.25) of the output space (a, > 0, Jt > 0, for i = 1,2, 3). This is because the
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surfaces A, = 0, Ay = 0 and A123 = 0 are bowed in towards the Cournot opti-
mum, Ju = 0 for all 1, as in the 2 firm case shown in Figure 2. The strongest
optimum, type IV, occupies only about 1.3% of the volume of the output space.
In fact all the optima coalesce into the surfaces /„• = 0 as y —» 0, as can be seen
easily from the matrix condition (2.2); it is also fairly clear from the definitions
of the optima.

5. Numerical results for 3 firms

We take the profit functions

Jt = o^, (5.1)

where

m,(<r) = o,.(l ~ <», - 03aT) (5.2)

for / = 1, 2, 3, where the a, are positive constants which can be set equal to 1
without loss of generality. The n^ are the profits per good or so-called average
profits. The adjustment process derived in [3] gives a new output a,(t + 1) for
each firm in business period f + 1, in terms of all the preceding outputs o(l),
«r(2), . . . , o(f), according to the relations

where

4(0 - J 2 o,(r),
1 T - l

(5.4)

7 2 "*,{*)}, (5.5)
' T = l

7 2 ° , ( T ) 2 (5-6)
1 T = l

and

T 2 J,{°(T)}- (5-7)

This is just equation (2.6) of [3] with equal weights and confidence factor unity. It
represents a model of the accounting procedures of firms whereby each firm
independently maximizes its own estimate of its profit function which it obtains
by a least-squares linear fit of its previous average profits.
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1131 Optima and equilibria for games. II 199

As mentioned in Section I, [3, Theorem 1] proves that the equilibrium solu-
tions a of (5.3) satisfy the matrix condition (2.2) (for m/s more general than
(5.2), in fact). The set E of equilibrium solutions was proved (Theorem 4 therein)
to contain at least the N - 1 dimensional set where A)23 = 0. We now look for
the whole set E by numerical iteration of (5.3).

We chose 211 pairs (o(l), o(2)) randomly and uniformly from the region
(a, > 0, /, > 0 for all /) in tr-space. For each pair we performed 50 iterations of
(5.3) corresponding to 50 adjustments by every firm over 50 business periods. Of
the 211 cases only 7 had not converged or were doubtful after 50 iterations. The
equilibrium points of the 204 which converged were all of type I and were
scattered widely through all the corresponding regions given in Table 1 (with the
exception of 001 110 0 and its permutations, which correspond to very small
regions in <r-space). Among these 204 type I points, 178 were of type II, 144 were
of type III and 38 were of type IV. Thus no single one of the stronger optima II,
III, IV completely contains the equilibrium solutions. Corollary 1 part (a) seems
therefore to be the best possible result, in that all type I optima seem to be
possible equilibria, that is, Of = E.

Since O/£ contains 38 of the 204 simulated Of optima while occupying only
13% of the Of volume in <r-space, it has an average density of simulation points
which is about 1.4 times that in Of. Thus the Type IV optimum is somewhat
favoured for equilibrium points of the adjustment process on a per area basis.
This fact may be related to the stability of Ory mentioned in Section 2.

Following Theorem 6 of Paper I, we gave a rationalization of the observation
that with 2 firms the adjustment process converges to the optima. But now, with
3 firms, 60 of the equilibrium points a* obtained are not of types HI or IV, and
hence at least one firm is not disciplinable for such &s. Why does the adjust-
ment process not allow such a firm to make a profit increasing move? Presuma-
bly the firm's estimate (the Jt of [3]) fails to make such a prediction. We have no
real insight into this mechanism and consider it an important unsolved problem
for this work.

6. Proof of Theorem 3

It is convenient to begin with Theorem 3 since it clarifies properties of the y{

variables which are used in proofs of the other theorems. With the definitions of
Section 4 we have

ij {hfy otherwise,
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which yields

(!->><:) II g,for<rerc,
Ac = % II g , f o r a e Z ) C J £ C , (6-2)

0 otherwise, that is, for a G Ec.

We deduce that

gj (6.3)

if gj ¥= 0 for ally G C u /, so that (2.1) is equivalent to (4.3). If g, = 0, hfc =£ 0
and gy 7*= 0 for ally G C, then

A,ACACU/ = (1 - yc)A,2^ II gj, (6.4)

so that (2.1) is equivalent to yc > 1. If g, =̂ 0 and g, = 0, hfa ^ 0 for exactly
C, then

2 / I I g2
k, (6.5)

so that (2.1) is equivalent to^, > 1. In the remaining cases

A,ACACU1. = 0, (6.6)

which already satisfies (2.1). Combining these cases gives the statement of
Theorem 3.

