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A WALK WITH GOODSTEIN

DAVID FERNÁNDEZ-DUQUE AND ANDREAS WEIERMANN

Abstract. Goodstein’s principle is arguably the first purely number-theoretic statement
known to be independent of Peano arithmetic. It involves sequences of natural numbers
which at first appear to diverge, but eventually decrease to zero. These sequences are defined
relative to a notation system based on exponentiation for the natural numbers. In this article,
we provide a self-contained and modern analysis of Goodstein’s principle, obtaining some
variations and improvements. We explore notions of optimality for notation systems and
apply them to the classical Goodstein process and to a weaker variant based on multiplication
rather than exponentiation. In particular, we introduce the notion of base-change maximality,
and show how it leads to far-reaching extensions of Goodstein’s result. We moreover show
that by varying the initial base of the Goodstein process, one readily obtains independence
results for each of the fragments IΣn of Peano arithmetic.

§1. Introduction. Ever since Gödel’s first incompleteness theorem [9],
we know that Peano arithmetic (PA) cannot prove every true arithmetical
statement. However, Gödel’s proof is based on a specifically constructed
statement that can be argued to be artificial from the perspective of
mainstream mathematics. Since then, several facts of a purely combinatorial
or number-theoretic nature have been shown to be independent from PA [4,
5, 12–14, 18], but the oldest example is a theorem of Goodstein [10], although
it was only shown to be independent much later by Kirby and Paris [15];
see [19] for a historical overview. Goodstein’s result will be the focus of this
work.

Informally, one writes a natural number m in hereditary base 2, meaning
that m is represented in base 2 in the usual way, then so is each exponent
that appears, and so on. A precise definition will be given later, but for
example,m = 20 would be written as 222

+ 22. The Goodstein process based
on m is a sequence (Gi(m))i<α with α ≤ ∞, such that G0(m) = m and, if
Gi(m) is defined and positive, Gi+1(m) is obtained by first writing Gi(m)

Received January 25, 2022.
2020 Mathematics Subject Classification. 03F40, 03D20, 03D60.
Key words and phrases. Goodstein’s theorem, proofs of independence, fast-growing

functions.

© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic
Logic. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1079-8986/24/3001-0001
DOI :10.1017/bsl.2024.1

1

https://doi.org/10.1017/bsl.2024.1 Published online by Cambridge University Press

https://orcid.org/0000-0001-8604-4183
https://orcid.org/0000-0002-5561-5323
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/bsl.2024.1
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/bsl.2024.1&domain=pdf
https://doi.org/10.1017/bsl.2024.1


2 DAVID FERNÁNDEZ-DUQUE AND ANDREAS WEIERMANN

in hereditary base i + 2, then replacing every instance of i + 2 by i + 3, and
finally subtracting 1. The sequence terminates if it reaches zero. Thus, for
example,

G1(20) = 333
+ 33 – 1 = 333

+ 32 · 2 + 3 · 2 + 2.

This number is already large enough to be rather cumbersome to write out
and, in fact, the sequence will grow very rapidly for some time. This should
make Goodstein’s principle quite surprising: for any m that we start with,
there will be a value of i such that Gi(m) = 0. The proof uses transfinite
induction, and Kirby and Paris showed that this was, in a precise sense,
unavoidable, leading to unprovability in PA [15].

A natural question to ask is if this particular way of writing natural
numbers is ‘canonical’ in some way. For example, we could just as well have
written 20 = 222

+ 2 + 2. This would lead to a different candidate for G1(20);
namely, 333

+ 3 + 2. Is there some sense in which the standard representation
of 20 is preferable? Will the Goodstein process still terminate if we choose a
different representation of each natural number?

Remarkably, the answer to both of these questions is ‘yes’. In fact, the
two questions are intimately connected, as we will see throughout the paper.
Regarding the first question, we identify two potential criteria for a canonical
system of normal forms: first, it could be norm minimizing, meaning that we
use the least possible number of symbols to write a number. Second, it could
be base-change maximal, which roughly states that Gi+1(m) will be as large
as possible given Gi(m). While the first property is arguably more intuitive,
the second turns out to be surprisingly useful. In particular, termination for a
Goodstein process based on a base-change maximal notation system implies
that any other notation system (based on the same primitive functions) will
also yield a terminating Goodstein process.

