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ABSTRACT

This paper examines the validity of some stylized statements that can be found
in the actuarial literature about random effects models. Specifically, the actual
meaning of the estimated parameters and the nature of the residual hetero-
geneity are discussed. A numerical illustration performed on a Belgian motor
third party liability portfolio supports this discussion.
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1. INTRODUCTION

1.1. Motivation

Risk classification techniques for claim counts have been the topic of many papers
appeared in the actuarial literature. DIONNE & VANASSE (1989, 1992) used a
Negative Binomial regression model, while DEAN, LAWLESS & WILLMOT (1989)
used a Poisson-Inverse Gaussian distribution to fit the number of claims.
Recently, GOURIEROUX & JASIAK (2004) introduced the integer valued auto-
regressive (INAR) model with unobserved heterogeneity. DENUIT & LANG

(2004) used Generalised Additive Models. YIP & YAU (2005) presented several
parametric Zero-Inflated count distributions, and BOUCHER, DENUIT & GUIL-
LEN (2006) resorted to Hurdle Models.

The mixed Poisson distribution is often used to account for unkwown char-
acteristics of the driver, influencing the number of accidents reported to the
company. When panel data are available, these hidden features can alternatively
be captured by an individual heterogeneity term that is constant over time (the
standard reference for panel data is HSIAO (2003); the particular case of count
variables is treated in CAMERON & TRIVEDI (1998)). This paper aims to confront
the two approaches with emphasis on the actual meaning of the estimated
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parameters in a mixed Poisson regression when random effects and covariates
are correlated. In such a case, parameters estimates should be seen has the
apparent effects of the covariates on the frequency. Keeping this in mind allows
for a better understanding of the resulting price list.

1.2. Agenda 

Two kinds of models can be used with longitudinal data: the fixed effects model
and the random effects model. Both are briefly described in Section 2. In ran-
dom effects models, three kinds of heterogeneity distributions are considered in
this paper: Gamma, Inverse-Gaussian and Log-Normal. In Section 3, following
the work of MUNDLAK (1978), we link the fixed effects model to the random
effects model by a regression on the individual heterogeneity terms. We show
that the combination of the fixed effects model with this regression, gives
approximately the same results as the random effects model. The final Section 4
concludes.

1.3. Description of the Data

In this paper, we work with a Belgian motor third party liability insurance
portfolio comprising 9,894 policies followed for a period of 3 consecutive years
(from 1997 to 1999). Thus, we work with 29,682 observations. For each contract,
we have informations about the annual number of claims together with some
characteristics of the insured: sex of the driver (man or woman), age of the dri-
ver (divided in 3 classes: 17-22, 23-30 and more than 30), power of the vehicle
(less than 66kW or more than 66kW) and the size of the city where the insured
was living (big, medium or small, based on the number of residents). Figure 1.1
describes the observed annual claim frequency and the distribution of the pol-
icyholders according to their characteristics.

2. PANEL DATA MODELS

2.1. Presentation

Our portfolio is composed of N = 9,884 policyholders. Each policyholder i is
observed during T = 3 periods. Let Ni,t be the number of reported claims for
insured i during year t. Such data are called longitudinal data (or panel data).
They consist of repeated observations of individual units that are followed
over time. Each individual is assumed to be independent of the others but
correlation between observations relating to the same individual is permitted.
Here, we assume that the number of claims per year obeys to a Poisson dis-
tribution with a parameter specific to each policyholder. Specifically, Ni,t is
assumed to be Poisson distributed with mean qi li,t, i = 1, ..., N, t = 1, ..., T. The
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Figure 1.1. Description of the motor third party liability portfolio.

expected annual claim frequency is a product qi li, t of a static factor qi times
a dynamic factor li,t. The former accounts for the dependence between observa-
tions relating to the same insured. The latter introduces the observable charac-
teristics (that are allowed to vary in time). In general, ln li, t is expressed as a
linear combination of the observable characteristics, that is li,t = exp(b0 + b�xi,t),
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where b0 is the intercept, b� = (b1, …, bp) is a vector of regression parameters
for explanatory variables xi,t = (xi, t,1, …, xi, t, p)�.

