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Abstract. In this paper, we derive two-sided estimates of the Lebesgue constants
for bounded Vilenkin systems, we also present some applications of importance, e.g.,
we obtain a characterization for the boundedness of a subsequence of partial sums
with respect to Vilenkin–Fourier series of H1 martingales in terms of n,s variation. The
conditions given in this paper are in a sense necessary and sufficient.
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1. Introduction. It is known that for every Vilenkin systems

Ln := ‖Dn‖1 ≤ c log n

holds. For the definitions of Dn, the Vilenkin systems and other objects in this section
(e.g., v (n) and v∗ (n)), we refer to our Section 2.

For some concrete systems, it is possible to write two-sided estimations of Lebesgue
constants Lnk . In particular, for every bounded Vilenkin systems, Lukyanenko [4]
proved two-sided estimates for the Lebesgue constants Lnk for some concrete indices
nk ∈ �. Lukomskii [3] generalised this result and proved two-sided estimates for the
Lebesgue constants Ln without the conditions on the indexes. He showed that for
n = ∑∞

j=0 njMj and every bounded Vilenkin systems, we have the following two-sided
estimates of Lebesgue constants:

1
4λ

v (n) + 1
λ

v∗ (n) + 1
2λ

≤ Ln ≤ 3
2
v (n) + 4v∗ (n) − 1. (1)
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It is well known that (see, e.g., [1] and [2]) Vilenkin systems do not form bases in
the space L1. Moreover, there exists a function in the dyadic Hardy space H1, such
that the partial sums of f are not bounded in L1-norm. Onneweer [6] showed that if
the modulus of continuity of f ∈ L1 [0, 1) satisfies the condition

ω1 (δ, f ) = o
(

1
log (1/δ)

)
, as δ → 0, (2)

then its Vilenkin–Fourier series converges in L1-norm. He also proved that condition
(2) cannot be improved.

In [8] (see also [9]), it was proved that if f ∈ H1 and

ωH1

(
1

Mn
, f

)
= o

(
1
n

)
, as n → ∞, (3)

then Skf converge to f in L1-norm. Moreover, there was showed that condition (3)
cannot be improved.

It is also known that any subsequence Snk is bounded from L1 to L1 if and only if
nk has uniformly bounded variation and as a corollary the subsequence S2n of partial
sums is bounded from Hardy space Hp to the Hardy space Hp, for all p > 0.

In this paper, we improve the upper bound in (1) and also prove a new similar lower
bound by using a completely different new method. By applying this results, we also
find the characterizations of boundedness (or even the ratio of divergence of the norm)
of the subsequence of partial sums of the Vilenkin–Fourier series of H1 martingales in
terms of n,s variation. We also derive a relationship of the ratio of convergence of the
partial sum of the Vilenkin series with the modulus of continuity of a martingale. The
conditions given in the paper are in a sense necessary and sufficient.

Our main results (Theorem 1) is presented and proved in Section 3. The mentioned
applications especially Theorems 2 and 3 can be found in Section 4. Section 2 is reserved
for necessary definitions, notations and some Lemmas (Lemmas 2 and 3 are new).

2. Preliminaries. Let �+ denote the set of the positive integers, � := �+ ∪ {0}.
Let m := (m0, m1, . . . ) denote a sequence of the positive numbers not less than 2.
Denote by

Zmk := {0, 1, . . . , mk − 1}

the additive group of integers modulo mk, k ∈ �.

Define the group Gm as the complete direct product of the group Zmk with the
product of the discrete topologies of Zmk ‘s.

The direct product μ of the measures

μk ({j}) := 1/mk, (j ∈ Zmk )

is the Haar measure on Gm, with μ (Gm) = 1.

In this paper, we discuss bounded Vilenkin groups only, that is

sup
n∈�

mn < ∞.
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The elements of Gm are represented by sequences

x := (x0, x1, . . . , xk, . . . ), (xk ∈ Zmk ) .

It is easy to give a base for the neighbourhood of Gm :

I0 (x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1}, (x ∈ Gm, n ∈ �).

Denote In := In (0) , for n ∈ � and
−
In := Gm\In.