As we will see, the hereditary exponential normal form for natural numbers
enjoys both norm minimization and base-change maximality. This tells us
that every Goodstein walk is finite, by which we mean every sequence of
numbers (mi)αi=0, where mi+1 is obtained by writing mi in an arbitrary
fashion using addition and base-(i + 2) exponentiation, then replacing
every instance of i + 2 by i + 3 and subtracting one. We may even use
multiplication, which is not needed for Goodstein’s original theorem, even
though norm minimality fails when multiplication is involved. We will
formalize and prove these results in Section 8.

We also consider some variants of Goodstein’s principle of lower proof-
theoretic strength. For each n ≥ 1, recall that IΣn is the fragment of PA
where induction is restricted to Σn formulas. First, we consider notations
based on addition and multiplication, but not exponentiation. This leads to
an independence result for IΣ1; see Section 4 for details. Finally, we show
that by varying the initial base (i.e., rather than writing m in hereditary
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A WALK WITH GOODSTEIN 3

exponential base 2, we use a different base r ≥ 2) but restricting m, we
may obtain a parametrized version of Goodstein’s principle which provides
independence results for each IΣn with n ≥ 1. These parametrized Goodstein
principles are detailed in Section 9. Meskens and Weiermann [17] have
also shown independence results for IΣn based on Goodstein principles,
albeit our approach is quite different: we consider Goodstein processes
where only the initial base is modified, while they consider sequences with
slowly changing bases. Our presentation is mostly self-contained, so that in
particular Goodstein’s original theorem and its independence from Peano
arithmetic are obtained via our methods.

Layout. In Section 2 we review Goodstein’s classical result and set up an
abstract framework which sets the stage for generalizations. Section 3 then
introduces the notions of norm minimality and base-change maximality,
which will be a focus of the paper. With these notions in mind, the
following sections study various Goodstein processes: Section 4 considers a
weakened Goodstein principle, Section 5 studies the optimality of hereditary
exponential normal forms, and Section 6 shows that base-change maximality
holds even if we extend the notation system to include multiplication.
Section 7 then compares the termination time of Goodstein processes to
Hardy functions, from which termination and independence is obtained. The
optimality results obtained are used in Section 8 to provide generalizations of
Goodstein’s theorem in terms of Goodstein walks, and Section 9 parametrizes
Goodstein’s result to obtain provability phase transitions for each IΣn.

§2. The classical Goodstein process. Let us discuss the original Goodstein
principle from an abstract perspective, which will be useful in the rest of the
text. A notation system is a family of function symbols F so that each
f ∈ F is equipped with an arity nf > 0 and a function |f| : Nnf → N. For
a function symbol f(x0, ... , xn) of arity n + 1, the parameter x0 will be
regarded as a ‘base’ and usually denoted k or �.

Given fixed k ≥ 2, the set of (closed) base k terms, T
F
k , is defined

inductively so that if �1, ... , �n ∈ T
F
k are terms and f is a function symbol with

arity n + 1, then f(k, �1, ... , �n) ∈ T
F
k . We write T

F for
⋃∞
k=2 T

F
k ; note that

T
F contains terms of all bases, but each term has a unique base.1 The value of

a term � = f(k, �1, ... , �n) is defined recursively by |�| = |f|(k, |�1|, ... , |�n|).
The norm of � is defined inductively by ‖�‖ = 1 +

∑n
i=1 ‖�i‖; note that

function symbols that depend only on k have norm one. In practice, we may
also include constant symbols c, but for theoretical purposes these will be
regarded as function symbols f of arity one such that |f|(k) ≡ c. Similarly,

1Goodstein processes with mixed bases could also be of interest and may be considered in
future work.
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4 DAVID FERNÁNDEZ-DUQUE AND ANDREAS WEIERMANN

operations such as addition might not display k but a term � + � is ‘officially’
f(k, �, �) for some symbol f with |f|(k, x, y) = x + y.

It is important to make a conceptual distinction between function symbols
and the functions they represent, as for example we can do induction on
the complexity of a term, independently of its numerical value. However,
often we will not make a notational distinction and omit | · |; whether
an expression should be treated as a value or a term will be made clear
from context. For the classical Goodstein process, we will work with the
functions/function symbols 0, x + y and kx ; we denote this notation system
by E for ‘exponential’, and write Ek instead of TE

k and E instead of TE .
It is not required that each natural number has a single notation, but a

canonical one may be chosen nonetheless. A normal form assignment for a
notation systemF is a function nf·(·) : [2,∞) × N → T

F such that nfk(n) ∈
T
F
k and |nfk(n)| = n for all k ≥ 2 and n. A notation system equipped with

a normal form assignment is called a normalized notation system. In the
case of Ek , the normal form for n ∈ N is defined as follows. Set nfk(0) = 0.
For n > 0, assume that nfk(m) is defined for all m < n. Let r be the unique
natural number such that kr ≤ n < kr+1, and b = n – kr . Then set nfk(n) =
knfk(r) + nfk(b).