There are two standard ways of dealing with panel data. In the random
effects model, the heterogeneity parameter is treated as a random variable qi

RE

with unit mean. At the portfolio level, the qi
RE’s are assumed to be indepen-

dent and identically distributed. In the fixed effects model, the heterogeneity
parameter qi

FE is treated as a parameter to be estimated for each individual.
In this case, no intercept enters the model (to ensure identifiability). Concep-
tually, these two models are quite different. While the fixed effects model makes
inferences conditional on the effects present in the sample, the random effects
model draws conclusion for the population.

A major difference between the two approaches is that the fixed effects model
provides only estimates for the parameters of time varying characteristics, since
all the other parameters can been seen as part of the individual term qi

FE. Further
explanations concerning differences between these two models are discussed in
Section 3. A standard reference for linear models of panel data is HSIAO (2003),
and a good review for count data is provided in CAMERON & TRIVEDI (1998).

2.2. Random Effects Model

2.2.1. Description

In the random effects model (henceforth, quantities relating to the random
effects model will be indicated by the superscript RE), qi

RE is considered as a
positive random variable, with probability density function g(·). Given qi

RE, the
annual claim numbers Ni,1, Ni,2, …, Ni,T are independent. The joint probability
function of Ni,1, …, Ni,T is thus given by
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Estimation of parameters is performed using maximum likelihood estimators or
moment techniques. The GEE method of LIANG & ZEGER (1986) can be a solu-
tion to account for the dependence between each observation of the same insured
as shown in DENUIT, PITREBOIS & WALHIN (2003). However, for this paper, we
will restrict ourselves to maximum likelihood estimates for all models analysed.

2.2.2. Poisson-Gamma Model

If qi
RE follows the Gamma distribution with mean 1 and variance n

1 , the joint
probability function of Ni,1, …, Ni,T writes

288 J.-PH. BOUCHER AND M. DENUIT

8464-05_Astin36/1_12  29-05-2006  16:05  Pagina 288

https://doi.org/10.2143/AST.36.1.2014153 Published online by Cambridge University Press

https://doi.org/10.2143/AST.36.1.2014153


RE

RE
RE

ni, ...,

! ,

Pr n

n
nl

n
n

l n
n l nG

G

, , , ,

,

, ,

,
,

i i T i T

i t

i t

n

t

T
i

i ti

T i t
i

T nn

1 1

1 1 1

,i t
i

= =

=
+

+
+

:

= = =

- :,

N N

% ! !
J

L

K
KK

J

L

K
K

`
]_ e

N

P

O
OO

N

P

O
O

j
g i o

7 A
(2.2)

where i t 1=
.n n, ,i t

T
=: ! In this case,
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Maximum likelihood estimations of parameters and variances can be obtained
as follows. The first order conditions for parameters b0

RE, bRE and n lead to the
system
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Numerical procedures can then be used to solve these equations.

2.2.3. Poisson-Inverse Gaussian Model

The Inverse Gaussian distribution is another good candidate to model the
heterogeneity parameter (WILLMOT (1987), DEAN, LAWLESS & WILLMOT (1989)
and TREMBLAY (1992) for an application with insurance data). SHOUKRI ET AL.
(2004) showed that the Poisson with Inverse-Gaussian heterogeneity of mean
and variance equal to 1 and t respectively, has the joint probability function
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where Kj( .) is the modified Bessel function of the second kind, si = ni,• – 0.5 and

RE .z t t l1 1 2 ,i i t
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!
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The modified Bessel function of the second kind has some useful properties
that can be used to find the maximum likelihood estimators (for more details,
see SHOUKRI ET AL. (2004)).

