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Abstract

Epistemic logic programs (ELPs), extend answer set programming (ASP) with epistemic oper-
ators. The semantics of such programs is provided in terms of world views, which are sets of
belief sets, that is, syntactically, sets of sets of atoms. Different semantic approaches propose
different characterizations of world views. Recent work has introduced semantic properties that
should be met by any semantics for ELPs, like the Epistemic Splitting Property, that, if satisfied,
allows to modularly compute world views in a bottom-up fashion, analogously to “traditional”
ASP. We analyze the possibility of changing the perspective, shifting from a bottom-up to a
top-down approach to splitting. We propose a basic top-down approach, which we prove to
be equivalent to the bottom-up one. We then propose an extended approach, where our new
definition: (i) is provably applicable to many of the existing semantics; (ii) operates similarly
to “traditional” ASP; (iii) provably coincides under any semantics with the bottom-up notion
of splitting at least on the class of Epistemically Stratified Programs (which are, intuitively,
those where the use of epistemic operators is stratified); (iv) better adheres to common ASP
programming methodology.

KEYWORDS: answer set programming, epistemic logic programs, epistemic splitting

1 Introduction

Epistemic logic programs (ELPs, in the following just programs, if not explicitly stated

differently), were first introduced in Gelfond and Przymusinska (1991) and Gelfond

(1994), and extend Answer Set Programs, defined under the Answer Set Semantics
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E53C22001930001.
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(Gelfond and Lifschitz 1988), with epistemic operators that are able to introspectively

“look inside” a program’s own semantics, which is defined in terms of its answer sets

(cf. Fandinno et al . (2022) for a historical review of research on this topic). In fact, KA

means that (ground) atom A is true in every answer set of the program Π where KA

occurs. Related operators that can be defined in terms of K are the possibility operator

M (not treated in this paper) where MA means that A is true in some of the answer

sets of Π, and the epistemic negation operator not, where not A expresses that A is not

provably true, meaning that A is false in at least one answer set of Π.

The semantics of ELPs is provided in terms of world views: instead of a unique set

of answer sets (a unique “world view” in the new terminology) like in answer set pro-

gramming (ASP), there is now a set of such sets. Each world view consistently satisfies

(according to a given semantics) the epistemic expressions that appear in a given pro-

gram. Many semantic approaches for ELPs have been introduced beyond the seminal

work of Gelfond and Przymusinska (1991), among which we mention (Gelfond 2011;

Truszczynski 2011; Fariñas del Cerro et al . 2015; Shen and Eiter 2016; Kahl and Leclerc

2018; Su 2019; Cabalar et al . 2019; Costantini and Formisano 2022; Su 2021).

Recent work extends to epistemic logic programming notions that have already been

defined for ASP and that might prove useful in ELPs as well. In particular, Cabalar et al.

consider splitting (introduced for ASP in Lifschitz and Turner (1994)), which allows a

program to be seen as divided (“split”) into two parts, the “top” and “bottom” in a

principled way, that is, atoms occurring in the bottom can occur only in the body of rules

in the top. This allows the answer sets of the program to be computed incrementally,

in the following way: compute the answer sets of the bottom part and use them (one

by one) to simplify the top part; then, compute the answer sets of the simplified top

part; finally, the answer sets of the overall program are obtained as the union of each

answer set of the bottom with the corresponding answer sets of the simplified top (such

a procedure can be iterated, that is, the top and the bottom could in turn be split).

Cabalar et al. then extend to ELPs the concept of splitting and the method of incremental

calculation of the semantics (here, it is the world views that must be calculated). This is

achieved by defining a notion of Epistemic Splitting, where top and bottom are defined

with respect to the occurrence of epistemic operators, and a corresponding Epistemic

Splitting Property (ESP), which is fulfilled by a semantics if it allows the world views

to be computed bottom-up (a precise definition is seen below). Further, Cabalar et al.

adapt properties of ASP to ELPs, which are implied by this property, namely, the fact

that adding constraints leads to reduce the number of answer sets (Subjective Constraint

Monotonicity), and Foundedness, meaning that atoms composing answer sets cannot

have been derived through cyclic positive dependencies. Finally, they define the class of

Epistemically Stratified Programs that, according to Cabalar et al . (2021, Th. 2), admit

a unique world view (these programs are those where, intuitively, the use of epistemic

operators is stratified). In substance, Cabalar et al. establish the properties that in their

view a semantics should fulfill, and then they compare the existing semantics with respect

to these properties.

In this paper, we explore a different stance: we analyze the possibility of changing the

perspective about how to exploit a splitting, shifting from a bottom-up to a top-down

approach. This applies in the first place to the ESP, of which we propose a reformulation
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allowing world views to be computed top-down. We then propose a substantial extension

of the ESP, leading to a new approach that:

(i) is applicable to many of the existing semantics, while few of them fulfill the ESP

as originally formulated;

(ii) operates similarly to splitting in “traditional” ASP;

(iii) provably coincides under any semantics with the bottom-up notion of splitting on

a significant class of programs, including at least those which are epistemically

stratified ;

(iv) is compatible with common ASP programming practice, where one defines a prob-

lem solution (that would constitute the top) that will be merged with a problem

instance (that would constitute the bottom).

The paper is organized as follows. In Sections 2 and 3, we recall ASP and ELPs.

Section 4 reports some definitions from Cabalar et al . (2021) concerning useful properties

of ELPs. In Section 5, we introduce some observations on ELPs that lead to formulate

our proposal, treated in detail in Section 6. In Section 7, we state our main theorem and

a relevant corollary. Finally, in Section 8, we conclude.

2 Answer set programming and answer set semantics

One can see an answer set program (for short, ASP program) as a set of statements

that specify a problem, where each answer set represents a solution compatible with

this specification. A consistent ASP program has one or more answer sets, while an

inconsistent one has no answer sets, meaning that no solution can be found. Several

well-developed freely available answer set solvers exist that compute the answer sets of

a given program. Syntactically, an ASP program Π is a collection of rules of the form

A1| . . . |Ag ← L1, . . . , Ln.

where each Ai, 0 ≤ i ≤ g, is an atom and | indicates disjunction, and the Lis, 0 ≤ i ≤ n,

are literals (i.e., atoms or negated atoms of the form not A). The left-hand side and the

right-hand side of the rule are called head and body, respectively.

A rule with an empty body is called a fact. As usual, the symbols � and ⊥ denote the

true and the false Boolean constants, respectively. The notation A |B indicates disjunc-

tion, usable only in rule heads and, so, in facts.

A rule with an empty head (or, equivalently, with head ⊥), of the form ← L1, ..., Ln. or

⊥ ← L1, ..., Ln. , is a constraint, stating that literals L1, . . . , Ln are not allowed to be

simultaneously true in any answer set; the impossibility of fulfilling such kind of require-

ment is one of the reasons that makes a program inconsistent.

All extensions of ASP not explicitly mentioned above are not considered in this paper.