The norm (or quasi-norm) of the spaces Lp(Gm) is defined by

‖f ‖p :=
(∫

Gm

|f |p dμ

)1/p

(0 < p < ∞) .

If we define the so-called generalised number system based on m in the following
way:

M0 := 1, Mk+1 := mkMk (k ∈ �),

then every n ∈ � can be uniquely expressed as n = ∑∞
k=0nkMk, where nk ∈ Zmk (k ∈ �)

and only a finite number of nk‘s differ from zero. Let |n| := max{k ∈ � : nk 
= 0}.
For the natural number n = ∑∞

j=0 njMj, we define

δj := sign(nj) = sign
(�nj

)
, δ∗

j := ∣∣�nj − 1
∣∣ δj,

where � is the inverse operation for

ak ⊕ bk = (ak + bk) mod mk.

We define functions v and v∗ by

v (n) :=
∞∑

j=0

∣∣δj+1 − δj
∣∣ + δ0, v∗ (n) :=

∞∑
j=0

δ∗
j ,

Next, we introduce on Gm an orthonormal system, which is called the Vilenkin
system. At first define the complex-valued functions rk (x) : Gm → �, the generalised
Rademacher functions, by

rk (x) := exp (2π ıxk/mk) ,
(
ı2 = −1, x ∈ Gm, k ∈ �

)
.

Let x ∈ Gm. It is well known that

mn−1∑
k=0

rk
n (x) =

{
0 xn 
= 0,

mn xn = 0.
(4)

Now, define the Vilenkin systems ψ := (ψn : n ∈ �) on Gm as

ψn(x) :=
∞∏

k=0

rnk
k (x) , (n ∈ �) .
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Specifically, we call this system the Walsh-Paley one if m ≡ 2.
The Vilenkin systems are orthonormal and complete in L2 (Gm) (see, e.g., [1, 10]).
Next, we introduce analogues of the usual definitions in Fourier analysis. If f ∈

L1 (Gm), we can establish the Fourier coefficients, the partial sums, the Dirichlet kernels,
with respect to Vilenkin systems in the usual manner:

f̂ (n) :=
∫

Gm

f ψndμ, (k ∈ �) ,

Snf :=
n−1∑
k=0

f̂ (k) ψk, (k ∈ �) ,

and

Dn :=
n−1∑
k=0

ψk, (k ∈ �) .

Let n ∈ �. Then,

DMn (x) =
n−1∏
k=0

(
mk−1∑
s=0

rs
k(x)

)
(5)

=
{

Mn x ∈ In,

0 x /∈ In,

and

Dn = ψn

⎛⎝ ∞∑
j=0

DMj

mj−1∑
u=mj−nj

ru
j

⎞⎠ . (6)

The σ -algebra generated by the intervals {In (x) : x ∈ Gm} is denoted by �n (n ∈ �) .

Let f := (
f (n), n ∈ �

)
be a martingale with respect to �n (n ∈ �) . (for details see, e.g.,

[12]).
The maximal function of a martingale f is defined by

f ∗ := sup
n∈�

∣∣∣f (n)
∣∣∣ .

In the case f ∈ L1(Gm) the maximal functions are also be given by

f ∗ (x) = sup
n∈�

1
|In (x)|

∣∣∣∣∫
In(x)

f (u) μ (u)

∣∣∣∣ .
For 0 < p < ∞, the Hardy martingale spaces Hp consist of all martingales for

which

‖f ‖Hp
:= ∥∥f ∗∥∥

p < ∞.
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The martingale f = (
f (n), n ∈ �

)
is said to be Lp-bounded (0 < p ≤ ∞) if f (n) ∈ Lp

and

‖f ‖p := sup
n∈�

∥∥∥f (n)
∥∥∥

p
< ∞.