Now, RE RE
i� l t l, , ,t i t i t

2
= +N ` j7 A . The maximum likelihood estimators of b0
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where the function M ( .) can be expressed as the ratio of the modified Bessel
function of the second kind
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where the derivative of the function K is equal to:
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Again, numerical procedures are needed to obtain the solutions.

2.2.4. Poisson-Log Normal Model

In biostatistical circles, the Poisson Log-Normal model is often used, after HINDE

(1982). In this case, the error term can be expressed as qi
RE = exp(ei) for some

Gaussian noise ei. From this, the mean parameter has the form exp(x�i,t bRE +
ei) = gi,t, with ei following a Gaussian distribution with mean m = – s2 /2 (a sim-
plifying normalization) and variance s2. In this case,
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Numerical procedures can be used to find maximum likelihood estimates. Rou-
tines are now available in standard statistical packages, such as SAS (with the
NLMIXED procedure). Now, RE

i� l, ,t i t=N7 A and RE RE
i

s� el l1, , ,t i t i t

22

= + -N a `k j7 A .
The Poisson-Log Normal model is interesting because it has a natural inter-

pretation (see, e.g., WINKELMANN (2003)). The error term ei is often considered
as a factor that captures the effects of hidden exogeneous variables. If there
are many hidden variables, and if these variables are independent, then cen-
tral limit theorems can be invoked in order to establish the normality of ei.

2.2.5. Numerical Example

Estimations of the parameters for the 3 random effects models are displayed
in Table 2.1. Sex of the driver and power of the car have been removed from
all models since they were not statistically significant, with respective p-values
of approximately 0.38 and 0.12 for all models (specifically, p-values of 0.3841
and 0.1163 in the Poisson-Gamma model, 0.3861 and 0.1205 in the Poisson-
Inverse Gaussian model, 0.3843 and 0.1205 in the Poisson-LogNormal model).

A CASE STUDY WITH MOTOR INSURANCE 291

TABLE 2.1.

PARAMETER ESTIMATES b̂ RE OF THE POISSON RANDOM EFFECTS MODELS.

Variable Parameter Gamma Inv. Gaussian Log Normal

Intercept – –2.0059 (0.034) –2.0063 (0.034) –2.0064 (0.034)

Age 17-22 0.4009 (0.088) 0.4030 (0.088) 0.4034 (0.088)
23-30 0.1964 (0.034) 0.1983 (0.034) 0.1988 (0.034)
> 30 0 0 0

City Big 0.2337 (0.041) 0.2345 (0.041) 0.2346 (0.041)
Medium 0.1106 (0.041) 0.1100 (0.041) 0.1098 (0.041)
Small 0 0 0

n – 2.6638 (0.314) – –
t – – 0.3940 (0.048) –
s2 – – – 0.3363 (0.036)

Log-Likelihood – –12,937.60 –12,936.30 –12,936.02
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However, other variables have considerable impact such as the age of the dri-
ver or the size of the city where the insured lives. From Table 2.1, we see that
young drivers and policyholders living in big cities exhibit higher expected
claim frequencies. All models seem to have approximately the same quality of fit
since their log-likelihood are almost equal for the same number of parameters.

2.3. Fixed Effects Model

2.3.1. Description

In the fixed effects model, all characteristics that are not time-varying are cap-
tured by the individual heterogeneity term qi

FE. In our case, the intercept b0 has
to be removed (and is included in qi

FE ). As sex of the driver has been removed
from the model, the remaining explanatory variables do vary with time and
enter the fixed effects model.