We implicitly refer to the ground version of Π, which is obtained by replacing in all

possible ways the variables occurring in Π with the constants occurring in Π itself, and

is thus composed of ground atoms, that is, atoms that contain no variables.

The answer set (or stable model) semantics can be defined in several ways (Lifschitz

2010; Costantini and Formisano 2015). However, answer sets of a program Π, if any exists,

are the supported minimal classical models of the program interpreted as a first-order
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theory in an obvious way. The original definition from Gelfond and Lifschitz (1988),

introduced for programs where rule heads were limited to be single atoms, was in terms

of the GL-Operator Γ. Given set of atoms I and program Π, ΓΠ(I) is defined as the least

Herbrand model of the program ΠI , namely, the Gelfond–Lifschitz reduct of Π w.r.t. I.

The program ΠI is obtained from Π by:

1. removing all rules which contain a negative literal notA such that A ∈ I; and

2. removing all negative literals from the remaining rules.

Since ΠI is a positive program, the least Herbrand model is guaranteed to exist and can

be computed via the standard immediate consequence operator (Lloyd 1987). Then, I is

an answer set whenever ΓΠ(I) = I.

This definition is then extended to the general case, involving disjunctive heads, by

defining I to be an answer set of Π if it is a minimal model (w.r.t. set inclusion) of ΠI .

3 Epistemic logic programs

ELPs extend the syntax of ASP programs by introducing, in the body of rules, so-called

subjective literals (w.r.t. the usual objective literals).1 Such new literals are constructed

via the epistemic operator K (disregarding without loss of generality the other epistemic

operators). An ELP program is called objective if no subjective literals occur therein,

that is, it is an ASP program. A constraint involving (also) subjective literals is called

a subjective constraint, whereas one involving objective literals only is an objective con-

straint.

Let At be the set of atoms occurring (within either objective or subjective literals) in

a given program Π, and Atoms(r) be the set of atoms occurring in rule r. By some abuse

of notation, we denote by Atoms(X) the set of atoms occurring in X, whatever X is (a

rule, a program, an expression, etc.). Let Head(r) be the head of rule r and Bodyobj (r)

(resp., Bodysubj (r)) be the (possibly empty) set of objective (resp., subjective) literals

occurring in the body of r. For simplicity, we often write Head(r) and Bodyobj (r) in place

of Atoms(Head(r)) and Atoms(Bodyobj (r)), respectively, when the intended meaning

is clear from the context. We call subjective rules those rules whose body is made of

subjective literals only.

Literal KA intuitively means that the (ground) atom A is true in every answer set of

the given program Π (it is a cautious consequence of Π). Since, as it turns out, whatever

the semantic account one will choose there can be several sets of answer sets (called world

views), the actual meaning of KA is that A is true in every answer set of some world

view of Π. Each world view thus determines the truth value of all subjective literals in

a program. There are several semantic approaches to ELPs, dictating in different ways

how one finds the world views of a given program. Although all such approaches provide

the same results in a set of basic examples, they (obviously) differ in others.

Formally, a semantics S is a function mapping an ELP program into sets of world

views, that is, sets of sets of objective literals, where if Π is an objective program, then

the unique member of S(Π) is the set of stable models of Π. Otherwise, each member of

1 Nesting of subjective literals is not considered here.
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S(Π) is an S-world view of Π. (We will often write “world view” in place of “S-world
view” whenever mentioning the specific semantics will be irrelevant.) For an S-world
view W and a literal KL, we write W |= KL if L is true in all elements of W .

For instance, for program {a←not b, b←not a, e←notKf, f←notKe}, every se-

mantics returns two world views: {{a, e}, {b, e}}, where Ke is true and Kf is false, and

{{a, f}, {b, f}} where Kf is true and Ke is false. The presence of two answer sets in each

world view is due to the cycle on objective atoms, whereas the presence of two world

views is due to the cycle on subjective atoms (in general, the existence and number of

world views are related to such cycles, see Costantini (2019) for a detailed discussion).

4 Epistemic logic programs: Useful properties

As argued by Cabalar et al., it would be useful if ELPs would enjoy, mutatis mutandis,

properties similar to those of ASP programs. Hence, in their works, such useful properties

are outlined and adapted, as we report (almost literally) below.

Drawing inspiration from the Splitting Theorem (Lifschitz and Turner 1994), an anal-

ogous property is defined for ELPs:

Definition 4.1 (Epistemic splitting set (Cabalar et al. 2021, Definition 4))

A set of atoms U ⊆ At is said to be an epistemic splitting set of a program Π if for any

rule r in Π one of the following conditions hold:

1. Atoms(r) ⊆ U ;

2. (Bodyobj (r) ∪Head(r)) ∩ U = ∅.
An epistemic splitting of Π is a pair 〈BU (Π), TU (Π)〉 such that BU (Π) ∩ TU (Π) = ∅ and
BU (Π) ∪ TU (Π) = Π, and also, such that all rules in BU (Π) satisfy condition (1) and all

rules in TU (Π) satisfy condition (2).

Intuitively, condition (2) means that the top program TU (Π) may refer to atoms in U

which occur as heads of rules in the bottom BU (Π), only through epistemic operators.

Epistemic splitting can be used, similarly to “traditional” Lifschitz&Turner splitting,

for iterative computation of world views. Indeed, Cabalar et al. (2021) propose to compute

first the world views of the bottom program BU (Π) and, for each of them, simplify the

corresponding subjective literals in the top part. Given an epistemic splitting set U for Π

and a set of interpretations W , they define the subjective reduct of the top with respect

to W and signature U , denoted by EU (Π,W ). This operator considers all subjective

literals L occurring in TU (Π), such that the atoms occurring in them belong to BU (Π). In

particular, L will be substituted by � in EU (Π,W ) if W |= L, and by ⊥ otherwise. Thus,

EU (Π,W ) is a version of TU (Π) where some subjective literal, namely those referring to

the bottom part of the program, have been simplified as illustrated.

Definition 4.2 ((Cabalar et al. 2021, Definition 5))

Given a semantics S, a pair 〈Wb,Wt〉 is said to be an S-solution of Π with respect to an

epistemic splitting set U if Wb is an S-world view of BU (Π) and Wt is an S-world view

of EU (Π,Wb).

The definition is parametric w.r.t. S, as each different semantics S will define in its

own way the S-solutions for a given U and Π.

https://doi.org/10.1017/S1471068424000012 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000012


ELP: Study of some properties 487

Definition 4.3

The WBT operation Wb � Wt on sets of propositional interpretations Wb and Wt is

defined as follows:

Wb �Wt = {Ib ∪ It|Ib ∈Wb ∧ It ∈Wt}.
We report from Cabalar et al . (2021) the definition of the following property:

Property 4.1 (Epistemic Splitting Property (ESP))

A semantics S satisfies the ESP if for any epistemic splitting set U of any program Π:

W is an S-world view of Π iff there is an S-solution 〈Wb,Wt〉 of Π w.r.t. U such that

W = Wb �Wt.