If f ∈ L1 (Gm) , then it is easy to show that the sequence F = (SMn f : n ∈ �) is a
martingale. This type of martingales is called regular. If 1 ≤ p ≤ ∞ and f ∈ Lp (Gm),
then f = (

f (n), n ∈ �
)

is Lp-bounded and

lim
n→∞

∥∥SMn f − f
∥∥

p = 0,

consequently ‖F‖p = ‖f ‖p , (see [5]). The converse of the latest statement holds also if
1 < p ≤ ∞ (see [5]): For an arbitrary Lp-bounded martingale f = (

f (n), n ∈ �
)
, there

exists a function f ∈ Lp (Gm) for which f (n) = SMn f. If p = 1, then there exists a function
f ∈ L1 (Gm) of the preceding type if and only if f is uniformly integrable (see [5]) namely
if

lim
y→∞sup

n∈�

∫
{|f (n)|>y}

∣∣∣f (n) (x)
∣∣∣ dμ (x) = 0.

Thus, the map f → f := (SMn f : n ∈ �) is isometric from Lp onto the space of
Lp-bounded martingales when 1 < p ≤ ∞. Consequently, these two spaces can be
identified with each other. Similarly, the space L1 (Gm) can be identified with the space
of uniformly integrable martingales.

A bounded measurable function a is a p-atom if there exists an interval I such that∫
I

adμ = 0, ‖a‖∞ ≤ μ (I)−1/p
, supp (a) ⊂ I.

If f = (
f (n), n ∈ �

)
is a martingale, then the Vilenkin–Fourier coefficients must be

defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫
Gm

f (k)ψ idμ.

The best approximation of f ∈ Lp(Gm) (1 ≤ p ∈ ∞) is defined as

En
(
f, Lp

)
:= inf

P∈Pn

‖f − P‖p ,

where Pn is the set of all Vilenkin polynomials of order less than n ∈ �.
The integrated modulus of continuity of f ∈ Lp is defined by

ωp

(
1

Mn
, f

)
:= sup

h∈In

‖f (· + h) − f (·)‖p .

The concept of modulus of continuity in Hp (0 < p ≤ 1) can be defined in the
following way:

ωHp

(
1

Mn
, f

)
:= ∥∥f − SMn f

∥∥
Hp

.
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Watari [11] showed that there are strong connections between

ωp

(
1

Mn
, f

)
, EMn

(
f, Lp

)
and ∥∥f − SMn f

∥∥
p , p ≥ 1, n ∈ �.

In particular,

1
2
ωp

(
1

Mn
, f

)
≤ ∥∥f − SMn f

∥∥
p ≤ ωp

(
1

Mn
, f

)
(7)

and

1
2

∥∥f − SMn f
∥∥

p ≤ EMn

(
f, Lp

) ≤ ∥∥f − SMn f
∥∥

p .

The Hardy martingale spaces Hp (Gm) for 0 < p ≤ 1 have atomic characterizations
(see [12, 13]):

LEMMA 1. A martingale f = (
f (n), n ∈ �

) ∈ Hp (0 < p ≤ 1) if and only if there exist
a sequence (ak, k ∈ �) of p-atoms and a sequence (μk, k ∈ �) of real numbers such that,
for every n ∈ �,

∞∑
k=0

μkSMn ak = f (n), a.e. (8)

∞∑
k=0

|μk|p < ∞.

Moreover,

‖f ‖Hp
� inf

( ∞∑
k=0

|μk|p
)1/p

,

where the infimum is taken over all decomposition of f of the form (8).

For the proof of main result, we also need the following new Lemmas of
independent interest:

LEMMA 2. Let k, s ∈ � and x ∈ Gm. Then,

sk−1∑
u=1

ru
k (x) = cos (πskxk/mk) sin (π (sk − 1) xk/mk)

sin (πxk/mk)
ı

+ sin (πskxk/mk) sin (π (sk − 1) xk/mk)
sin (πxk/mk)

.
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Proof. Since

sk−1∑
u=1

ru
k (x) =

sk−1∑
u=1

cos
(

2πuxk

mk

)
+

sk−1∑
u=1

ı sin
(

2πuxk

mk

)
,

if we apply the following well-known identities

n∑
k=1

cos kx = sin nx
2 cos (n+1)x

2

sin x
2

(9)

and

n∑
k=1

sin kx = sin nx
2 sin (n+1)x

2

sin x
2

. (10)

We immediately get the proof. �
LEMMA 3. Let k, �, 2 ≤ sk ≤ mk and xk = 1. Then,∣∣∣∣∣

sk−1∑
n=1

rn
k (x)

∣∣∣∣∣ = sin (π (sk − 1) xk/mk)
sin (πxk/mk)

≥ 1.