Finally, we need a base-change operation to define the Goodstein process.
Given k ≤ � and � ∈ T

F
k , we define ↑�� recursively by

↑�f(k, �1, ... , �n) = f(�, ↑��1, ... , ↑��n).
If a normal form assignment is given, we can extend operations on terms

to natural numbers by first computing their normal form. In particular,
we define ‖n‖k = ‖nfk(n)‖ and ↑�kn = |↑�nfk(n)|. To ease notation, we will
sometimes write ↑n instead of ↑�kn, when k and � are made clear. We may
also write nfk(�) instead of nfk(|�|).

Definition 2.1. Let F be a normalized notation system and m ∈ N. We
define the F-Goodstein sequence beginning at m with initial base r to be the
unique sequence (mi)i<α, where α ≤ ∞, so that:

1. m0 = m,
2. mi+1 = ↑r+i+1

r+i mi – 1 if mi > 0,
3. α = i + 1 if mi = 0; if there is no such i, then α = ∞.

We write GF
i (m|r) := mi , and we often write GF

i (m) instead of GF
i (m|2).

With this, we can state Goodstein’s principle within our general frame-
work.

Theorem 2.2 (Goodstein). For every m ∈ N, there is i ∈ N such that
GE
i (m) = 0.

This theorem is a consequence of Theorem 7.16, which we will state and
prove later. Note that in Definition 2.1, the normal forms used are essential
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A WALK WITH GOODSTEIN 5

when computing ↑r+i+1
r+i mi , and Goodstein sequences based on different

normal forms may have wildly different behaviour. However, as we will see
in Section 8, Theorem 2.2 is remarkably robust and holds true for any choice
of normal forms. The proof of this uses base-change maximality, a notion
of ‘optimality’ of normal forms, as we discuss next.

§3. Optimality criteria for normal forms. For a given notation system F ,
there may be many ways to assign normal forms to natural numbers. The
question thus arises: is there an ‘optimal’ way to define normal forms? The
following two criteria could help answer this question. We say that a normal
form assignment nf is:

• norm minimizing if whenever k ≥ 2 and � ∈ T
F
k , it follows that ‖�‖ ≥

‖nfk(�)‖;
• base-change maximal if whenever k ≥ 2 and � ∈ T

F
k , it follows that

|↑��| ≤ |↑�nfk(�)| for all � ≥ k.

The motivation for norm minimizing normal forms should be clear, as these
provide the most succinct way to represent natural numbers. Base-change
maximality is perhaps a less obvious criterion, although the intuition is that
we are using the fastest-growing functions available in order to represent
numbers; from this perspective, one may expect that the two notions will
often coincide (although not always). Moreover, as we will see, base-change
maximal normal forms are rather useful. For one thing, under some mild
assumptions, they satisfy a natural monotonicity property.

Proposition 3.1. Let F be a normalized notation system which includes
addition and a term 1 which does not depend on k. Suppose that F is
base-change maximal. Then, whenever 2 ≤ k < � and m < n, it follows that
↑�km < ↑�kn.

Proof. Working inductively, we may assume that n = m + 1. Then, we
have that n = |nfk(m) + 1|, and by base-change maximality,

↑�km < ↑�nfk(m) + 1 = ↑�(nfk(m) + 1) ≤ ↑�nfk(n) = ↑�kn. 


In fact, this monotonicity property is crucial for proving that Goodstein
processes terminate, and Proposition 3.1 tells us that we have this property
for free, given base-change maximality.

Remark 3.2. Note that Proposition 3.1 can also be applied ‘locally’: if we
know that F is base-change maximal whenever |�| < N for some fixed value
of N, then from m < n < N we can deduce that ↑�km < ↑�kn. This restricted
version will be useful in inductive arguments.