Then, under a semantics that satisfies ESP, world views of the entire program are

obtainable as the union of world views of the bottom with world views of a simplified

version of the top. The ESP implies Subjective Constraint Monotonicity, that is, for any

epistemic program Π and any subjective constraint r, W is a world view of Π ∪ {r} iff
both W is a world view of Π and W satisfies r.

As discussed in Cabalar et al . (2021), many semantics do not satisfy the ESP property,

which is in fact satisfied only by the very first semantics of ELPs, proposed in Gelfond

and Przymusinska (1991) and thus called G91 (and in some of its generalizations), and

by Founded Autoepistemic Equilibrium Logic (FAEEL), defined in Cabalar et al . (2019).

Another interesting property is foundedness. Again, such a notion has been extended

from objective programs (see Cabalar et al . (2021, Definition 15)). Intuitively, a set X of

atoms is unfounded w.r.t. an (objective) program Π and an interpretation I, if for every

A ∈ X there is no rule r in Π by which A might be derived, without incurring in positive

circularities and without forcing the derivation of more than one atom from the head

of a disjunctive rule (see, e.g., Leone et al . (1997) for a formal definition). For ELPs,

one has to consider that unfoundedness can originate also from positive dependencies

on positive subjective literals, like, for example, in the program A ← KA. Among the

existing semantics, only FAEEL satisfies foundedness.

An interesting class of programs admitting a unique world view is characterized by the

following definition.

Definition 4.4 (Epistemic Stratification (Cabalar et al. 2021, Definition 6))

We say that an ELP Π is epistemically stratified if we can assign an integer mapping

λ : At→ N to each atom (occurring in the program) such that:

• λ(a) = λ(b) for any rule r ∈ Π and atoms a, b ∈ (Atoms(r) \ Bodysubj (r)), and
• λ(a) > λ(b) for any pair of atoms a, b for which there exists a rule r ∈ Π with

a ∈ (Head(r) ∪ Bodyobj (r)) and b ∈ Bodysubj (r).

5 Observations

The subdivision of an ELP into layers suggests that, in the upper layer, epistemic literals

referring to the lower layer may be aimed at performing some kind of meta-reasoning

about that layer. If the ESP is enforced, however, meta-level reasoning is in practice

prevented. This is so because if the semantics satisfies such property, then, it is the lower

layer that determines the truth value of the subjective literals that connect the two layers.
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In fact, according to Property 4.1, through the simplification w.r.t. the answer sets of

the lower layer, the upper layer is strongly (maybe sometimes too strongly) constrained.

For instance, let us consider the program Π0 = {a | b, ⊥ ← notKa}. We can see

that, while the lower level {a | b}, considered as a program per se, has the unique world

view {{a}, {b}}, the overall program has no world views. In fact, Ka does not hold in

{{a}, {b}}, thus the constraint is violated.

Notice, however, that the world view {{a}} is instead accepted by some semantics,

such as those defined in Gelfond (2011) and in Shen and Eiter (2016), that do not satisfy

the ESP. This world view may be seen as corresponding to an approach where the upper

layer, in order to retain consistency, “requires” the lower layer to entail a, which is

absolutely feasible by choosing a over b in the disjunction.

From this perspective, the knowledge modeled by the upper layer is not just used to

reject potential world views of the bottom level, but, instead, can affect the way in which

they are composed, by filtering out some of the answer sets. This situation is reminiscent

of what actually happens for ASP: consider the plain ASP program {a | b, c ← a, ←
not c}, which has unique answer set {a, c}, originating from the answer set {a} of the

lower layer {a | b}.
We follow (for a long time) the line, amply represented in the literature, in which meta-

reasoning is aimed not only at “observing” lower layer(s) but also at trying to influence

them (cf. Costantini (2002) for a survey on meta-reasoning in Computational Logic); this

by suitably enlarging and/or restricting, as an effect of meta-rules application, the set

of possible consequences of such layer(s). We discuss at length this point of view, also

proposing technical solutions and several examples, in Costantini and Formisano (2021).

In addition, let us notice that a common approach in logical declarative modeling

of a problem consists of formalizing the problem domain as the “top” part of a pro-

gram/theory. Then, such top part will be joined with a specific “bottom”, representing

the problem instance at hand, that may vary and might be, in general, unknown while

defining the top.

Below is an example of what we mean (over-simplified and in “skeletal form” for the

sake of conciseness), taken from the realm of digital investigations, that the authors

have been studying in the context of the Action COST CA17124 DIGital FORensics:

evidence Analysis via intelligent Systems and Practices (DigForASP). In the example,

an investigation must be concluded with a judgment, that can be:

• of innocence if in no plausible scenario (i.e., in no answer set) evidence can be found

of an involvement;

• of demonstrable guilt if in every possible scenario, the evidence of guilt can be

found;

• of presumed innocence otherwise.

Clearly, the specification of the legal rules that can be used to draw conclusions, and

then the details of each specific case will be modularly added whenever needed to this

general “top” part. Thus, one can see a program composed of three layers: the top, and

a bottom that can be further split into a middle layer containing legal rules, and the

lowest layer with details of the case (see Costantini (2019) for more examples taken from

this field).
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The top layer is as follows:

judgement ← guilty .

judgement ← presumed innocent .

judgement ← innocent .

← not K judgement .

guilty ← provably guilty .

presumed innocent ← not provably guilty .

provably guilty ← K sufficient evidence against .

innocent ← K not sufficient evidence against .

Hence, a study of how the semantics of any resulting overall program might be built

is in order here, as in many other practical cases: think, for example, of a top part

comprising ontological definitions reusable in several application contexts. In fact, being

able to compute and check a program’s semantics only in dependence on each specific

instance, does not seem to be elaboration-tolerant.

Therefore, we tried to understand whether the concept of splitting might be applied

top-down, and how the existing semantics would behave in the new perspective.

6 Our proposal

Let us proceed step by step toward the new definition of Top-down Epistemic Splitting

Property (TDESP). We first reformulate definitions related to ESP so that it can be

applied also top-down, to obtain what we call Top-down Epistemic Splitting Property –

Basic (TDESPB), showing that a semantics satisfies TDESPB if and only if it satisfies

ESP. Thus, TDESPB provides a way of coping with incremental computation of world

views more suitable to the examples mentioned earlier. We then perform some extensions,

to obtain a more general TDESP that holds for a wider range of semantic approaches.