Proof. Since

sin (π (mk − 1) /mk)
sin (π/mk)

= sin (π/mk)
sin (π/mk)

= 1,

if we take graph of sin x into account, we obtain that

sin (π (sk − 1) /mk)
sin (π/mk)

≥ 1, for 2 ≤ sk ≤ mk.

Let xk = 1. By using Lemma 2, we get that∣∣∣∣∣
sk−1∑
u=1

ru
k (x)

∣∣∣∣∣ =
(

cos2 (πskxk/mk) sin2 (π (sk − 1) xk/mk)
sin2 (πxk/mk)

+ sin2 (πskxk/mk) sin2 (π (sk − 1) xk/mk)
sin2 (πxk/mk)

)1/2

= sin (π (sk − 1) xk/mk)
sin (πxk/mk)

= sin (π (sk − 1) /mk)
sin (π/mk)

≥ 1. (11)

The proof is complete. �

3. The main result. Our main result reads:

THEOREM 1. Let n = ∑∞
j=0 njMj. Then,

1
4λ

v (n) + 1
λ2

v∗ (n) ≤ Ln ≤ v (n) + v∗ (n) , (12)
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where λ := supn∈� mn.

Proof. First, we choose indices 0 ≤ �1 ≤ α1 < �2 ≤ α2 < · · · < �s ≤ αs < �s+1 =
∞, such that αj + 1 < �j+1, for j = 1, 2, . . . , s, nk = 0, for 0 < k < �1, nk ∈
{1, 2, . . . , mk − 1} , for �j ≤ k ≤ αj and nk = 0, for αj < k < �j+1. According to (6),
we have that

Dn = ψn

( ∞∑
k=0

DMk

mk−1∑
u=1

ru
k

)
− ψn

( ∞∑
k=0

DMk

mk−nk−1∑
u=1

ru
k

)
(13)

= ψn

⎛⎝ s∑
j=1

αj∑
k=�j

DMk

mk−1∑
u=1

ru
k

⎞⎠ − ψn

⎛⎝ s∑
j=1

αj∑
k=�j

DMk

�nk−1∑
u=1

ru
k

⎞⎠
:= I − II.

Since

Mk − 1 =
k−1∑
j=0

(
mj − 1

)
Mj, (14)

if we apply again (6), we get that

DMk−1 = ψMk−1

⎛⎝k−1∑
j=0

DMj

mj−1∑
u=1

ru
j

⎞⎠ .

Hence,

I = ψn

⎛⎝ s∑
j=1

⎛⎝ αj∑
k=0

DMk

mk−1∑
u=1

ru
k −

�j−1∑
k=0

DMk

mk−1∑
u=1

ru
k

⎞⎠⎞⎠ (15)

= ψn

⎛⎝ s∑
j=1

(
DMαj+1−1

ψMαj+1−1
−

DM�j −1

ψM�j −1

)⎞⎠
= ψn

⎛⎝ s∑
j=1

(
DMαj+1 − ψMαj+1−1

ψMαj+1−1
−

DM�j
− ψM�j −1

ψM�j −1

)⎞⎠
= ψn

⎛⎝ s∑
j=1

(
DMαj+1

ψMαj+1−1
−

DM�j

ψM�j −1

)⎞⎠
and

‖I‖1 ≤
s∑

j=1

(∥∥∥DMαj+1

∥∥∥
1
+

∥∥∥DM�j

∥∥∥
1

)
= 2s ≤ v (n) .
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Moreover,

‖II‖1 ≤
s∑

j=1

αj∑
j=�j

∣∣�nj − 1
∣∣ δj

∥∥DMj

∥∥
1

=
s∑

j=1

αj∑
j=�j

∣∣�nj − 1
∣∣ δj ≤ v∗ (n) .