In the sequel, we will evaluate various Goodstein-like processes according
to these criteria. We begin by considering a weak variant of Goodstein’s
original result.
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6 DAVID FERNÁNDEZ-DUQUE AND ANDREAS WEIERMANN

§4. A weak Goodstein principle. In this section we apply our framework
to a weak Goodstein principle based on the ‘multiplicative’ notation system
M, whose functions are 0, 1,+ and kx (which we may also denote k · x). We
will write Mk instead of TM

k . For ease of notation, we will omit parentheses
around addition and treat terms (� + �) + � and � + (� + �) as identical;
this will not be an issue, as all of the properties we consider are invariant
under associativity. For q ∈ N, we define a term q̄ by setting 0̄ = 0 and,
for q > 0, q̄ = 1 + 1 + ··· + 1 (q times); note that ‖q̄‖ = 2q – 1 in this case.
For k ≥ 2, define m =k k · p + q if p, q are the unique positive integers
such that q < k and m = k · p + q. If p = 0, set nfk(m) = q̄, and if p > 0,
define inductively nfk(m) = k · nfk(p) + q̄. Note that ‖m‖k = ‖p‖k+ 2q+ 1.
Throughout this section, all notation (e.g., nfk(m), ‖�‖, etc.) will refer
exclusively to this representation of natural numbers.

Lemma 4.1. If m ∈ N and � > k ≥ 2, then

nf�(↑�km) = ↑�nfk(m).

Proof. This is clear since q < k yields q < �. 


This normalized notation system satisfies both optimality properties, as
we see next.

4.1. Norm minimality. Let us begin by showing that our multiplicative
notation system satisfies the norm minimality property.

Theorem 4.2. If � ∈ Mk , then ‖nfk(�)‖ ≤ ‖�‖.

Proof. Writem = |�|. The claim is proven by induction on m, considering
several cases. We treat the most interesting case, which is that of a term
� = k · � + n̄. Write n = k · p + q with q < k, so thatm =k k · |� + p̄| + q.
By the induction hypothesis, ‖|� + p̄|‖k ≤ ‖� + p̄‖ = ‖�‖ + 2p. Hence,

‖m‖k ≤ ‖|� + p|‖k + 2q + 1 = ‖�‖ + 2(p + q) + 1
≤ ‖�‖ + 2n + 1 = ‖k · � + n̄‖. 


4.2. Maximality of base change. Recall that our second optimality
criterion was optimality under base change. We will show that multiplicative
normal forms also enjoy this property. This will follow from the next lemma.

Lemma 4.3. If m = k · r + s and � ≥ k, then

↑�km ≥ � · ↑�kr + s,

and equality holds if and only if m =k k · r + s .

Proof. In this proof, we write ↑x instead of ↑�kx. Proceed by induction on
m. If m = 0, then r = s = 0 and ↑0 = 0 = � · ↑0 + 0, so we assume m > 0.
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A WALK WITH GOODSTEIN 7

Write s =k k · p + q (with p or q possibly zero), so that m =k k · (r + p) +
q. Write r = ku + v in normal form. Then, the induction hypothesis yields

↑(r + p) = ↑
(
ku + (v + p)

) ih

≥ � · ↑u + v + p = ↑r + p.

Hence,

↑m = � · ↑(r + p) + q ≥ � · ↑r + �p + q ≥ � · ↑r + s,

and the last inequality is strict unless p = 0, so that m =k kr + s . 


In view of Lemma 4.3, a simple induction on term complexity yields the
following.

Theorem 4.4. If � ∈ Mk , � > k ≥ 2, and m = |�|, then

↑�km ≥ |↑��|.

§5. Optimality of exponential normal forms. Now we turn our attention
to the original Goodstein process. In this setting, it is already known that the
process terminates [11], and that this fact is independent of Peano arithmetic
[15]. We will show that the notation system used satisfies our optimality
criteria. We begin by establishing some useful basic properties.

5.1. Properties of normal forms. Recall that E has as primitive functions
0, x + y, and kx (with k ≥ 2), and is equipped with normal forms as defined
in Section 2. We will treat terms modulo associativity of addition and hence
omit parentheses. However, we will not treat term addition as commutative.
With this in mind, it is easy to check that k�0 + ··· + k�n–1 is in normal form
if and only if each �i is in normal form, �i ≥ �i+1 whenever i + 1 < n, and
�i > �i+k–1 whenever i + k – 1 < n. We will extend the notation =k to write
m =k �(k, a1, ... , an), where ai ∈ N, if m =k �(k,nfk(a1), ... ,nfk(an)); for
example, we may write 15 =2 23 + 22 + 3 or 12 =2 8 + 22 but not, say, 15 =2

7 + 23. Sums should be read from right to left, i.e.,
∑n
i=0 �i = �n + ··· + �0.

Multiplication is used as a shorthand: p · � = � + ...+ � (p times).
With this notation at hand, the following is easily checked.