6.1 Preliminaries and key definitions

In our approach, the notion of splitting set remains the same, save for some details

concerning subjective constraints. We need, in fact, to introduce preliminary assumptions

on constraints. Notice that subjective literals may either occur in a subjective constraint

directly or affect constraint’s satisfaction through indirect dependencies, such as, for

example, in the program ⊥ ← a. a ← Kp (see Dix (1995) for a formal definition of

direct and indirect dependencies). Without loss of generality, we exclude here indirect

dependencies concerning subjective literals involved in constraints. Also, notice that, as

it is well-known, a constraint can be represented as a unary odd cycle, that, for example,

for ⊥ ← Kp would be of the form a← not a,Kp (with a introduced as a fresh atom), or

even (as discussed in depth in Costantini (2006)) as an odd cycle of any arity, of which

Kp is the unique handle. For the sake of simplicity, we consider subjective constraints in

their plain form, namely, as in ⊥ ← Kp. Notice also that, according to the definition of

splitting provided in Cabalar et al . (2021), subjective constraints can be placed at either

of two adjacent levels. For convenience concerning definitions that will be introduced

later, we impose, again without loss of generality, that both subjective rules satisfying
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condition (2) of the definition of epistemic splitting set (Definition 4.1) and subjective

constraints are put in TU (Π).

We now proceed to introduce the key definitions on which our approach is based.

Definition 6.1

Let be given a semantics S, a program Π, and an epistemic splitting 〈BU (Π), TU (Π)〉
of Π, according to the definition of epistemic splitting set. Let FU (Π) denote the set

of all subjective literals KL occurring in TU (Π) (even in negative form notKL) and

referring to BU (Π) (in the sense that the atom involved in KL occurs in BU (Π) but not

in TU (Π)), together with their negations notKL.

Intuitively, subjective literals in FU (Π) constitute the “interface” between the top and

bottom parts. Notice that Atoms(FU (Π)) ⊆ U .

Definition 6.2

Let Π be a program and let FU (Π) = {KL1, . . . ,KLz, notKL1, . . . , notKLz}. Let, more-

over, fU (Π) = {kl1, . . . , klz, nkl1, . . . , nklz} be a set of fresh atoms. The detached version

T ′
U (Π) of TU (Π) is the program consisting of:

• the rules obtained from rules in TU (Π) by substituting each occurrence of the sub-

jective literal KLi ∈ FU (Π) or notKLi ∈ FU (Π) by the corresponding fresh atom

kli ∈ fU (Π) or nkli ∈ fU (Π), for each i ∈ {1, . . . , z} (where kli and nkli are in turn

called the detached form of KLi and notKLi, resp.); and

• the facts kli | nkli, for each i ∈ {1, . . . , z}.
We introduced T ′

U (Π) in order to model the connection between TU (Π) and BU (Π)

w.r.t. the top-down perspective. Thus, we need to define the notion of world views of the

detached version T ′
U (Π) of a program under the assumption that the fresh atoms kli and

nkli represent the epistemic literals connecting the top and bottom parts of the program.

As seen below, these world views not necessarily coincide with the world views of T ′
U (Π)

if considered as an epistemic program by itself.

Recall that a disjunction between an epistemic literal KL and its negation notKL

determines, as discussed in Costantini (2019), two world views, one entailing KL and the

other one entailing notKL. With respect to the subjective literals in FU (Π), in defining

the detached version T ′
U (Π) of a program TU (Π) we encoded the potential existence of

such alternative world views by means of the disjunctions kli | nkli, for i ∈ {1, . . . , z}.
In computing the world views of the detached version T ′

U (Π), we start by considering

T ′
U (Π) as a regular epistemic program (forgetting for the moment that the fresh atoms

kli and nkli stand for epistemic literals) thus obtaining the corresponding collection of

world views W. Note in fact that T ′
U (Π) does not contain subjective literals referring to

the bottom BU (Π), but it may contain “local” epistemic literals that may determine the

existence of several world views (or just one if there are no such local epistemic literals).

The answer sets in each W ∈ W might however contain some of the atoms klis and

nklis. In this case, each W ∈ W has to be split into two world views, say W1 and W2,

the former composed of the answer sets in W that contain kl1, and the latter composed

by those answer sets of W that contain nkl1. This step must be repeated by considering

the pair kl2/nkl2 in order to split both W1 and W2, and so on, for each i ∈ {1, . . . , z}.
(Observe that the order of splits does not matter.) We consider the resulting collection
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of sets of atoms as the world views of the detached version T ′
U (Π). An example of this

process will be given at the end of Section 6.2. In summary:

Definition 6.3 (World views of T ′
U (Π), or Interface World Views)

Let W 1, . . . ,Wn be the world views of T ′
U (Π) according to a given semantics S. The

Interface World Views of T ′
U (Π) are obtained as follows: for every W j , j ≤ n, W j =

{Sj
1, . . . , S

j
v} for some v ≥ 0, and for every disjunction kli | nkli, i ∈ {1, . . . , z} occurring

in T ′
U (Π), split W j into W j

1 and W j
2 , the former composed of the sets Sj

h ∈ W j such

that kli ∈ Sj
h, the latter composed of the of the sets Sj

f ∈ W j such that nkli ∈ Sj
f ,

f ∈ {1, . . . , v}. Repeat the splitting over the resulting world views, and iterate the process

until splitting is no longer possible, that is, no resulting world view contains both klr
and nklr, for some r ∈ {1, . . . , z}.

The denomination “Interface World Views” indicates that they have been obtained in

the perspective of a merge with world views of the bottom, as seen below. For the sake of

conciseness though by some abuse of notation, we will call Interface World Views simply

‘world views’.

Proposition 6.1

There exists a bijection between world views of TU (Π) and world views of T ′
U (Π).

Proof

Given a world view (Interface World View, to be precise) W ′
j of the epistemic program

T ′
U (Π), a world view Wj for TU (Π) is equal to Wj = {X \ fU (Π) |X ∈ W ′

j}. In fact,

the procedure for obtaining Interface World Views takes into account the fact that each

epistemic literal represented by an atom in fU (Π) can be potentially either true or false.

Vice versa, W ′
j is obtained from Wj by adding to it some subset of fU (Π).

For each of such world views Wj of TU (Π), Definition 6.4 below identifies the set of

subjective literals that are relevant in extending Wj to a world view of the entire Π.

These are those that in the detached version of TU (Π) have been assumed to be true to

obtain Wj as a world view.

Definition 6.4 (Epistemic Top-down Requisite Set)

Let 〈BU (Π), TU (Π)〉 be an epistemic splitting for a program Π, W ′
j be a world view of

T ′
U (Π), and let Wj = {X \ fU (Π) |X ∈W ′

j}.
The set ESTU (Π)(Wj) = {KLh |W ′

j |= klh} ∪ {notKLh |W ′
j �|= klh} is the (epistemic

top-down) requisite set for Wj (w.r.t. 〈BU (Π), TU (Π)〉).
Now we partition the requisite set, identifying two relevant subsets (technical reasons

for doing so will be seen below).

Definition 6.5

Given fU (Π) = {kl1, . . . , klz, nkl1, . . . , nklz} and the above definition of requisite set

ESTU (Π)(Wj), w.r.t. an epistemic splitting 〈BU (Π), TU (Π)〉, let set S include those

kli/nkli that occur in some constraints in T ′
U (Π).