The proof of the upper estimate in (1) follows by combining the last two estimates.
Let x ∈ Ik+1 (xkek) , where 1 ≤ xk ≤ nk − 1 and ek := (0, . . . , 0, 1, 0, . . . ) ∈ Gm,

where only the kth coordinate is one, the others are zero. Then, by the definition
of Vilenkin functions, if we apply (14) and equalities x0 = x1 = · · · = xk−1 = 0, we
find that

ψMl−1 (x) = 1, (16)

for any 0 ≤ l ≤ k.

Let �j ≤ k ≤ αj and x ∈ Ik+1 (xkek) , where 1 ≤ xk ≤ nk − 1. Then, in view of (5)
and (15), we get that

I = −ψn (x)
DM�j

(x)

ψM�j −1 (x)

+ψn (x)

( j−1∑
l=1

(
DMαl+1 (x)

ψMαl+1−1 (x)
− DM�l

(x)

ψM�l −1 (x)

))

= ψn (x)

(
−M�j +

j−1∑
l=1

(Mαl+1 − M�l )

)
.

By using Lemma 2, we have that

II = ψn (x)

(
DMk (x)

mk−nk−1∑
u=1

ru
k (x)

)

+ψn (x)

⎛⎝k−1∑
l=�j

DMl (x)
�nl−1∑

u=1

ru
l (x) +

j−1∑
s=0

αs∑
l=�s

DMl (x)
�nl−1∑

u=1

ru
l (x)

⎞⎠
= ψn (x) Mk

cos (π (�nk) xk/mk) sin (π (�nk − 1) xk/mk)
sin (πxk/mk)

ı

+ψn (x) Mk
sin (π (�nk) xk/mk) sin (π (�nk − 1) xk/mk)

sin (πxk/mk)

+ψn (x)
k−1∑
l=�j

Ml (�nl − 1) + ψn (x)
j−1∑
s=0

αs∑
l=�s

Ml (�nl − 1) .

It is obvious that

|II − I| =
∣∣∣∣ II − I

ψn

∣∣∣∣ =
(

Re2
(

II − I
ψn

)
+ Im2

(
II − I

ψn

))1/2

. (17)

https://doi.org/10.1017/S0017089516000549 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000549
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On the other hand,

Im
(

II − I
ψn

)
= Mk

cos (π (�nk) xk/mk) sin (π (�nk − 1) xk/mk)
sin (πxk/mk)

(18)

and

Re
(

II − I
ψn

)
= Mk

sin (π (�nk) xk/mk) sin (π (�nk − 1) xk/mk)
sin (πxk/mk)

+
k−1∑
l=�j

Ml (�nl − 1) +
j−1∑
s=0

αs∑
l=�s

Ml (�nl − 1) + M�j −
j−1∑
l=1

(Mαl+1 − M�l ) .

Let x ∈ Ik+1 (ek) and λ := supn∈� mn. Since xk = 1 and

sin (π (�nk) xk/mk) sin (π (�nk − 1) xk/mk)
sin (πxk/mk)

≥ 0,

k−1∑
l=�j

Ml (�nl − 1) ≥ 0,

j−1∑
s=0

αs∑
l=�s

Ml (�nl − 1) ≥ 0,

M�j −
j−1∑
l=1

(Mαl+1 − M�l ) ≥ 0,

we obtain that

Re
(

II − I
ψn

)
≥ sin (π (�nk) xk/mk) sin (π (�nk − 1) xk/mk)

sin (πxk/mk)
≥ 0. (19)

If we apply (17)–(19) and Lemma 3, for x ∈ Ik+1 (ek) we get that

|II − I| =
(

Re2
(

II − I
ψn

)
+ Im2

(
II − I

ψn

))1/2

≥
((

Mk cos (π (�nk) xk/mk) sin (π (�nk − 1) xk/mk)
sin (πxk/mk)

)2

+
(

Mk sin (π (�nk) xk/mk) sin (π (�nk − 1) xk/mk)
sin (πxk/mk)

)2
)1/2

≥ Mk sin (π (�nk − 1) xk/mk)
sin (πxk/mk)

≥ Mk ≥ Mk |�nk − 1|
λ

.