The Poisson fixed effects model has been proposed by PALMGREN (1981) and
HAUSMAN ET AL. (1984). The standard way of evaluating the parameters of this
model is the conditional maximum likelihood of ANDERSEN (1970). The idea
of the conditional method is to obtain an estimator of bFE without having to
estimate each qi

FE.
As proved in CAMERON & TRIVEDI (1998), the maximum likelihood and con-

ditional maximum likelihood estimation methods always yield identical estimates
for covariates parameter b FE in case of Poisson distribution. Specifically, the
estimated parameters solve
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Note that only insureds with varying caracteristics (and at least one claim) are
used in the estimation of bFE. Estimates of qi

FE can then be obtained from
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FE =

t
FE
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Both estimates of bFE and qi
FE are consistent when T "3 and N "3, but only

the estimate of bFE is consistent for fixed T and N "3, as for insurance data.

2.3.2. Numerical Example

Application of the fixed effects Poisson model to the Belgian motor portfolio
leads to the parameters estimates of bFE displayed in Table 2.2. Some interesting
conclusions can be drawn from the fixed effects model. The results are quite
different from those obtained with the random effects models. Indeed, young
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drivers can be seen as better drivers than older ones and insureds coming from
big cities now seem to be better drivers. It is worth to stress that the estimated
parameters in Table 2.2 have to be thought in the sense of fixed effects model,
where all individual impacts are removed.

The true effect of young age and living in large cities is thus to decrease the
annual expected claim frequency. The apparent higher risk that is often found
to be associated with these characteristics in empirical studies then results from
their association with dangerous individual characteristics.

The high values of the standard errors suggest that almost all parameter
are not statistically different from zero. This is nevertheless not a problem here,
since our aim is to show that a fixed effects model followed by a regression of
the qi

FE’s on the observable characteristics produces almost the same results than
a random effects model.

2.4. Fixed or Random Effects Model?

Comparaison between equations (2.13) and (2.4) or (2.8) leads to the conclu-
sion that there are no differences between fixed or random effects when T is
large enough. However, for fixed small T, parameters estimates for these two
models can be significantly different (as it can be seen from Tables 2.1-2.2).

A reason for such a difference between parameters estimates comes from
the construction of the random effects model. Indeed, in the development of
equation (2.1), we have made the following crucial assumption: the random
effects qi

RE are independent and identically distributed. This means that the con-
ditional probability density function of qi

RE given xi,t equals g(·), that does not
depend on xi,t. If the distribution of qi

RE depends on the xi,t’s, the parameters
estimates b̂RE may be inconsistent and should not be used, as shown by MUND-
LAK (1978).

Figure 2.1 shows us the distribution of the qi
FE (mean and 0 to 95th percen-

tile) according to the characteristics of the insured. Clearly, we can see that the
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TABLE 2.2.

PARAMETER ESTIMATES b̂ FE OF THE POISSON FIXED EFFECTS MODEL.

Variable Parameter Estimate (Std. err.)

Age 17-22 0.4754 (0.205)
23-30 –0.1603 (0.126)
> 30 0 

City Big –0.7945 (0.523)
Medium –0.3418 (0.530)
Small 0

Log-Likelihood –7803.577
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distribution of the heterogeneity term varies with the characteristics of the
insured. The dispersion is much more important in the least dangerous classes,
like Age 17-22 and Big cities. On average, the qi

FE’s are larger there, which
explains the apparent riskiness in Table 2.1. The heterogeneity is not identically
distributed, which can cause an inconsistency in the evaluation of the para-
meters bRE of the random effects model.

Application of Hausman test to our data leads, without surprise, to the
rejection of the null hypothesis of uncorrelation between regressors and random
effects (p-value of less than 0.01% for a chi-square distribution with 4 degrees
of freedom). This result means that the heterogeneity term is not identically
distributed accross insureds.

The fixed effects model is preferred in cases where conclusions have to be
made on the sample, while the interests of random effects model are on the
overall population. For insurance data, fixed effects model cannot be used
since annual premiums cannot be calculated for new policyholders. Expected
claim frequencies can be computed only for policyholders in the portfolio for
several years. Moreover, estimates for the qi

FE’s based on just a few observa-
tions must be considered with caution. Additionnaly, fixed effects models are
difficultly handled by insurance companies since too many individual effects
had to be considered. Random effects models should then be preferred, but,
as we mentioned, some theorical aspects prohibit its use since estimates of the
parameters are biased when heterogeneity is not independent from the regres-
sors. The purpose of the next section is to legitimate the use of the random
effects models for insurance ratemaking, provided parameters are estimated
and interpreted with care.