We split the requisite set ESTU (Π)(Wj) as the union of the following two (disjoint) sets:

• the epistemic top-down constraint set :

ECTU (Π)(Wj) = ({KLi |kli ∈ S} ∪ {notKLi |nkli ∈ S}) ∩ ESTU (Π)(Wj)
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• the requirement set :

RQTU (Π)(Wj) =
({KLi |kli ∈ fU (Π)\S} ∪ {notKLi |nkli ∈ fU (Π)\S})

∩ ESTU (Π)(Wj).

There is an important reason for distinguishing these two subsets. Namely, the literals

in ECTU (Π)(Wj), if not entailed in some world view of the bottom part of the program,

lead to a constraint violation and cause the nonexistence of world views of Π extend-

ing Wj . Thus, ECTU (Π)(Wj) expresses prerequisites on which epistemic literals must be

entailed in a world view of BU (Π), so that such world view can be merged with Wj

in order to obtain a world view of Π. Instead, literals in RQTU (Π)(Wj), can be usefully

exploited, as seen below, to drive the selection of which world view of the bottom can be

combined with a given world view of the top.

For all the three sets (requisite set, constraint set, and requirement set) one can possibly

list only the epistemic literals of FU (Π) required to be true, all the others implicitly

required to be false.

Given a world view W of TU (Π) and considering literals belonging to ECTU (Π)(W )

which occur in the bodies of rules in BU (Π), we introduce a simplification that can be

performed and will turn out to be useful later on.

Definition 6.6 (Top-down Influence)

Given a world view W of TU (Π), and its corresponding top-down constraint set

ECTU (Π)(W ), the W -tailored version BW
U (Π) of BU (Π) is obtained by substituting in

BU (Π) all literals KL ∈ ECTU (Π)(W ) by L.

The intuition behind the above definition is that, if KA is in ECTU (Π)(W ), then A

must necessarily belong to every answer set of a world view of the bottom that can

be possibly merged with W in order to obtain a world view of the overall program Π.

Hence, it is indifferent that in the body of rules of BU (Π) it occurs A rather than KA,

if KA ∈ ECTU (Π)(W ). Substituting KA with A can, however, be useful, as discovered

during the development of the G11 (Gelfond 2011) and K15 semantics (Kahl et al .

2015), to “break” unwanted positive cycles among subjective literals, that might lead to

unfounded world views (cf. Cabalar et al . (2021, Definition 15)).

In our approach, the notion of top-down influence provides, as seen by examples in the

next section, an alternative perspective on how a world view of the bottom is obtained,

and, in a sense, a re-interpretation of the notion of foundedness (to be formally elaborated

in future work).

In the top-down approach that we are going to propose, the world views of a given

program Π are obtained as a combination of world views of the top and world views of the

bottom, like in the bottom-up approach. In the basic version of the TDESP, presented

in Section 6.2, there is only a change of perspective and a simple condition to drive the

combination via the WBT operation (cf. Definition 4.3).

In the definition of the more general TDESP, presented in Section 6.3, one can notice

two relevant changes: (i) the notion of top-down influence is exploited in the definition

of candidate world views; (ii) a subset of a world view of the bottom (i.e., some of the

answer sets occurring therein) may be cut out, so as to enable the merging via WBT

with a “compatible” world view of the top.
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Preliminarily:

Definition 6.7

Given a set E of epistemic literals and a set of sets of atoms W , we say that W fulfills E

iff ∀KL ∈ E,W |= L and ∀notKL ∈ E,W �|= L.

6.2 Top-down epistemic splitting property – Basic (TDESPB)

Definition 6.8 (Candidate World View - Basic Version)

Given an epistemic splitting 〈BU (Π), TU (Π)〉 for a program Π, let WT be a world view

of TU (Π) and let WB be a world view of BU (Π) that fulfills ECTU (Π)(WT ) such that WB

also fulfills RQTU (Π)(WT ) (overall, WB fulfills the requisite set ESTU (Π)(WT )). Then,

W = WB �WT = {Ib ∪ It|Ib ∈WB ∧ It ∈WT }
is a candidate world view for Π (obtained from WT and WB).

It is possible that no world views of the bottom comply with the conditions posed by

world views of the top: in such case, Π has no candidate world views.

We can now state a property that, if satisfied by a semantics, allows world views to be

computed top-down:

Definition 6.9 (Top-down Epistemic Splitting Property - Basic Version (TDESPB))

A semantics S satisfies basic top-down epistemic splitting if any candidate world view of

Π according to Definition 6.8 is indeed a world view of Π under S.
Below we show that TDESPB is equivalent to the ESP by Cabalar et al . (2021), in

the sense that both definitions are satisfied by the same semantic approaches and thus

characterize the same world views.

Theorem 6.1 (Equivalence ESP - TDESPB)

A semantics S satisfies TDESPB if and only if S satisfies the ESP as defined in

Definition 4.1.

Proof

If part. Assume that a given semantics S satisfies TDESPB. To show that S satisfies

ESP as well, it suffices to observe that the couple 〈WB ,WT 〉 according to Definition 6.8

is a S-solution as required by the definition of ESP. In fact, WB is an S-world view of

the bottom BU (Π). It remains to be seen that WT is an S-world view of EU (Π,WB),

that is, that, after simplifying TU (Π) w.r.t. the subjective literals entailed by WB , one

would have WT among the world views. By Definition 6.8, WB fulfills the requisite set

ESTU (Π)(WT ), leading WB �WT to be a world view of the overall program. This means,

according to Definition 6.4, that WB entails all the subjective literals of the form KA

and notKA, that, in the detached version of TU (Π) (Definition 6.2) have been assumed

to be true (in their detached form) in order to obtain WT as a world view (according

to S). Thus, if one would simplify TU (Π) into EU (Π,WB) by considering exactly those

subjective literals as true and all the others as false, one would trivially obtain WT as

the world view of EU (Π,WB).

Only if part. Assume that a given semantics S satisfies ESP. This means that there

exists a S-solution 〈WB ,WT 〉 that, via WBT, gives rise to the world views of the program.
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To be an S-solution, WB must be a world view of the bottom, and WT a world view

of EU (Π,WB), that is, of the top simplified w.r.t. WB . To find the correspondence with

TDESPB, we have to ascertain that 〈WB ,WT 〉 gives rise to candidate world views in

the sense of Definition 6.8. To do so, we put into ESTU (Π)(WT ) the subjective literals,

among those entailed by WB , that are employed to perform such simplification, so as to

exactly fulfill the conditions posed in Definition 6.4.

The equivalence stated by Theorem 6.1 implies that the world views of a program

can be determined by composing the world views of the various layers into which the

program can be split, by proceeding either bottom-up, according to the original definition,

or top-down, according to our new definition. We will now illustrate the approach, and

its similarities and differences w.r.t. ASP, by means of an example.

Consider the following sample ASP program.

f ← a.

e← c.

⊥ ← not p.

a← p.

a← q.

p← not q.

q ← not p.

c.