Lemma 5.1. Fix k ≥ 2, m ∈ N, and �, � ∈ Ek .

1. If � + � is in normal form, then � and � are each in normal form.
2. If m =k ka and b < a, then m – kb =k

∑a–1
i=b(k – 1)ki .

3. If m = a + kb and n = kc + d are in normal form with b > c, then
m + n is in normal form.

5.2. Norm minimality. In this subsection, we will show that the hereditary
exponential notation satisfies norm minimality. We begin with some useful
inequalities.
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8 DAVID FERNÁNDEZ-DUQUE AND ANDREAS WEIERMANN

Lemma 5.2. If k ≥ 2 and m ∈ N, then ‖m + 1‖k ≤ ‖m‖k + 3.

Proof. Write m + 1 =k a + kb . If b = 0, then m = a and ‖m + k0‖k =
‖m‖k + 3 (we add one for the term 0, one for + and one for k·). Otherwise,
using Lemma 5.1, we see that m =k a +

∑b–1
i=0(k – 1)ki , and

‖m‖k + 3 ≥ ‖a + kb–1‖k + 3 = ‖a‖k + ‖b – 1‖k + 5
≥ih ‖a‖ + ‖b‖ + 2 = ‖m + 1‖k. 


With this in mind, the following useful inequality is proven by induction
on m; details are left to the reader.

Lemma 5.3. If m = ka + b, then ‖m‖k ≤ ‖a‖k + ‖b‖k + 2.

In particular, if m =k kp + q and ka + b = m, then we have that ‖p‖k +
‖q‖k + 2 = ‖m‖k ≤ ‖a‖k + ‖b‖k + 2. From this and an easy induction on
term complexity, we obtain that E is norm minimal.

Theorem 5.4. If � ∈ Ek and m = |�|, then ‖m‖k ≤ ‖�‖.

5.3. Maximality of base change. We have seen that hereditary exponential
notation satisfies norm minimality. Let us now show that it is base-change
maximal as well. This will follow from the next lemma. If F is a normalized
notation system, say that F is base-change maximal below m ∈ N if,
whenever � ∈ T

F
k and |�| < m, it follows that |↑��| ≤ |↑�nfk(�)|. Recall from

Remark 3.2 that, if F is base-change maximal below m, then whenever
x < y < m, we may conclude that ↑�kx < ↑�ky. As we wish to appeal to this
property in the proof of the following lemma, we will assume inductively
that hereditary exponential notation is base-change maximal below m.

Lemma 5.5. Fix � > k ≥ 2 and write ↑x instead of ↑�kx. Suppose that the
normalized notation systemE is base-change maximal below m. Ifm = ka + b,
then

↑m ≥ �↑a + ↑b.

Proof. Write m =k kp + q. The proof proceeds by induction on m; here
we treat the critical case, where a < p and b < kp. We note that in this case
q < ka , and thus

b = (kp – ka) + q =k

p–1∑

i=a

(k – 1)ki + q,

and hence

↑b = (k – 1)
p–1∑

i=a

�↑i + ↑q = (k – 1)
p–a∑

i=1

�↑(p–i) + ↑q.
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A WALK WITH GOODSTEIN 9

Since p < m, we may use the assumption that E is base-change maximal
below m to obtain ↑(p – i) ≤ ↑p – i , and hence

p–a∑

i=1

�↑(p–i) ≤
p–a∑

i=1

�↑p–i =
�↑p(�p–a – 1)
�p–a(� – 1)

<
�↑p

� – 1
≤ �

↑p

k
,

so ↑b < (k–1)�↑p/k + ↑q.
By monotonicity below m, available due to Remark 3.2, we have that

↑a ≤ ↑p – 1, so �↑a ≤ �↑p/� < �↑p/k. Therefore,

�↑a + ↑b < �
↑p

k
+

(k – 1)�↑p

k
+ ↑q = �↑p + ↑q = ↑m. 


Theorem 5.6. If 2 ≤ k < �, � ∈ Ek , and m = |�|, then ↑�km ≥ |↑��|.

Proof. Induction on term complexity using Lemma 5.5. 


In view of Proposition 3.1, we immediately obtain monotonicity of the
base-change operation.

Corollary 5.7. If m < n and 2 ≤ k < �, then ↑�km < ↑�kn.

From monotonicity, we readily obtain normal form preservation for
hereditary exponential normal forms.

Lemma 5.8. If m ∈ N and � > k ≥ 2, then

nf�(↑�km) = ↑�nfk(m).