Let x ∈ Iαj+2
(
xαj+1eαj+1

)
, where 1 ≤ xαj+1 ≤ mαj+1 − 1. Then, by using (6) if we

invoke equalities (13), (15) and (16) we get that

|Dn| =
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=
∣∣∣∣∣∣

j∑
k=1

(
DMαk+1

ψMαk+1−1
− DM�k

ψM�k −1

)
−

⎛⎝ j∑
k=1

αk∑
l=�k

DMl

ml−nl−1∑
u=1

ru
l

⎞⎠∣∣∣∣∣∣

=
j∑

k=1

⎛⎝(Mαk+1 − M�k ) −
αk∑

l=�k

|�nl − 1| Ml

⎞⎠

≥
j∑

k=1

⎛⎝(Mαk+1 − M�k ) −
αk∑

l=�k

(ml − 2) Ml

⎞⎠

=
j∑

k=1

⎛⎝(Mαk+1 − M�k ) −
αk∑

l=�k

Ml+1 + 2
αk∑

l=�k

Ml

⎞⎠

≥
j∑

k=1

αk∑
l=�k

Ml ≥ Mαj .

Hence,

Ln ≥
s∑

l=0

αl∑
k=�l+1

∫
Ik+1(ek)

Mk |�nk − 1|
λ

dμ

+
s∑

j=0

mαj+1−1∑
xαj+1=1

∫
Iαj+2

(
xαj+1eαj+1

) Mαj dμ

≥
s∑

l=0

αl∑
k=�l

Mk |�nk − 1|
λ

1
Mk+1

+
s∑

j=0

(
mαj+1 − 1

)
Mαj

Mαj+2

≥
s∑

l=0

αl∑
k=�l

|�nk − 1|
λ2

+
s∑

j=0

1
2λ

≥ 1
λ2

v∗ (n) + 1
4λ

v (n) .

The proof is complete. �
The next result for Vilenkin systems is known (see, e.g., [1]) but it also follows from

our result.

COROLLARY 1. Let qn= M2n + M2n−2 + · · · + M2. Then,
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n
2λ

≤ ∥∥Dqn

∥∥
1 ≤ λn,

where λ := supn∈� mn.

Proof. First, we observe that

v (qn) = 2n. (20)

By using Theorem 1, we get that∥∥Dqn

∥∥
1 ≥ 1

4λ
v (qn) = n

2λ
.

Moreover, since

v∗ (qn) =
n∑

j=0

(
m2j − 2

) ≤ (λ − 2)
n∑

j=0

1 ≤ (λ − 2) n

if we apply (20), we readily obtain that∥∥Dqn

∥∥
1 ≤ v∗ (qn) + v (qn) ≤ (λ − 2) n + 2n = λn.

The proof is complete. �
Finally, we mention that the following well-known results for the Walsh systems

(see the book [7]) also follow directly from our main result.

COROLLARY 2. For the Walsh system, the inequality

1
8
v (n) ≤ Ln ≤ v (n)

holds.

4. Applications. First, we use our main result to find a characterization for the
boundedness (or even the ratio of divergence of the norm) of a subsequence of partial
sums of the Vilenkin–Fourier series of H1 martingales.

THEOREM 2.
(a) Let f ∈ H1 and Mk < n ≤ Mk+1. Then, there exists an absolute constant c such

that

‖Snf ‖H1
≤ c (v (n) + v∗ (n)) ‖f ‖H1

.

(b) Let {
n : n ∈ �} be any non-decreasing and non-negative sequence satisfying
condition

lim
n→∞
n = ∞

and {nk ≥ 2 : k ∈ �} be a subsequence such that

lim
k→∞

v (nk) + v∗ (nk)

nk

= ∞. (21)
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Then, there exists a martingale f ∈ H1 such that

sup
k∈�

∥∥∥∥Snk f

nk

∥∥∥∥
1

→ ∞, as k → ∞.

Proof. (a) In view of Theorem 1, we can conclude that

‖Snf ‖1 ≤ Ln ‖f ‖1 ≤ Ln ‖f ‖H1

≤ c (v (n) + v∗ (n)) ‖f ‖H1
.

Let us consider the following martingale:

f# := (SMk Snf, k ≥ 1)

= (SM0 f, . . . , SMk f, . . . , Snf, . . . , Snf, . . . ) .