A possible split according to Lifschitz & Turner can be:

Top part

f ← a.

e← c.

⊥ ← not p.

Bottom part

a← p.

a← q.

p← not q.

q ← not p.

c.

Notice that the unique answer set of this program is S = {c, p, a, e, f}. The answer

sets of the bottom part are: S1 = {c, p, a}, S2 = {c, q, a}. The answer set of the top part,

assuming p true (otherwise the constraint is violated), is S3? = {e?, f?}, the question

mark meaning that any of the two atoms can be true, according to the selected answer

set of the bottom. In this simple case, we have to choose S2, which makes p true, and,

by imagining adding atoms in S2 as new facts in the top part, we get both e and f ,

thus obtaining the answer set S. Let us now consider the top part as a standalone

program:

f ← a.

e← c.

⊥ ← not p.
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This program in itself is inconsistent, but knowing that it is intended as the top part of

a wider program, we can set the requirements for any bottom part, in the form of what

we can call Epistemic top-down Constraint set EC = {p}, that is, p must be true in an

answer set of the bottom, for the top to be consistent. If we enrich the top as follows:

f ← a.

e← c.

⊥ ← not p.

p | nop.
a | noa.
c | noc.

We can compute all possible answer sets for the top part, by simulating possible values

for atoms coming from the (still unknown) bottom. Each such simulation, for example,

assuming a true and c false, gives rise to a Requisite Set RQ. Then, given a specific

bottom program that one intends to add to the top, each answer set M of the bottom

that fulfills EC can be combined with all the answer sets of the top that are compatible,

in the sense that M entails all literals in the corresponding RQ.

Let us now consider an ELP with a very similar structure.

Top part

f ← Ka.

e← Kc.

⊥ ← notKp

Bottom part

a← p.

a← q.

p← notKq.

q ← notKp.

c.

Let us first proceed bottom-up, as dictated by the ESP definition. The world views of

the bottom, according to any existing semantics, are: W1 = {{c, p, a}}, W2 = {{c, q, a}}.
Below is the top part simplified w.r.t. W1, with a unique resulting world view {{e, f}}.

f.

e.

The top part simplified w.r.t. W2 is reported below, with no world views as the con-

straint is violated:

Top part w .r .t . W2

f.

e.

⊥ ← �
Therefore, the unique world view of the overall program is, by the WBT operation

which reduces here to a simple union, W = {{c, p, a, e, f}}.
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Let us now apply the notions related to the top-down splitting property TDESPB that

we presented above. We have the following detached version of the top part:

f ← ka.

e← kc.

⊥ ← nkp

ka | nka.
kc | nkc.
kp | nkp.

Seen as an epistemic program by itself, this program has a unique world view (indeed,

it is a standard ASP program), which is

{{kp, nka, nkc}, {kp, ka, nkc, f}, {kp, nka, kc, e}, {kp, ka, kc, e, f}}.
By splitting this set of sets three times (w.r.t. the pairs ka/nka, kc/nkc, and kp/nkp)

as described in Section 6.1, Definition 6.3, we obtain the world views of the detached

version: {{kp, nka, nkc}}, {{kp, nka, kc, e}}, {{kp, ka, nkc, f}}, and {{kp, ka, kc, e, f}}.
From them, one determines the epistemic top-down constraint set which is, clearly,

EC = {Kp}, stating that the unique constraint must be satisfied. Any compatible

world view of a bottom should satisfy one of the RQi’s, i ≤ 4, that is, the requirement

sets, listed below (cf. Definitions 6.4 and 6.5). To each RQi it corresponds a world view

of the top (indicated on the right) to be united to those world views of the bottom that

satisfy RQi (if any).

RQ1 = ∅, determines W 1
t = {∅}

RQ2 = {Kc}, determines W 2
t = {{e}}

RQ3 = {Ka}, determines W 3
t = {{f}}

RQ4 = {Kc,Ka}, determines W 4
t = {{e, f}}

Given the world views of the bottom, that is, W1 = {{c, p, a}}, W2 = {{c, q, a}}, we
can see that W2 does not fulfill EC and so must be discarded, while W1 fulfills EC and

also RQ4, thus leading, by the WBT operation which reduces here to a simple union,

the to (unique) world view of the overall program W = {{c, p, a, e, f}}.
It is immediate to verify that the result obtained via the bottom-up and the top-down

approach is indeed the same.

6.3 Top-down epistemic splitting property (TDESP)

In this subsection, we will extend previous definitions to a more general form, so as to be

able to characterize in a top-down fashion the world views obtained according to many

semantic approaches presented in the literature, other than G91 and FAAEL, such as,

for example, those proposed by Shen and Eiter (2016), Kahl and Leclerc (2018), and

Su (2019); in fact, they do not enjoy the basic property TDESPB illustrated above. We

introduce a different way of computing candidate world views, where, in the absence of

a world view of the bottom that fulfills the set EC relative to the top, one can select

a subset of such a world view. This, as we will demonstrate in our running example, is

analogous to what is customarily done in ASP.
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Definition 6.10 (Candidate World View)

Given an epistemic splitting 〈BU (Π), TU (Π)〉 for a program Π, let WT be a world view

of TU (Π) and let WB be a subset of a world view of BWT

U (Π) that fulfills ECTU (Π)(WT )

(where, if EC is empty, WB is the entire world view of the bottom) such that WB fulfills

RQTU (Π)(WT ). Then,

W = WB �WT = {Ib ∪ It|Ib ∈WB ∧ It ∈WT }
is a candidate world view for Π (obtained from WT and WB).

Note that, candidate world views are now computed after applying top-down influence.

It is possible that no subset of any world view of the bottom complies with the conditions

posed by world views of the top. In such case, Π has no candidate world views.

We can now state another property concerning top-down epistemic splitting that a

semantics might obey:

Definition 6.11 (Top-down Epistemic Splitting Property (TDESP))

A semantics S satisfies top-down epistemic splitting if any candidate world view of Π

according to Definition 6.10 is indeed a world view of Π under S.
We can state the relationship among TDESP and ESP/TDESPB (that, as seen, are

equivalent).

Theorem 6.2

Given a semantics S satisfies both foundedness and ESP/TDESPB, then S satisfies

TBDESP.

Proof

If S satisfies TDESPB, this means that for every world view of given program Π obtained

via the WBT operation, and thus composed of a world view WT of the top and a world

view WB of the bottom, every KL ∈ ECTU (Π)(W ) is entailed by WB and, if S satisfies

foundedness, this equates to say that L is entailed by the bottom part of the program.

Thus, the application of Top-down Influence is irrelevant. We then notice that, according

to Definitions 6.10 and 6.3 a candidate world view for TDESP can be obtained from an

entire world view of the bottom, as done for TDESPB. This concludes the proof, showing

that for this class of semantics TDESP and TDESPB are indeed equivalent.