Proof. Write ↑ for ↑�k . It suffices to show that if ka + b is in normal form
then so is �↑a + ↑b, since then the result follows by an easy induction on
‖nfk(m)‖.

We write ka + b = r · ka + c, where c < ka and 0 < r < k, and proceed
by a secondary induction on s ≤ r to prove that (s + 1) · �↑a > s�↑a + ↑c.
The claim will then follow, since b =k (r – 1)ka + c and

�↑a+1 = � · �↑a ≥ (r + 1) · �↑a

> �↑a + (r – 1)�↑a + ↑c = �↑a + ↑b,

as needed.
For s = 1, c < ka and Corollary 5.7 yields ↑c < ↑ka = �↑a Hence,

(1 + 1)�↑a > �↑a + ↑c. Otherwise,

(s + 1) · �↑a = �↑a + s · �↑a
ih

> �↑a + (s – 1)�↑a + ↑c = s�↑a + ↑c. 
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10 DAVID FERNÁNDEZ-DUQUE AND ANDREAS WEIERMANN

§6. Elementary functions. In this section we consider an extension of
E with product and study whether hereditary exponential normal forms
are still optimal in this context. Define L = {0, x + y, x · y, kx}. Then, for
example,

(52 + 51 + 50) · (51 + 50) = 53 + 2 · 52 + 2 · 51 + 50

= 53 + 52 + 52 + 51 + 51 + 50,

although the left-hand side has the smallest norm of the three. This tells
us that exponential normal forms no longer give minimal norms, even if
we allow for coefficients below k. However, as we will see, we still obtain
maximality under base change. Below and throughout this section, nf·(·)
denotes the normal form operator for E , as used in the standard Goodstein
theorem.

Theorem 6.1. Let � ≥ k ≥ 2, m ∈ N, and � ∈ Lk . Then, |↑��| ≤
|↑�nfk(�)|.

Proof. The theorem is proven by induction on |�| with a secondary
induction on ‖�‖. Write ↑ for ↑� . The key step is reducing a product to a term
in Ek . Suppose that � = � · �, with both terms having non-zero value. Write
nfk(�) = kα + � and nfk(�) = k� + 	. Define �′ = kα · 	 + k� · � + � · 	.
Then,

↑� = ↑� · ↑� ≤ih ↑(kα + �) · ↑(k� + 	)

= �↑α+↑� + ↑�′ ≤ih �↑α+↑� + ↑nfk(�′) = ↑(kα+� + nfk(�′)),

where the first inductive step is by the secondary induction hypothesis on
‖�‖, ‖�‖ < ‖�‖ and the second is the primary induction hypothesis on |�′| <
|�|. Note that kα+� + nfk(�′) ∈ Ek , and moreover

|�| = |kα+� + �′| = |kα+� + nfk(�′)|.
Thus, by Theorem 5.6,

|↑(kα+� + nfk(�′))| ≤ |↑ nfk(kα+� + nfk(�′))| = |↑nfk(�)|.
We conclude that |↑�| ≤ |↑nfk(�)|, as required. 


Theorem 6.1 might seem surprising, as hereditary exponential normal
forms do not involve multiplication, yet they remain base-change maximal
even compared to arbitrary elementary terms. Later, we will see that this
result leads to a wide generalization of Goodstein’s principle.

§7. Termination times of the Goodstein processes. In this section we
provide a proof that the Goodstein processes terminate by comparing them
to Hardy functions. These are functions defined by transfinite induction up
to ε0. Our analysis will yield additional information which will also lead
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to independence results. We begin by reviewing these functions and their
properties.

7.1. Hardy functions and independence. Recall that ε0 is the first fixed
point of the function � �→ ��, and by the Cantor normal form theorem, every
non-zero � < ε0 can be written in the form �α + � with α, � < � < �α+1.
The Cantor normal form of 0 is 0.

Definition 7.1. For � < ε0 and n ∈ N, we define �[n] recursively by:

• 0[n] := 1[n] := 0;
• (�α + �)[n] := �α + �[n] if �α + � is in Cantor normal form and
� > 0;

• (�α+1)[n] := �αn;
• (�α)[n] := �α[n] if α is a limit.

These fundamental sequences satisfy the essential properties thatα[n] < α
if α �= 0 and, if α < ε0 is a limit ordinal, then (α[n])n<� is an increasing
sequence converging to α. Another key property of these fundamental
sequences is the Bachmann property; see [20, 22] for details.