7. Proof of Theorem 4

We prove Theorem 4 next, because the first part, (a), is needed in our proof of
Theorem 1. We partition the tr-space into 2N + 2 parts:

P = {<r: >-, < 1 for all i G A},

ft = {a: y, > \,yj < 1 foij G A - / } , i G A,

Q! = (a: yt = l,yj < 1 for./ G A - / } , / G A,

and
R = {a: y. > i for at least two i G A}. (7.1)

Suppose a G FA for the moment.

LEMMA 1. Let a G P. Then a G ~ Of if and only ifys < 1 for all S C A.

https://doi.org/10.1017/S0334270000000163 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000163


[isl Optima and equilibria for games. II 201

PROOF. Suppose a G P. If ys < 1 for all S C A then

(1 - _y,)(l - yc)(l - yCui) > 0 (7.2)

for all z G A and C c A - i , and hence a G ~ O f by Theorem 3. Conversely,
if o- G ~ Of, then

0 ~yc)(l -yCui)>° (7-3)

for all i G A and C c A - i . We write an arbitrary S as (/„ i2, . . . , ik) and put
Sn = (/„ . . . , / „ ) for n < A:. Then y^ < 1 and (7.3) imply >^+i < 1 for n < k,
while yh < 1 since a G P. Thus y5 < 1 by induction.

LEMMA 2. Let a G Q,. Then a G ~ Of // a/u/ on/y if

ys > 1 /or all S 3 / a/tti^ < 1 for all S 5 i. (7.4)

PROOF. Suppose a G (2,. If tr G ~ Of then

(! ~ yc)0 ~ ycui) < ° (7.5)
for all C C A - /. If yc > 1 then>-Cu,. > 2 so that (7.5) is violated. If yCui < 1
then^c < 0 so that (7.5) is again violated. Thus (7.4) must hold. Conversely, if
ys > 1 for all S 3 i &ndys < 1 for all S $ i then

0 ~yc)(l -yCui) < ° (7-6)
for all C C A - /. Since a G Q, we further have

(! ~ >",)(! - ^ c X 1 ~ yCui) > 0 ' (7-7)
so that o- G ~ Of.

If or G Q,', then

0 - yt)(i - yc)(
l - ycui) = °» (7-8)

so that o- G Of. For a e R, suppose .y, > 1 and^, > 1. Then

(1 - y,)(\ - yj)(l - y, - yj) < 0, (7.9)

so that again a G Of.
Combining these results with Lemmas 1 and 2 gives

(~of )nr A = © nrA, (7.10)
which is ahnost part (a) of Theorem 4.

Suppose now that a G ZiA. As in (6.4) to (6.5) there are 3 cases of A^AcAc^.

(1 — yc) > 0ifj = i and C C A — i, n \\\

(1 - yj) > 0 ify ^ i a n d / e C

and

(1 - yj){\ ~ yc)(l - yCuj) > 0 ify G A - / and C C A - / - / . (7.12)
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If yc < 1 for all C C A — i, then all three inequalities are satisfied. Conversely,
if all 3 inequalities hold, then the first implies the reverse implication. This
completes the proof of part (a) of Theorem 4.

To prove part (b) we note that

O% n TA = [a: (1 - y,)(l - ^A_,)(l - yA) < 0 for all i G A) n TA.

(7.13)

LEMMA 3. Suppose a G C$ n TA.
(a)//>, > 1 then eitheryA_, > loryA< 1.
(b)//0 < y, < 1 thenyK_, < l< yA.
(C) Ify, < 0 thenyA < 1 < yA_,.

The proof is immediate from (7.13). We look at various subsets of TA.

(i) {a: y, < 0 for all i G A} n TA c ( ~ O^) n TA, (7.14)

directly from (7.13).

(ii) {a: y, > 1 for aU » S A} n TA c O{t; (1 TA, (7.15)

directly from (7.13).
(iii) If 0 < yi < 1 for all / G A then, by (b), cr G O|£ if and only if yA_, < 1

< yA for all i G A.
(iv) Suppose that 0 < y,: < 1 and^, < 0 for some j . then, by (b) and (c), only

yA = 1 admits a G O{^.
(v) Suppose that 0 < >>, < 1 andy, > 1 for somey. Then by (a) and (b), only

yA — 1 admits a G O{£.
(vi) By (a) and (c), a combination of y, > 1 for all i G S and yt < 0 for all

i G A - S gives <r G O{^ if and only if yA < 1 and^yy., > 1 for all / G S.
Combining (i) to (vi) proves that <rGCor_yA= l i f a G FA.