It is easy to see that

‖Snf ‖H1
≤ ‖f#‖H1

≤
∥∥∥∥∥ sup

0≤l≤k

∣∣SMl f
∣∣∥∥∥∥∥

1

+ ‖Snf ‖1 ≤ ‖f ‖H1
+ ‖Snf ‖1

≤ ‖f ‖H1
+ c (v (n) + v∗ (n)) ‖f ‖H1

≤ c (v (n) + v∗ (n)) ‖f ‖H1
.

(b) Under the conditions of Theorem 2, there exists an increasing sequence
{αk : k ∈ �+} ⊂ {nk : k ∈ �+} of the positive integers such that

∞∑
k=1



1/2
αk

(v (αk) + v∗ (αk))1/2 < ∞. (22)

Let

f (n) :=
∑

{k: |αk|<n}
λkak,

where

λk = 

1/2
αk

(v (αk) + v∗ (αk))1/2 , ak = DM|αk|+1
− DM|αk| . (23)

By combining (22) and Lemma 1, we conclude that the martingale f ∈ H1.

It is easy to see that

f̂ (j) =

⎧⎪⎨⎪⎩



1/2
αk

(v(αk)+v∗(αk))1/2 , if j ∈ {
M|αk|, . . . , M|αk|+1 − 1

}
, k ∈ �

0, if j /∈
∞⋃

k=0

{
M|αk|, . . . , M|αk|+1 − 1

}
.

(24)

It follows that

Sαk f

αk

https://doi.org/10.1017/S0017089516000549 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000549


30 I. BLAHOTA, L. E. PERSSON AND G. TEPHNADZE

= 1

αk

k−1∑
i=1



1/2
αi

(v (αi) + v∗ (αi))
1/2

(
DM|αi |+1

− DM|αi |

)

+
Dαk − DM|αk|



1/2
αk (v (αk) + v∗ (αk))1/2

.

Hence, if we invoke (21) and (22) for sufficiently large k, we can conclude that∥∥∥∥Sαk f

αk

∥∥∥∥
1

≥
∥∥Dαk

∥∥
1



1/2
αk (v (αk) + v∗ (αk))1/2

−

∥∥∥DM|αk|

∥∥∥
1



1/2
αk (v (αk) + v∗ (αk))1/2

− 1

αk

k−1∑
i=1



1/2
αi

(v (αi) + v∗ (αi))
1/2

∥∥∥DM|αi |+1
− DM|αi |

∥∥∥
1

≥
∥∥Dαk

∥∥
1



1/2
αk (v (αk) + v∗ (αk))1/2

− 2

αk

k∑
i=1



1/2
αi

(v (αi) + v∗ (αi))
1/2

≥ c1 (v (αk) + v∗ (αk))1/2



1/2
αk

− c2 → ∞, when k → ∞.

The proof is complete. �
At first we prove the following estimation:

COROLLARY 3. Let f ∈ H1 and Mk < n ≤ Mk+1. Then, there exists an absolute
constant c such that

‖Snf − f ‖H1
≤ c (v (n) + v∗ (n)) ωH1

(
1

Mk
, f

)
. (25)

Proof of Theorem 3. By using Theorem 2 and obvious estimates, we find that

‖Snf − f ‖H1
≤ ∥∥Snf − SMk f

∥∥
H1

+ ∥∥SMk f − f
∥∥

H1

= ∥∥Sn (SMk f − f )
∥∥

H1
+ ∥∥SMk f − f

∥∥
H1
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≤ (v (n) + v∗ (n) + 1) ωH1

(
1

Mk
, f

)

≤ c (v (n) + v∗ (n)) ωH1

(
1

Mk
, f

)
.

Thus, the proof is complete. �
Next, we use Corollary 3 to derive necessary and sufficient conditions for the

modulus of continuity of martingale Hardy spaces Hp, for which the partial sums of
Vilenkin–Fourier series convergence in Lp-norm. We also point out the sharpness of
this result.

THEOREM 3.
(a) Let f ∈ H1 and {nk : k ∈ �} be a sequence of non-negative integers such that

ωH1

(
1

M|nk|
, f

)
= o

(
1

v (nk) + v∗ (nk)

)
, as k → ∞.

