ON THE GENERALIZED JOSEPHUS PROBLEM

by F. JAKÓBCZYK

(Received 4 January, 1972)

1. Introduction and statement of the problem. The problem of Josephus and the forty Jews is well known [1, 3]. In its most general form, this problem is equivalent to the problem of *m*-enumeration of a set, as described below.

Define the ordered set

$$Z_n = \{1, 2, \ldots, n\}.$$

We choose and remove cyclically, from left to right, each *m*th element of Z_n until the set is exhausted. The chosen elements are ordered into a new ordered set

$$Z_n^{(m)}=\{a_1,a_2,\ldots,a_n\},\$$

which is therefore a permutation of Z_n , obtained by what we call *m*-enumeration of the set Z_n .

The following two questions arise:

(i) For any $i(1 \le i \le n)$, which position in $Z_n^{(m)}$ is occupied by *i*? In other words, when is the *i*th element of Z_n removed?

(ii) For any $k(1 \le k \le n)$, which element of Z_n occupies the kth position in $Z_n^{(m)}$? In other words, which element of Z_n is the kth to be removed?

The solution presented here is, as far as I am aware, essentially different from those of other authors. However, Rankin [2] used a somewhat similar method to answer the particular question: "Which element of Z_n is the *n*th to be removed?".

2. Notation and method of solution. We introduce the following notations:

$$[x] = \text{integer part of } x, \quad \{x\} = -[-x],$$
$$e_{v} = \left[\frac{n_{v}}{m}\right], \quad E_{v} = \sum_{i=0}^{v} e_{i}, \quad r_{v} = R(n_{v}, m) = n_{v} - m\left[\frac{n_{v}}{m}\right],$$

where $R(n_v, m)$ denotes the remainder on dividing n_v by m.

Let $n = n_0$, and denote the sequence of numbers in Z_n by \mathscr{S}_0 . We assume that n > m. We have

$$\mathscr{S}_0: 1, 2, \ldots, e_0 m + r_0 = n_0.$$

From the sequence \mathscr{G}_0 we remove the numbers $m, 2m, \ldots, e_0 m$; they will form the 0th class in $\mathbb{Z}_n^{(m)}$, and the sequence \mathscr{G}_0 becomes the sequence \mathscr{G}_0 .

$$\mathscr{G}'_0: 1, 2, \ldots, m-1, m+1, \ldots, 2m-1, 2m+1, \ldots, e_0 m+r_0.$$

We renumber the terms of the sequence \mathscr{G}'_0 consecutively from r_0+1 to obtain the sequence \mathscr{G}_1 .

$$\mathscr{G}_1: r_0+1, r_0+2, \ldots, e_1 m+r_1 = n_1.$$

From the sequence \mathscr{G}_1 we remove the numbers $m, 2m, \ldots, e_1 m$; they will form the first class in $\mathbb{Z}_n^{(m)}$, and the sequence \mathscr{G}_1 becomes the sequence \mathscr{G}_1 .

$$\mathscr{G}'_1 = r_0 + 1, r_0 + 2, \dots, m - 1, m + 1, \dots, 2m - 1, 2m + 1, \dots, e_1 m + r_1$$

We renumber the terms of the sequence \mathscr{G}'_1 consecutively from r_1+1 to obtain the sequence \mathscr{G}_2 .

$$\mathscr{G}_2 = r_1 + 1, r_1 + 2, \dots, e_2 m + r_2 = n_2.$$

We proceed thus until we obtain the inequality

$$n_i < m_i$$

The last sequence \mathcal{S}_t will be

$$\mathscr{G}_t = r_{t-1} + 1, r_{t-1} + 2, \dots, n_t$$

which contains $n_t - r_{t-1} = u$ numbers. Among them there is no number of type τm . Since $n_t < m$, we have u < m.

Further *m*-enumeration leads to the sequence \mathcal{S}_t being permuted to yield the sequence

$$\mathscr{C} = \{c_1, c_2, \ldots, c_u\},\$$

say, and this will be the *t*th and last class in $Z_n^{(m)}$.

The following relation is easy to verify:

$$n_{\nu+1} = n_{\nu} - e_{\nu} + r_{\nu} - r_{\nu-1}$$
 ($\nu = 0, 1, ..., t-1$).

Now, for an integer $i (1 \le i \le n)$, we let i_v (respectively i'_v) denote the value of that integer in \mathscr{S}_v (respectively \mathscr{S}'_v) which has been derived from $i = i_0$ in \mathscr{S}_0 $(1 \le v \le t-1)$, provided that such an integer exists. Then

$$i_{v+1} = \left\{ \frac{m-1}{m} i'_{v} \right\} + r_{v} - r_{v-1},$$

and conversely

$$i'_{v} = \left[\frac{m(i_{v+1} - r_{v} + r_{v-1}) - 1}{m - 1}\right].$$

Therefore the sequences
$$\mathscr{S}_{\nu}$$
, $\mathscr{S}_{\nu+1}$ are related by

$$i_{\nu+1} = \left\{\frac{m-1}{m}i_{\nu}\right\} + r_{\nu} - r_{\nu-1},$$
(1)

and

$$i_{v} = \left[\frac{m(i_{v+1} - r_{v} + r_{v-1}) - 1}{m - 1}\right],$$
(2)

where $i_v \neq \tau m$ for any integer τ , and

170

$$r_{v-1} + 1 \leq i_v \leq n_v$$
 for $v = 0, 1, 2, \dots$

The equivalence of the relations (1), (2) follows from the following easily proved lemma.