The above theorem is immediately applicable to the FAAEL semantics. For semantics

which do not enjoy foundedness things are different, as seen in the examples below. We

will now, in fact, experiment with our methodology on some relevant examples proposed

in recent literature. Consider program Π1, taken from (Shen and Eiter 2020):

p | q (r1)

⊥ ← notKp (C)

Here, BU (Π1) consists of rule (r1), and TU (Π1) consists of constraint (C). So, T
′
U (Π1)

is (where kp and nkp are fresh atoms):

kp | nkp (r1)

⊥ ← nkp

whose unique world view is {{kp}}. After canceling kp, we obtain WT = {∅} for TU (Π1),

with ESTU (Π1)(WT ) = ECTU (Π1)(WT ) = {Kp} and RQTU (Π1)(WT ) = ∅. Regardless of
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the epistemic semantics S, as no subjective literals occur therein, the unique world view

of BU (Π1) is Ŵ = {{p}, {q}}. Since WB = {{p}} is the only subset of Ŵ fulfilling

ECTU (Π1)(WT ) (cf. Definition 6.10), then it is the one selected. It is also a world view for

Π1, as the unique world view of the top part is empty. This world view violates subjective

constraint monotonicity, still, it is the one delivered by the semantics proposed in Shen

and Eiter (2016) and, as noticed in Shen and Eiter (2020), by those proposed in Kahl

and Leclerc (2018) and Su (2019).

In our opinion the world view {{p}} captures the “intended meaning” of the program

Π1, where the top layer “asks” the bottom layer to support, if possible, Kp (in order not

to make the overall program inconsistent). Let us, in fact, introduce a simple variation,

by adding a fact, say c, to the program, where c also occurs in the constraint, obtaining:

p | q (r1)

c. (f1)

⊥ ← c, notKp (C)

We would obtain, in this case, the world view {{c, p}}. Let us now reinterpret this

program within the work of the COST Action DigForASP, that is, in the realm of inves-

tigations. A rephrasing could be the following:

at crime scene | not at crime scene (r1)

reliable witness recognizes. (f1)

⊥ ← reliable witness recognizes, notK at crime scene (C)

The meaning underlying the schematic formulation is that it is uncertain whether

a suspect was or not at the crime scene. However, if a reliable witness recognized the

suspect, then investigators can be certain that the suspect was indeed at the crime scene.

The constraint could in fact be rephrased (although this is not legal syntax) into:

K at crime scene← reliable witness recognizes.

The use of theK is crucial here because one wants to distinguish between facts collected

by the investigators and reliable conclusions derived by these facts. Thus, the world view

{{reliable witness recognizes, at crime scene}} makes perfect sense here.

In addition, one might consider the very similar ASP program:

p | q (r1)

c. (f1)

⊥ ← c, not p (C)

with unique answer set {c, p}. The “bottom” program fragment consisting of (r1)+(f1)

would also have answer set {c, q}, which is discarded since it would lead to violating the

constraint. We may consider this program as an ELP, with unique world view {{c, p}}
obtained from a subset of the world view {{c, p}, {c, q}} of the bottom (union the empty

world view of the top), exactly as specified in Definition 6.10.

Consider now the following program Π2.

p | q (r1)

⊥ ← notKp (C)

p← Kq (r2)

q ← Kp (r3)
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Here, BU (Π2) consists of rules (r1-r3), and TU (Π2) consists of constraint (C). So, T
′
U (Π2)

is (where kp and nkp are fresh atoms):

kp | nkp
⊥ ← nkp

whose unique world view is {{kp}}. After canceling kp, we obtain world view WT =

{∅} for TU (Π2) where ESTU (Π2)(WT ) = ECTU (Π2)(WT ) = {Kp} and set RQ is empty.

Regardless of the semantics S, the potential world views of BU (Π2) are W1 = {{p}},
W2 = {{q}}, W3 = {{p}, {q}}, W4 = {{p, q}}. Actually, W4 is the only one fulfilling

ESTU (Π2)(WT ); W1 has the problem that, having p and fulfilling Kp, (r3) might be

applied thus getting q. Note that W4 is in fact the world view returned by semantics

proposed, for instance, in Kahl et al . (2015) and Shen and Eiter (2016). It is easy to

see that W4 violates foundedness. However, in our approach q is not derived via the

positive cycle (extended to subjective literals), but from the Kp “forced” by the upper

layer via top-down influence, which substitutes Kp with p in rule (r3) of BU (Π2). This

in a sense guarantees a form of foundedness, though not the formal one introduced in

Cabalar et al . (2021, Definition 15). Since the unique world view for the top is empty,

then the unique world view of the overall program is, indeed, according to our method,

W = W4 = {{p, q}}.
Let us now consider Π3 to be the seminal example introduced in Gelfond and

Przymusinska (1991), which is discussed in virtually every paper on ELP. Π3 is epis-

temically stratified (see Definition 4.4 and Cabalar et al . (2021, Definition 6)). This

formulation (variations have appeared over time) is from Cabalar et al . (2021).

eligible(X )← high(X ) (r1)

eligible(X )← minority(X ), fair(X ) (r2)

noeligible(X )← not fair(X ), not high(X ) (r3)

fair(mike) | high(mike) (f1)

interview(X )← notK eligible(X ), notKnoeligible(X ) (r4)

appointment(X )← K interview(X ) (r5)

Since in this version of the program we have only mike as an individual, we may obtain

the following ground abbreviated version:

e← h (r1)

e← m, f (r2)

ne← not f, not h (r3)

f | h (f1)

in← notKe, notKne (r4)

a← Kin (r5)

Here, we consider (r5) as the top TU (Π3), and (r1-r4) plus (f1) as the bottom, which can

be however in turn divided into the top T1U (Π3) including (r4), and the bottom BU (Π3),

made of (r1-r3) and (f1). So, T ′
U (Π3) is (with fresh atoms kin, nkin):

a← kin (r5′)
kin | nkin
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with two answer sets: {a, kin}, {nkin}. As explained in Section 6.1, kin | nkin stands for

a disjunction between the epistemic literalKin and its negation notKin. This determines

the existence of two world views, each entailing only one of these atoms, that is, epistemic

literals, where atom a can, however, be derived only from the former. Thus, we have

W11 = {{a}} with ESTU (Π3)(W11) = {Kin}, and W12 = {∅} with ESTU (Π3)(W12) =

{notKin}. ECT1U (Π3) is empty for all world views, as no constraint is present in Π3.

Then, T1′U (Π3) is (with ke, nke, kne, nkne fresh atoms):

in← nke, nkne (r4′)
ke | nke
kne | nkne.

By the same reasoning as above, since there are two disjunctions among fresh atoms

representing epistemic literals, four world views can be found. After canceling the fresh

atoms, in fact we have W21 = {{in}}, with EST1′U (Π3)(W21) = {notKe, notKne}, and
three empty world views W22 = W23 = W24 = {∅}, with requisite sets {Ke,Kne},
{Kne, notKe}, and {notKne,Ke}, respectively. Clearly, also ECT1′U (Π3) is empty.