If a G ZlA then, as at (7.11), O{^ is equivalent to^ A _ i > 1 and yt > 1 for
j T£ i, which are equivalent to yj > 1 for j # i. This completes the proof of
Theorem 4(b).

8. Proof of Theorem 1

Given that the 7,'s have the form (1.1), we establish that, if R is the w-space
less some minor points, then

(~onnDc(~w)ntt (8.1)

We use the expression (4.18) for ~~ OI
H' obtained in Theorem 4. The reverse

implication, Of C M, is given in Theorem 5 of Paper I. One readily shows also
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that Of n ( ~ Q) = M n (~ Q)- Our method of proof is therefore more roun-
dabout and less transparent than the corresponding proof of Theorem 6 in Paper
I for the N = 2 case.

Initially, we consider a confined to the set

$2 = {a: gj, A,, fy all nonzero for all i G. A}, (8.2)

where the yt of (4.1) are all finite and nonzero. Clearly, S2 c FA. Let L = {/:
Aa # 0}, which is not empty. Label the elements of L as 1, . . . , v, where v < N.

Given (1.1), multiplying the /th matrix equation of (2.2) by <f>?, for all i, gives

(y,-i)ca+y, 2 q, = o (8.3)
jeL-i

for; e L, where
C.j = <M,y<*>, (8-4)

and.y, is defined by (4.1). The equations (2.2) for i e A — L vanish since, in a
positive-semi-definite matrix, Au = 0 implies Ay = 0 for all j €E A. Since CtJ is
also positive-semi-definite, we can find ^-vectors b], . . . , br, all nonzero, such
that Cy = b, • bj, a scalar product. Write

b = b, + • •• +b, , (8.5)

so that 2 > e z . Co = b, • b. If tr e M n fl, then, because b, ^ 0 for i G L, it is
clear from (8.3) that b, • b ̂  0 and thus, also from (8.3),

y, = |6,|2/b • b(- for i e L. (8.6)

We define a generalization of (8.6):

Y, = \bs\
2/b-bs> (8.7)

where

bs = 2 b, (8.8)
/es

for any SQL provided that the denominator is not zero. Cases where b • bs is
possibly zero will be handled separately in due course. Examples of Y's are
Yj = y( and YL = 1. The following lemmas are needed, in which we assume all
y's are a priori well defined.

LEMMA 4. For any disjoint R and S in L,

sgn(YK + Ys - YRuS) = sgnYR- sgn Ys • sgn YRoS. (8.9)

LEMMA 5. For any S c L

sgn{(l - Ys)(l - YL_S)} = sgn Ys • sgn YL_S. (8.10)
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PROOFS. Lemma 4 follows from the relation

„ . v v _ 0* • b)(b5 • b)

and Lemma 5 from the relation

(1 - Ys)(l - YL_S) = (bs • bL_s)
2/ {(bs • b)(bL_s • b)}. (8.12)

Now we look at the sets 2»0 and Bx, . . ., BN, which, by Theorem 4, ccnipiisc
~ Of when i reSl . For a G M n fl we note first from (8.6) that (4.25) holds
here, so that yt > 0 for at least one i G L. Thus M may be divided into the
following parts, which are compared separately with Bo.

(i) M, = M n {a: yt > 0 for exactly one / e L}. For a G Mx, (8.6) gives
b • b, < 0 for all j ¥= i and hence YL_( < 0; YL_t is well-defined since the
denominator is strictly negative, being the sum of strictly negative quantities.
Then Lemma 5 gives (1 — >-,)(! — YL-I) < 0» which implies >>,. > 1. But yt < 1
for a £ .Bo, so that Mxc\ BQ = 0.

(ii) Ms = M n {a: .v, > 0 for all / G S, yt < 0 for all. i G L - S). For
a G My, (8.6) gives b • b, > 0 for / G S and b • b, < 0 for j G L - S, so that
Ys > 0 and y L _ s < 0; again, both are well-defined. Thus, by Lemma 5,
(1 — Ys)(l — YL_S) < 0 which in turn gives Ys > 1. But Lemma 4 gives
y, + yK >yK\M f° r ' G 5 and ^ C S - /, so that, by induction, ys > 1^, and
consequently^ > 1. Bu t j s < 1 for a G B& so that M5 n Bo = 0 .