Proposition 7.2 (Bachmann property). If α, � < ε0 and k ∈ N satisfy
α[k] < � < α, then α[k] ≤ �[1].

For example, ��[4] = �4 and �4 < �6 < ��, while �4 < �5 = �6[1].
The intuition here is that if � ∈ (α[k], α) and we iteratively apply
fundamental sequences to � , we will be ‘stuck’ in the interval (α[k], α),
unless we pass through α[k]. Note that this may fail if we replace 1 by 0, as
�6[0] = 0 < ��[4].

We also need to identify conditions under which we can guarantee that
�[n] ≥ 
 for 
 < �. To this end, define the maximal coefficient of 
, mc(
),
to be the largest natural number appearing in 
 when written in Cantor
normal form. To be precise, mc(0) = 0, and if 
 = �αn + � with � < �α,
then mc(
) = max{n,mc(α),mc(�)}. The following is proven in, e.g., [8].

Lemma 7.3. Let � < ε0 and n ∈ N. Then,

1. mc(�[n]) ≤ max{mc(�), n}, and
2. if 
 < � and mc(
) < n then 
 ≤ �[n].

Fundamental sequences can be used to define fast-growing functions on
the natural numbers, such as the Hardy functions below.

Definition 7.4. For x ∈ N and α < ε0, we define:

• H0(x) = x;
• Hα(x) = Hα[x](x + 1) if α �= 0.

The intuition is that eachHα is an increasing function, which grows more
quickly for larger α.
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Theorem 7.5 [3].

1. If x < y and α < ε0, thenHα(x) < Hα(y).
2. If α < � and x > mc(α), then Hα(x) < H�(x).

The totality of these functions cannot be proven over weak theories.
To make this precise, define �n to be a tower of n �’s, i.e., �0 = 1 and
�n+1 = ��n .

Theorem 7.6 [6, 21]. For n ∈ N \ {0},

1. IΣn proves thatHα is total if and only if α < �n+1.
2. If f is a provably total computable function in IΣn, then there is N ∈ N

such that for all x > N , f(x) < H�n+1(x).

Thus a general strategy for proving independence of Π0
2 statements is

showing that they require witnesses growing faster than suitable Hardy
functions. This approach based on the Hardy function and variants has
been used in various classic independence results by, e.g., Cichon [2], Loebl
and Nešetřil [16], and, of course, Kriby and Paris’ proof of independence of
Goodstein’s theorem [15]. The following is useful in establishing such lower
bounds.

Proposition 7.7. Let x > 0, � < ε0, and (�n)n≤� be a sequence of ordinals
below ε0 such that:

1. �[x] < �0 ≤ �,
2. for all n < �, �n[x + n] ≤ �n+1 ≤ �n, and
3. �� = 0.

Then, � + x ≥ H�(x).

Proof. We prove the lemma by induction on �. The claim is vacuously
true when � = 0 (i.e., �0 = 0), so we assume otherwise. Consider two cases.

Case 1 (�[x] < �1). Then, the sequence (�n+1)n≤�–1 once again satisfies
the assumptions, since �n+1[x + n] ≤ �n+1[x + n + 1] ≤ �n+2. By induction
on �, we obtain � – 1 + x ≥ H�(x). 


Case 2 (�[x] = �1). Then, the sequence (�n+1)n≤�–1 satisfies the assump-
tions, but for � replaced by �[x] and x replaced byx + 1, since �n+1[(x + 1) +
n] = �n+1[x + n + 1] ≤ �n+2. Thus we obtain � + x = (� – 1) + (x + 1) ≥
H�[x](x + 1) = H�(x).

We will also need to establish upper bounds in terms of the Hardy
functions. For this, we use the following.

Proposition 7.8. Let x ∈ N and (�n)n≤� be a sequence of ordinals below ε0
such that �0 ≤ �, �n > 0 if n < �, and for all n < �, �n+1 < �n and mc(�n+1) ≤
x + n. Then, � + x < H�(x + 1).
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Proof. If �0 = 0, then � + x = x < x + 1 = H0(x + 1). Otherwise, con-
sider the sequence (�n+1)n≤�–1; we claim that it satisfies the assumptions of
the proposition, but with � replaced by �[x + 1] and x replaced by x + 1. By
Lemma 7.3, �1 ≤ �[x + 1], and mc(�n+2) ≤ x + n + 1 = (x + 1) + n. So,
induction on � yields (� – 1) + (x + 1) < H�[x+1](x + 2) = H�(x + 1), i.e.,
� + x < H�(x + 1), as needed. 