Then, ∥∥Snk f − f
∥∥

H1
→ 0, when k → ∞.

(b) Let {nk : k ≥ 1} be sequence of non-negative integers such that

sup
k∈�

(v (nk) + v∗ (nk)) = ∞.

Then, there exists a martingale f ∈ H1 and a sequence {αk : k ∈ �} ⊂ {nk :∈ �},
for which

ωH1

(
1

M|αk|
, f

)
= O

(
1

v (αk) + v∗ (αk)

)
and

lim sup
k→∞

∥∥Sαk f − f
∥∥

1 > c > 0 when k → ∞. (26)

Proof. The proof of part (a) follows immediately from (25) in Corollary 3.
Under the conditions of part (b) of Theorem 3, there exists a sequence {αk : k ∈

�} ⊂ {nk : k ∈ �} such that

v (αk) + v∗ (αk) ↑ ∞ when k → ∞ (27)

and

(v (αk) + v∗ (αk))2 ≤ v (αk+1) + v∗ (αk+1) . (28)

Let

f (n) :=
∑

{k:|αk|<n}
λkak,
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where

λk = 1
v (αk) + v∗ (αk)

, ak = DM|αk|+1
− DM|αk| .

By combining (27), (28) and Lemma 1, we conclude that the martingale f ∈ H1.

It is easy to see that

f̂ (j) =
⎧⎨⎩

1
v(αk)+v∗(αk) , if j ∈ {

M|αk|, . . . , M|αk|+1 − 1
}
, k ∈ �, . . .

0, if j /∈
∞⋃

k=0

{
M|αk|, . . . , M|αk|+1 − 1

}
.

(29)

It follows that

Sαk f =
k−1∑
i=1

DM|αi |+1
− DM|αi |

v (αi) + v∗ (αi)
+

Dαk − DM|αk|
v (αk) + v∗ (αk)

. (30)

Since

SMn f = f (n), for f = (
f (n) : n ∈ �

) ∈ Hp

and (
SMk f (n) : k ∈ �

) = (SMk SMn f, k ∈ �)

= (
SM0 f, . . . , SMn−1 f, SMn f, SMn f, . . .

)
= (

f (0), . . . , f (n−1), f (n), f (n), . . .
)
,

we obtain that

f − SMn f = (
f (k) − SMk f : k ∈ �

)
is a martingale for which

(f − SMn f )(k) =
{

0, k = 0, . . . . , n,

f (k) − f (n), k ≥ n + 1.
(31)

According to Lemma 1, we get that

∥∥f − SMn f
∥∥

H1
≤

∞∑
i=n+1

1
v (αi) + v∗ (αi)

= O
(

1
v (αn) + v∗ (αn)

)
when n → ∞.

By combining (5), (29) and (30) with Theorem 1, we obtain that

‖f − Sαk f ‖1
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≥ ‖
DM|αk|+1

− Dαk

v (αk) + v∗ (αk)
+

∞∑
i=k+1

DM|αi |+1 − DM|αi |

v (αi) + v∗ (αi)
‖1

≥ ‖Dαk‖1

v (αk) + v∗ (αk)
−

‖DM|αk|+1
‖1

v (αk) + v∗ (αk)
−

∞∑
i=k+1

‖DM|αi |+1 − DM|αi | ‖1

v (αi) + v∗ (αi)

≥ c − 1
v (αk) + v∗ (αk)

− 3
∞∑

i=k+1

1
v (αi) + v∗ (αi)

≥ c − 3
v (αk) + v∗ (αk)

.

Hence,

lim sup
k→∞

∥∥Sαk f − f
∥∥

1 > c > 0 as k → ∞.

The proof is complete. �

This known results can be found in [8].

COROLLARY 4. (a) Let f ∈ H1 and

ωH1

(
1

Mn
, f

)
= o

(
1
n

)
, when n → ∞.

Then,

‖Skf − f ‖H1
→ 0, when k → ∞.

(b) Then there exists a martingale f ∈ H1, for which

ωH1

(
1

Mn
, f

)
= O

(
1
n

)
when n → ∞

and

‖Skf − f ‖1 � 0 when k → ∞.
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