Noting that the conclusions of (i) and (ii) are independent of L, we see they
jointly imply that, for a G Q,

Bon M = 0. (8.13)

The part of M n fl where >», < 1 has no intersection with Bv The remaining
part can be subdivided into the regions

pR = M n {<T: yx > \,y, > 0 for all i G R,yt < 0 for all j G L - 1 - R },

(8.14)

where /? 5 1; recall that, by definition, 1 G L. For i r 6 ( i 8 w e have, by Lemma
4 as above,

yR>YR>0 (8.15)

and

> ^ - J . - I < > L - « - I < Q . (8.16)

both y's being well-defined. We are now interested in YL_R, which may not be
well-defined, so we must consider three possibilites.
(a) Suppose YL_R < 0 is well-defined. Then, by Lemma 5, (1 - YR)(l - YL_R)
< 0, so that YR > 1, and, by (8.15), >>* > 1.

https://doi.org/10.1017/S0334270000000163 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000163


[19] Optima and equilibria for games. II 205

(b) Suppose YL_R > 0 is well-defined. Then, by Lemma 5, (1 - YR)(l - YL_R)
> 0, so that either YR > 1 and YL_R > 1 or 0 < YR < 1 and 0 < YL_R < 1. In
the former case, yR > 1 by (8.15). In the latter case, Lemma 4 gives
y\ + YL-R-\ < YL-R < 1 which, with (8.16), imp)iesyL_R < 1.
(c) Suppose b • bL_j, =0. Then

0 = b • bL_R = \bL_R\2 + bR • bL_R'

whence by, • b ^ ^ < 0. So, from (8.7),

and, by (8.15),^ > 1.
Combining (a) to (c), we see that, if <r G nR, then either^ > 1 o r ^ ^ ^ < 1.

Since R $ 1 and L — R 3 1, both conditions exclude 2?,, so that Bx n \>.R = 0 .
It follows that Bx n M = 0 and, more generally, for a G $2,

B{r\ M = 0 for all i G L. (8.17)

Again, this conclusion depends on L only via i G L. If i G A — L, note that, by
definition, Bi•, <Z {ys < 1 for all 5 C L) = fio(^)' say- ^ is e a sy t o see» however,
that the proofs in (i) and (ii) establish that, for a G Q, fio(^) n A / = 0 , whence,
for a G fi and any L,

5,. n M = 0 for j G A - L. (8.18)

Since (8.17) and (8.18) are true for any L we have, for a G S2,

5 , n M = 0 for /GA. (8.19)

Combining (8.13) and (8.19) gives

(~ o,^) n n c (~ M) n a. (8.20)
It remains to deal with the complement of S2, which can be written as

5

~ f i = U W,t (8.21)
1

where

W1 = {<r: A, = 0 for at least one / G A, <f>, and g, non-zero for all / G A},

W2 = {a: </>,. = 0 for at least one i G A, g, ^ 0 for all / G A, (h's arbitrary)},

Wi = {a: gi = 0 for exactly one i, /»,<!>, ^ 0 (other h's and <f>'s arbitrary)},

W4 = [a: g, = 0, hfa ¥= 0 for at least two i G A}

and

W5 = {a: g/ = 0, hfa = 0 for at least one / G A}. (8.22)

If a G Wx, let hf ¥= 0 for i G L, c A, say, and A, = 0 for i G A - Lv It is
clear from (2.2) and (4.1) that we now have the equations (8.3) only for i,j G L,
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with, of course, yt = 0 for i £ A - t , . The previous proof covers precisely this
reduction of (8.3) (for a different reason), since g,, h,, <£, are all nonzero for
i G L,, and hence

~ Of nW,C(~M)n Wv (8.23)

If a G Wz, let <fc ^ 0 for i G Lj c A, say, and <f>,. = 0 for / G A - L^. Since
yt = 0 for / G A — L2, the inequalities on the >>/s specifying — Of in Theorem
4(a) involve only yt for i G L2. Consider equations (2.2) only for i,j G L2;
because g, and <£,• are nonzero for i G L2 we get (8.3) for i,j G L2. These
equations determine yt for / G L^ and, if their solution set is M(L2), the previous
arguments for a G £2 or PP, now apply verbatim to this restricted problem and
yield, for a G W2,

(~OT)nM(jy = 0. (8.24)

But Af n W2 C M{L^) n W2, because the additional equations involved in Af
can only restrict the solutions in M(L^). Thus

(~ o n n ŵ 2 c (~ M) n »r2. (8.25)

If a G W3, assume for the moment that hfa ¥= 0 for all i G A. It is clear from
(2.2) and (4.1) that, under these conditions, b • b, = 0 when g, = 0. By Theorem
4(a) we have

( ~ O f ) n W3 = {a: ys < 1 for all S C A - i if g,. = 0} n Wy (8.26)