LEMMA. If
$$m \not> b$$
, then $a = \left\{\frac{m-1}{m}b\right\}$ if and only if $b = \left[\frac{ma-1}{m-1}\right]$.

We shall now provide algorithms to answer the two questions posed in §1. For this purpose, we require to construct a table of values of the parameters n_v , e_v , E_v , r_v , $r_v - r_{v-1}$ for v = 0, 1, 2, ..., t.

Question 1. Given $i \in Z_n$, put $i = i_0 = \tau_0 m + \rho_0$ $(0 \le \rho_0 \le m - 1)$. If $\rho_0 = 0$, then $i_0 = \tau_0 m$ and i_0 belongs to the 0th class in $Z_n^{(m)}$ at the τ_0 th position. Therefore $a_{\tau_0} = i_0$. If $\rho_0 > 0$, the number i_0 will go over to the sequence \mathscr{S}'_0 and thence to the sequence \mathscr{S}_1 , in which it will assume the value

$$i_1 = \left\{\frac{m-1}{m}i_0\right\} + r_0.$$

Let $i_1 = \tau_1 m + \rho_1$. If $\rho_1 = 0$, then $i_1 = \tau_1 m$ and the number i_0 will occupy the τ_1 th place of the first class of $Z_n^{(m)}$. Hence $a_{E_0+\tau_1} = i_0$. If $\rho_1 > 0$, i_1 will go over to the sequence \mathscr{S}'_1 and thence to the sequence \mathscr{S}_2 , in which it will assume the value

$$i_2 = \left\{\frac{m-1}{m}i_1\right\} + r_1 - r_0.$$

Let $i_2 = \tau_2 m + \rho_2$.

Proceeding in this way we have: Let $i_v = \tau_v m + \rho_v$. If $\rho_v = 0$, then $i_v = \tau_v m$ and i_0 occupies the τ_v th place of the vth class in $Z_n^{(m)}$. Thus

$$i_0 = a_{e_0 + e_1 + \ldots + e_{\nu-1} + \tau_{\nu}} = a_{E_{\nu-1} + \tau_{\nu}}$$

If $\rho_{v} > 0$, i_{v} will go over to the sequence \mathscr{G}'_{v} and thence to the sequence \mathscr{G}_{v+1} .

If finally, the number i_0 goes over to the last sequence \mathscr{S}_t , it will be one of the numbers c_1, \ldots, c_u . If, then, $i_0 \to i_t = c_i$, we have

$$i_0 = a_{E_{t-1}+j}$$

We thus obtain the following rule for finding the position in $Z_n^{(m)}$ of *i*.

Rule. If
$$i = i_0 \rightarrow i_1 \rightarrow \ldots \rightarrow i_v = \tau_v m$$
, then $i = a_{E_{v-1}+\tau_v} (v < t)$.
If $i = i_0 \rightarrow i_1 \rightarrow \ldots \rightarrow i_t = c_i$, then $i = a_{E_{v-1}+i}$.

ON THE GENERALIZED JOSEPHUS PROBLEM

171

Question 2. We apply a procedure converse to the former. We consider two cases.

(i) If $k > E_{t-1}$, then let $k = E_{t-1} + j$, where $j \le u$. To the number a_k there will correspond the number $c_j = i_t$. Applying formula (2) several times, we get:

$$i_{t-1} = \left[\frac{m(i_t - r_{t-1} + r_{t-2}) - 1}{m - 1}\right],$$

$$i_{t-2} = \left[\frac{m(i_{t-1} - r_{t-2} + r_{t-3}) - 1}{m - 1}\right],$$

$$\vdots$$

$$i_0 = \left[\frac{m(i_1 - r_0) - 1}{m - 1}\right].$$

Therefore $a_k = i_0$. In this way, we can find a_n , the last element of Z_n to be removed.

(ii) If $k \leq E_{t-1}$, we choose v so that $E_{v-1} < k \leq E_v$, and put $k = E_{v-1} + \tau_v$, where $\tau_v \leq e_v$, $v \leq t-1$. In this case, the number a_k will occupy the τ_v th place in the vth class of $Z_n^{(m)}$. Then $i_v = \tau_v m$, and applying formula (2) several times we get

$$i_{\nu-1} = \left[\frac{m(i_{\nu} - r_{\nu-1} + r_{\nu-2}) - 1}{m - 1}\right],$$

$$i_{\nu-2} = \left[\frac{m(i_{\nu-1} - r_{\nu-2} + r_{\nu-3}) - 1}{m - 1}\right],$$

$$i_{0} = \left[\frac{m(i_{1} - r_{0}) - 1}{m - 1}\right].$$

Therefore $a_k = i_0$.