3. REGRESSION OF THE qi
FE’S ON THE OBSERVABLE CHARACTERISTICS

3.1. Residual Heterogeneity

As noted by PINQUET (2000), the random effects are often correlated with
covariates for insurance data. Therefore, they relate to some residual hetero-
geneity, that is, orthogonal to the observable variables. The aim of this section
is to demonstrate on a basis of the Belgian data set that a fixed effect Poisson
regression followed with a regression of the resulting qi

FE’s on the observable
characteristics gives almost the same values for the regression coefficients than
a random effect Poisson regression. This legitimates the use of random effects
techniques in actuarial science. We also consider mixed effects model with non
identically distributed qi

RE, and we reach a similar conclusion.
Specifically, let us now explain the q̂i

FE’s as a function of covariates. To this
end, we consider the q̂i

FE’s as realizations from some probability density function
h (mi,t) with mean mi = exp(xi�d ) and variance t. The term xi is an adaptation
of covariates xi,t for t = 1, ..., T, since there is only one indivual heterogeneity
term for all periods t (here, we took xi = xi,2). We will take for h the Gamma,
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Fig. 2.1. Distribution of the qi
FE’s according to the observable characteristics.

Inverse Gaussian and LogNormal densities (also considered in the random effects
model).

We saw on Figure 2.1 that the distribution of the qi
FE’s was influenced by

the observable characteristics. Another way of explaining the random effects
model (second approximation) is to consider non-equally distributed hetero-
geneity. In consequence, instead of assuming that the qi

RE’s are independent
and identically distributed with mean 1 and variance t, we use another model.
The evaluation is done with known l i

FE and we assume that the qi
FE’s have

mean mi = exp(xi�d ) and variance ti. Formally, we now consider that
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(3.1)

where f (·| mi,ti) denotes some probability density function with mean mi =
exp(xi�d) and variance ti. Again, we consider for f the Gamma, Inverse Gaus-
sian and LogNormal densities. If the two-step procedure based on the qi

FE’s,
or the one-step procedure based on heterogeneous qi

RE, is coherent with the ran-
dom effect model, we expect that

b̂RE c b̂FE + d̂. (3.2)
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As proved by MUNDLAK (1978), the fact that there exists a correlation between
qi

RE and the covariates causes a bias on the estimation of the bRE. However,
despite the presence of this bias, it is still possible to use the parameter estimates
for the premium calculation if the heterogeneity term is only considered as
residual heterogeneity. In consequence, these estimates represent the apparent
effects on the frequency of claims and not the real effect, since we must use
( b̂ FE + d̂ ) instead of b̂ FE. For insurance ratemaking, this distinction does not
really matter since apparent effect is the interest when some important classi-
fication variables are missing.

Remark 3.1. The equation used to construct a regression analysis on the indi-
vidual fixed effects is based on equation (2.14). The individual fixed effects are
expressed as the ratio of the sum of the number of claims in the T years on
the sum of the li,t

FE for the same period. Consequently, there is a significant pres-
ence of zero value for the qi

FE, which causes a problem for a regression analy-
sis. In consequence, weighted regression seems appropriate for modelling the
individual fixed effects. However, weighted observations without claim need to
be removed from the dataset since it is not possible to work with a zero-valued
observation in a regression analysis of heterogeneity. Still because of the weighted
regression, it becomes impossible to have the same dispersion parameter for ran-
dom effects models and its first approximation, since some random variations
are removed by using average values.