Consider «r G M n W3. Suppose g, = 0, L 3 /, >»y > 0 for y G S C L and
.y, < 0 fory G L — S — i. Then, by Lemma 4,ys > Ys > 0 and, by Lemma 5,

sgn{(l - Ys)(l - YL_S)} = sgn YL_S. (8.27)

By (8.7), however,

sgn YL_S = s g n O ^ . j • b) - sgnOb^^ , . • b) = sgn YL_S_,, (8.28)

because b, • b = 0; this, incidentally, proves also that YL_S is well defined. Thus
(8.27) implies Ys > 1, which implies, in turn, ys > 1. If L 5 1, the same
conclusion follows from (8.27) alone. Comparison with (8.26) shows that, under
the stated conditions, for er G W3, (— Of) n M = 0 . If either A, or <f>, is zero
for some / G A, then arguments similar to those above, for W, and W2, establish
that

( ~ O,) n H 3̂ C ( ~ A/) n ff3. (8.29)

Combining (8.20), (8.23), (8.25) and (8.29) gives

(~ or) n fQuw.u^u w3) e (~ M) n-(a uw,uw2u w3)
(8.30)
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and, since O ^ C M by Theorem 2 of Paper I, we have

(~ oH n(2uw,u(c2u w3) = (~ M) n (fi u w, u w2 u Jf3).
(8.31)

If a G W4 then a G O/*' by Theorem 3 but, if a G W4, we can take g, = g2 =
0, /ij<J>, =?t 0 and h2<t>2 ^ 0 without loss of generality. Then the positive-semi-
definite matrix

U,* , if," = 1,2 and," = 1 , 2 ,
7 10 otherwise,

satisfies the matrix condition (2.2), so that a G M, and hence

ofn^-wn w4- (8.33)
If CT G W5 then a G O,"' by Theorem 3 but, if a G W5, then AA = 0 so that

AtJ = X/Xj satisfies (2.2) for suitable x,'s. Thus, again, a G M and

o r n w5 = M n wy (8.34)
Combining (8.31), (8.33) and (8.34) completes the proof of Theorem 1.

9. Completion of the proof of Theorem 2

Table 1 proves the statement

o, n r123 = (o n u oi n) n r123 (9.1)
with F's defined by (4.5). Superfices W are dropped from the notation in this
section. Since O, D On, O m , we immediately have

o, n (~ r123) D (on u oin) n (~ r123), (9.2)
and it remains to prove the reverse implication. Throughout this section A =
(1, 2, 3).

We define

A,c = A,cn(~r,.u C). (9.3)

Then we define Ok in terms of DiC just as Ok is defined in terms of DiC for
k = I, II, III. Defining

Hij,k = ( ~ T,M) n Tu = [a: gk = 0, g, ¥= 0, gj * 0}, (9.4)

we have

o, n (~ r123) = 6, u U (DtJ n Huk), (9.5)

Oin(~r1 2 3) = 6 n (9.6)
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and

onin(~rI23)= D ( U A.c U (DunHiM))D6uv (9.7)

LEMMA 6. 6, C 6 n .

LEMMA 7. Du n Hijk C On n HiJJc.

Lemma 6 with (9.6) and (9.7) gives

6, c 6,, u 6m c (on u om) n (~ rI23),
which, with (9.5), gives

o, n (~ r123) c {(on u (),„) n (~ r123)} u U {DU n HiM).

With Lemma 7, this gives the desired reverse of (9.2). It remains to prove the
Lemmas.

PROOF OF LEMMA 6. From (4.7), D12 = (T2 n Z, 12) u ( r , n Z212) u ^ i 2 and
A.23 3 { r , n (Z2>123 u Z3123)} u Em, where 7̂ . = {yt > 1}. Writing out
— £12 and — is123 explicitly one readily finds that — E123 C — En, whence
El2 C ^123. Now

r, n z2>12 = r, n [ z ^ . ^ u {g2 = g3 = o, A2<#»2 y= 0} ]
c r, n z2j l23 u £123 c ^Ii23.

Similarly, T2 n Z, 12 C ^ , 3 , so that Z), 2 C ^ , 23 u ^2?]3. Writing out 6j and
On exph'citly in terms of .D's we see that Lemma 6 is proved.

PROOF OF LEMMA 7.

DtJ n Hijtk = {(1 - >-,)(l - yj)(\ - yu) < 0} n HiJJc

> 1} U {yj > 1} U {>tf > 1}) n i / ^

> 0 u {^ > 1} u {^- > 1}) n
u ( ^ n {hk<t>k = 0})
(DIJk u £>y,A; u Z)*^) n ^
OH n HiM.
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