Finally, BU (Π3), which is made of the rules (r1-r3) and (f1), has the world view

W3 = {{h, e}, {f}}. Since the requirement set relative to world view W21 for the imme-

diately upper level is satisfied in both answer sets of W3, we can obtain an intermediate

world view W213 = {{h, e, in}, {f, in}} for the part of the program including (r1-r4).

Considering also the top, it is easily seen that W213 is compliant with the requirement

set of W11 = {a}. So, we can obtain for the overall program the unique candidate world

view W = {{h, e, in, a}, {f, in, a}}, which is indeed a world view. Notice that, in fact,

the world views that are part of the union, corresponding to the various subprograms,

would be the same under all known semantics for ELPs.

Assume now that, instead of f | h, the program contains the bare fact h. Then, the

world view of the bottom becomes W3 = {{h, e}}. This world view implies Ke, so it can

be combined with a world view {∅} of the middle layer, and since it also implies notKin,

the further combination is with world view W12 = {∅} of the top. So, W3 = {{h, e}} is
in this case the unique world view of the overall program.

7 Main result

It is at this point interesting to try to assess formally which semantics (if any) satisfy

the TDESP.

We examine now the case of the semantics introduced in Kahl et al . (2015), that we call

for short K15. The reason for choosing K15 is that in Cabalar et al . (2021) it is noticed

that K15 slightly generalizes the semantics proposed in Gelfond (2011) (called G11 for

short) and can be seen as a basis for the semantics proposed in Shen and Eiter (2016)

(called S16 for short). In particular, S16 (which considers instead of K the operator not

A which means notKA) treats K15 world views as candidate solutions, to be pruned in

a second step, where some unwanted world views are removed by maximizing what is not

known. Thus, should K15 satisfy the TDESP, S16 would do as well, and so would G11,

the latter however only for the (wide) class of programs where its world views coincide

with those of K15.
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Definition 7.1 (K15-world views)

The K15-reduct of Π with respect to a nonempty set of interpretations W is obtained

by:

(i) replacing by ⊥ every subjective literal L ∈ Bodysubj (r) such that W �|= L, and

(ii) replacing all other occurrences of subjective literals of the form KL by L.

A nonempty set of interpretations W is a K15-world view of Π iff W is the set of all

stable models of the K15-reduct of Π with respect to W .

We are able to prove the following:

Theorem 7.1 (K15 TDESP)

The K15 semantics satisfies the TDESP. That is, given an ELP Π, and set of sets W ,

where each set is composed of atoms occurring in Π, W is a K15 world view for Π if and

only if it is a candidate world view for Π according to Definition 6.10.

Proof

Assume an Epistemic Splitting of given program Π into two layers, top TU (Π) and bottom

BU (Π) (where the reasoning below can, however, be iterated over a subdivision into an

arbitrary number of levels). Notice that, given a K15 world view W , since each atom

A that occurs in the sets composing W is derived in the part of the program including

rules with head A, then W can be divided into two parts, WT and WB which are world

views of TU (Π) and BU (Π), resp., each one composed of stable models of the K15-reduct

of that part of the program.

If part. Given a K15 world view W , let SlT be the subjective literals occurring in

TU (Π) which are entailed by the bottom, that is, either of the form KA, for which

WB |= A, or of the form notKA, for which WB �|= A. Let such a set of literals form

the set ESTU (Π)(WT ). (As mentioned, the subset of SlT that consists of literals involved

in constraints in TU (Π) will form set ECTU (Π)(WT ), and the remaining ones will form

set RQTU (Π)(WT ).) Therefore, we can conclude that W , which is a K15 world view, is

indeed a candidate world view according to Definition 6.10.

Only if part. Consider a candidate world view W w.r.t. the K15 semantics, obtained

by combining a subset WB of a K15 world view of BU (Π) with a K15 world view WT of

TU (Π) after top-down influence. According to Definition 6.10, the combination is possible

only if for each epistemic literal KA ∈ ESTU (Π)(WT ), WB |= A, and for each epistemic

literal notKA ∈ ESTU (Π)(WT ), WB �|= A. If any such literal belongs to ECTU (Π)(WT ), if

this is not the case then there would be a constraint violation in TU (Π), so there would be

no world views for TU (Π) and for the overall program Π. Considering a subjective literal

in RQTU (Π)(WT ), if it were not the case that WB entails such literal, then by definition

of K15 it would have been substituted by ⊥, so WT would have been a different set. The

top-down influence step can be disregarded since it performs in advance on elements of

ESTU (Π)(WT ), that are required to be entailed by WB anyway, the same transformation

performed by K15, step (ii). Then, a candidate world view W obtained according to

Definition 6.10 is indeed a K15 world view.

In Cabalar et al . (2021, Th. 2) it is proved that, for any semantics obeying epistemic

splitting, an epistemically stratified program has a unique world view. Actually, it can
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be seen that epistemically stratified programs admit one (and the same) world view

under any existing semantics, and in particular under those considered here: as it is well-

known (see, e.g., Gelfond (1994), Shen and Eiter (2016), and Costantini (2019)), multiple

world views arise in consequence of negative cycles involving epistemic literals, clearly

not present in such programs. So, the unique world view of an epistemically stratified

program is, in particular, a K15 world view. Thus, we have the following.

Corollary 7.1

Epistemically Stratified Programs satisfy both the Top-down and Bottom-up Epistemic

Splitting Properties under any semantics.

8 Conclusions

In this paper, we have provided a way of exploiting the splitting of ELPs in a top-down

fashion, adequate for those situations where the top part of a program is well established

as it represents a problem formulation, where the bottom part (representing a problem

instance) may vary and is in general not known in advance.

We defined formal conditions for the combination of world views of the top with world

views of the bottom into world views of the overall program. In addition, potential world

views of the top can be pre-computed, thus simplifying the combination with the world

views of each problem instance. We provide a version that is the top-down declination

of the well-established approach by Cabalar et al., and a more general version that is

applicable to a wider range of semantic approaches.

A question that may arise concerns the efficiency of the top-down approach, even

though in many cases it will be an almost inevitable choice. If the subjective literals

“connecting” adjacent layers are in small numbers (as it seems reasonable), then efficiency

might not be a concern.

It remains to be seen in more depth for which kinds of applications the different

approaches to splitting (top-down and bottom-up) might be most profitably exploited.

As an example, we can go back to the suggestion proposed in Kahl et al . (2015) to

encode the problem of finding a conformant plan as the task of obtaining a world view.

As emphasized in Cabalar et al . (2021), splitting allows one to separate the planner

definition (the “top”) from the generation of alternative plans (an intermediate layer, we

might say “the top of the bottom”) from, in turn, the domain description (the “bottom”).

The top-down perspective would allow one to analyze the top part independently from

the other layers, so as to identify in advance the prerequisites it poses to them.

An investigation of which other semantics might satisfy the TDESP is also a subject

of future work.
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