3.2. Gamma Heterogeneity

Let us begin with Gamma distributed qi
FE’s. Since the Gamma distribution is

a member of the exponential family, the estimation of d is based on GLM (see
MCCULLAGH & NELDER (1989)) and solves
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where wi = mi
2/n is the variance of the distribution and mi is the mean function

that is expressed as exp(xi�d). Since Ni,t is a discrete variable, the resulting first
order condition has the form of a Gamma distribution for t n ,i t! , with mean

t
FE

t ,il mi! and variance proportional to the square of the mean.
If we allow for non identically distributed random effect, we get the follow-

ing contribution for policyholder i to the likelihood in the random effects model:
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Only two observations have been removed from the weighted regression. The
parameters of the first model have been found by a two-step procedure. Firstly,
the individual heterogeneity parameters qi

FE have been evaluated using equa-
tion (2.14). Afterwards, a weighted Gamma regression has been performed to
find estimates of d. For the second model, equation (3.4) has been applied
with li,t

FE known from application of the fixed effects model.
We can see in Table 3.1 that the parameter estimates of d for the first and

second models are approximately equal to the difference between the random
and the fixed effects model.

3.3. Inverse Gaussian Heterogeneity

Once again, instead of assuming that the heterogeneity term is independant of
the covariates, we suppose that the heterogeneity term has Inverse Gaussian
distribution with mean mi and a corresponding variance wi that is equal to mi

3t.
Inverse Gaussian distribution can also be estimated using first-order condition
of the GLM (see MCCULLAGH & NELDER (1989)).
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TABLE 3.1.

PARAMETER ESTIMATES FOR GAMMA HETEROGENEITY

Variable Parameter RE-FE Difference 1st model 2nd model 

Intercept – –2.0128 (0.034) –1.9971 (0.044) –2.0062 (0.034)

Age 17-22 0.8763 (0.038) 0.9016 (0.132) 0.8625 (0.085)
23-30 0.3567 (0.018) 0.3339 (0.047) 0.3533 (0.034) 
> 30 0 0 0

City Big 1.0282 (0.234) 1.0223 (0.056) 1.0369 (0.041)
Medium 0.4524 (0.166) 0.425 (0.055) 0.4570 (0.041)
Small 0 0 0

Dispersion n 2.6638 (0.314) 0.1975 (0.065) 2.6437 (0.310)
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The estimator of d then solves
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If we allow for random effects with different means, the contribution of policy-
holder i to the likelihood is
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where Kj( .) is the modified Bessel function of the second kind, si = ni ,• – 0.5 and

t
FE
,i .z t tm l m1 1 2i i i

t

T

1

= +
=

!^ h

Table 3.2 shows the results of these models on our insurance data. As expected,
the results are quite the same as those obtained with the Gamma heterogeneity
models. Even the intercept of the first approximation model has approximately
the same value, due to the presence of high values in the data.

One difference between models is the parameter t. This difference comes from
the fact that ti

RE1 = tRE2 mi, where RE1 and RE2 are the first and second approxi-
mation models. Since the value of mi is 0.3326, we can link the two estimated
parameters t by the following approximation : 0.3940 c 1.090 ≈ 0.3326 = 0.3625.

3.4. Log-Normal Heterogeneity

Let us now assume that qi
FE = exp(ei), where ei follows the Gaussian distribu-

tion with mean mi = xi�d – s
2

2

and variance wi = s2. Obviously, the Gaussian
distribution can be solved using first-order condition of the GLM models (see
MCCULLAGH & NELDER (1989)). In consequence, the estimation of d solves

298 J.-PH. BOUCHER AND M. DENUIT

8464-05_Astin36/1_12  29-05-2006  16:11  Pagina 298

https://doi.org/10.2143/AST.36.1.2014153 Published online by Cambridge University Press

https://doi.org/10.2143/AST.36.1.2014153


t

t

FE FE

FE

FE

2

2

2

,

,

i i

i

i .

log log log

log log

log log log log

n

n

x

x

x

w q m
m

s
q m

s
l m

s
l m

d
1 1

1

1 0

,

,

ii

n

i
i

i

n

i i

i

n

i t
t t

i i

i

n

i t
t

i
t

i

1 1

1

1

2
2

- = -

= - -

= - =

= =

=

=

! !