3. Illustration by an example. Suppose that n = 117, m = 6. We draw up the table of parameters n_v , e_v , E_v , r_v , $r_v - r_{v-1}$ for $v = 0, 1, ..., n - E_{t-1} = 117 - 113 = 4$, so that the *t*th class in $Z_{117}^{(6)}$ is $\{c_1, c_2, c_3, c_4\}$, obtained by 6-enumeration of $\{r_{17} + 1, r_{17} + 2, r_{17} + 3, r_{17} + 4\} = (1, 2, 3, 4)$, and so

$$\{c_1, c_2, c_3, c_4\} = \{2, 1, 4, 3\}.$$

F. JAKÓBCZYK

ν	n_{v}	ev	E,	rv	$r_v - r_{v-1}$
0	117	19	19	3	3
1	101	16	35	5	2
2	87	14	49	5 3	$^{2}_{-2}$
3	71	11	60	5	2
4	62	10	70	2	-3
5	49	8	78	1	-1
5 6	40	6	84	4	3
7	37	6	90	1	-3
8	28	4	94	4	3
8 9	27	4	98	3	-1
10	22	3	101	4	1
11	20	3	104	2	-2
12	15	2	106	2 3	1
13	14	2	108	2	-1
14	11	1	109	5	3
15	13	2	111	1	-4
16	7	1	112	1	0
17	6	1	113	0	-1
18	4	0		4	4

Examples of Question 1.

(a) When is the number 64 removed?.

We have

$$i_0 = 64 \rightarrow 57 \rightarrow 50 \rightarrow 40 \rightarrow 36 = 6 \times 6$$

as

 $\nu \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$,

so that $64 = a_{E_3+6} = a_{66}$; i.e., 64 is the 66th element of Z_{117} to be removed.

(b) When is the number 80 removed?

$$i_0 = 80 \rightarrow 70 \rightarrow 61 \rightarrow 49 \rightarrow 43 \rightarrow 33 \rightarrow 27 \rightarrow 26 \rightarrow 19 \rightarrow 19 \rightarrow 15 \rightarrow 14 \rightarrow 10 \rightarrow 10 \rightarrow 8 \rightarrow 10 \rightarrow 5 \rightarrow 5 \rightarrow 4 = c_3$$

as

$$v = 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15 \rightarrow 16 \rightarrow 17 \rightarrow 18$$
, so that

 $80 = a_{E_{17}+3} = a_{116}$; i.e., 80 is the 116th element to be removed.

Examples of Question 2.

(a) What is the 46th element to be removed?

$$46 = E_1 + 11$$
,

so that 46 occupies 11th place in the 2nd class of $Z_{117}^{(6)}$. Applying formula (2), we get

$$i_{\nu} = 66 \rightarrow 76 \rightarrow 87$$

as

 $v = 2 \rightarrow 1 \rightarrow 0;$

i.e., 87 is the 46th element to be removed.

(b) What is the last (117th) element to be removed?

$$117 = E_{17} + 4, \ a_{117} \rightarrow c_3 = 4.$$

$$i_v = 3 \rightarrow 4 \rightarrow 4 \rightarrow 9 \rightarrow 7 \rightarrow 9 \rightarrow 9 \rightarrow 13 \rightarrow 14 \rightarrow 17$$

$$\rightarrow 16 \rightarrow 22 \rightarrow 22 \rightarrow 27 \rightarrow 35 \rightarrow 39 \rightarrow 49 \rightarrow 56 \rightarrow 63$$

as

$$v = 18 \rightarrow 17 \rightarrow 16 \rightarrow 15 \rightarrow 14 \rightarrow 13 \rightarrow 12 \rightarrow 11 \rightarrow 10 \rightarrow 9$$

$$\rightarrow 8 \rightarrow 7 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0;$$

i.e., 63 is the last element to be removed.

REMARK. In the last step of the above method, we have to carry out the *m*-enumeration of the set $\{r_{t-1}+1, r_{t-1}+2, \ldots, n_t\}$, containing $u = r_t$ elements, where $r_t < m$.

If m is small, this operation may be carried out directly. However, if m is relatively large, we may, as in the general case of $n \leq m$, use, for example, the method of increasing divisors, which is based on the following principle:

If $a_{s,n}$ is the sth element from the right in $Z_n^{(m)}$, where s < n, then $a_{s,n+1} = R(a_{s,n}+m, n+1)$ is the sth element from the right in $Z_{n+1}^{(m)}$. For s = n we have $a_{s,s} = R(m, s)$.

REFERENCES

1. W. Ahrens, Mathematische Unterhaltungen und Spiele (Leipzig, 1918), 118-169.

2. R. A. Rankin (R. A. MacFhraing), Àireamh muinntir Fhinn is Dhubhain, agus sgeul Iosephuis is an dà fhichead Iudhaich, Proc. Roy. Irish Acad. Sect. A. 52 (1948), 87-93.

3. W. W. Rouse Ball and H. S. M. Coxeter, Mathematical recreations and essays (London, 1939), 32-35.

KATOLICKI UNIWERSYTET LUBELSKI LUBLIN, POLAND.