! ! !

! ! !

` ^` ` ^`
e e ^e
e ee

j hj j hj
o o ho
o oo

(3.7)

Allowing for non identically distributed random effects, the joint probability
density function of the claim numbers for insured i is
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with gi = exp(xi�b + ei). Closed form of the Poisson-Log-Normal distribution
is not possible. However, by numerical approximations or by the NLMIXED pro-
cedure in SAS, it is possible to find estimators of d.

The numerical results are displayed in Table 3.3. Approximation of a
weighted regression gives interesting results that are similar to those obtain
with the Gamma and the Inverse-Gaussian distributions.

4. CONCLUDING REMARKS

The results obtained in this paper give us the legitimity to use random
effects models even if there exists a correlation between the regressors and
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TABLE 3.2.

PARAMETER ESTIMATES FOR INVERSE GAUSSIAN HETEROGENEITY

Variable Parameter RE-FE Difference 1st model 2nd model 

Intercept – –2.0127 (0.034) –1.9888 (0.033) –2.0098 (0.033)

Age 17-22 0.8784 (0.037) 0.8758 (0.169) 0.8431 (0.090)
23-30 0.3585 (0.018) 0.3101 (0.045) 0.3376 (0.034)
> 30 0 0 0

City Big 1.0289 (0.234) 1.0097 (0.059) 1.0271 (0.041)
Medium 0.4517 (0.166) 0.4456 (0.047) 0.4603 (0.040)
Small 0 0 0

Dispersion t 0.3940 (0.048) 4.2234 (0.704) 1.090 (0.158)
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the heterogeneity. The parameter estimates do not identify the impact of these
regressors on the premium but only the apparent effects. Since it is usually the
interest of the actuary in ratemaking, there is no problem with this interpre-
tation. However, such a correlation indicates clearly that a correction should
be done to obtain a more accurate model. Especially, the apparent high risk
of young drivers should deserve some attention. The analysis conducted in
this paper shows that the fixed effects are very heterogeneous for these indi-
viduals. Instead of penalizing these insureds in the a priori ratemaking, an
appropriate bonus-malus scheme could be designed. Merit rating systems
improve the fairness of the tariff in that respect.

We have focused our attention on the Poisson distribution since it is com-
monly used in practice for risk classification. However, other count distributions,
such as the Negative Binomial distribution (see HAUSMAN, HALL & GRILICHES

(1984) or ALLISON & WATERMAN (2002) for an alternative fixed effects model)
or the Zero-Inflated models also deserve consideration for the analysis of claim
frequencies. A similar analysis could be performed for these regression models,
too. Moreover, continuous probability models, such as the Gamma or the Log-
Normal distributions are routinely used to model the amount of claims. Again,
a study in the vein of the present one could be performed for claim severities.
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TABLE 3.3.

PARAMETER ESTIMATES FOR LOG-NORMAL HETEROGENEITY

Variable Parameter RE-FE Difference 1st model 2nd model 

Intercept – –2.0129 (0.034) –2.0037 (0.044) –2.0210 (0.034)

Age 17-22 0.8788 (0.037) 0.8793 (0.132) 0.8668 (0.086)
23-30 0.3591 (0.018) 0.3295 (0.047) 0.3560 (0.034)
> 30 0 0 0

City Big 1.0292 (0.234) 1.0209 (0.056) 1.0381 (0.041)
Medium 0.4515 (0.166) 0.4539 (0.055) 0.4562 (0.041)
Small 0 0 0

Dispersion s2 0.3363 (0.036) 2.2640 (0.3773) 0.3422 (0.036)
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