7.2. Termination of the weak Goodstein process. We now show that the
weak Goodstein process terminates in time H�� . In this subsection, all
notation (e.g., nfk(·)) refers to the notation system M of Section 4. If F is a
normalized notation system and m ∈ N, we define GF

∞(m) to be the least �
such that GF

� (m) = 0, and GF
∞(m) = ∞ if no such � exists. More generally,

GF
∞(m|r) is the least � such that GF

� (m|r) = 0, if it exists. We will show that
GF

∞(m|r) ≈ H↑�r m(r), so the left hand is finite since the right hand is.
To make this precise, we need to introduce an ordinal assignment for

terms. We note that the operations in M are well-defined on the ordinals,
and as such we can consider expressions with base �. For � ∈ Mk , we
define ↑�� to be the result of replacing every occurrence of k by �, i.e.,
↑�0 = 0, ↑�(� + �) = ↑�� + ↑��, and ↑�k� = �↑��. Ifm ∈ N, then ↑�k m :=
|↑�nfk(m)|.

To continue, we need to calculate the normal form ofm – 1. The following
is easy to check.

Lemma 7.9. Suppose that 0 < m =k kp + r and k ≥ 2.

1. If r > 0, then m – 1 =k kp + (r – 1).
2. If r = 0, then m – 1 =k k(p – 1) + (k – 1).

Inspection on Definition 7.1 then yields the following.

Lemma 7.10. For every m ∈ N and k ≥ 2,

↑�k (m – 1) = (↑�k m)[k – 1].

Below, we note that ↑�� is defined according to the base of �; if
� ∈ Mk , then ↑�� is obtained by replacing every occurrence of k by �, and
if � ∈ M� , then ↑�� is obtained by replacing every occurrence of � by �. A
routine induction on term complexity shows that if � ∈ T

M
k and � > k, then

↑�↑�� = ↑��. From this, we readily obtain the following.

Proposition 7.11. If 2 ≤ k < �, then ↑�� ↑�km = ↑�k m.
Proof. Write � := nfk(m). By Lemma 5.8, nf�(m) = ↑��. Hence,

↑�k m = ↑�� = ↑�↑�� = ↑�� ↑�km. 


Theorem 7.12. For every m ∈ N and k ≥ 2, GM
∞ (m|k) is finite and

GM
∞ (m|k) + k = H↑�k m(k).
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Proof. We use transfinite induction below �� on ↑�k m. The base case,
where m = 0, yields k on both sides. Otherwise, we use Lemma 7.10 to see
that

GM
∞ (m|k) = 1 + GM

∞ (↑k+1
k m – 1|k + 1)

ih= 1 +H↑�k+1(↑k+1
k m–1)(k + 1) – k – 1

= H(↑�k m)[k](k + 1) – k (by 7.10 and 7.11)

= H↑�k m(k) – k,

where we are justified in using the induction hypothesis since

↑�k+1(↑k+1
k m – 1) = (↑�k ↑k+1

k m)[k – 1] = (↑�k m)[k – 1] < ↑�k m. 


Corollary 7.13. IΣ1 does not prove that for everym ∈ N, GM
∞ (m) is finite.

Proof. Let ax = 22x . Then it is not hard to check that ↑�2 ax = �2x , and
H�2x (2) > H�x (x + 1) = H��(x). But then, by Theorem 7.12, GM

∞ (ax) +
2 > H��(x). It follows from the second item of Theorem 7.6 that IΣ1 does
not prove that GM

∞ (ax) is finite for all x. 


7.3. Termination of the classic Goodstein process. Now we turn our
attention to the classic Goodstein process based on E . Recall that in this
context, r · � is shorthand for � + ··· + �, r times.

Lemma 7.14. If k ≥ 2 and � is in base k normal form, then mc(↑�k �) < k.

Proof. It suffices to observe that r · ka + b cannot be in normal form for
any r ≥ k, since otherwise

r · ka + b ≥ ka+1.

With this and an easy induction on term complexity, we see that no term in
normal form may contain coefficients greater than or equal to k. 


The following may readily be checked by induction on m, by writing m =
ka + b in normal form and comparing ↑�k (m – 1) to (↑�k m)[k – 1] according
to Definition 7.1.

Lemma 7.15. If k ≥ 2 and 0 < m ∈ N, then

(↑�k m)[k – 1] ≤ ↑�k (m – 1) < ↑�k m.
Note that in contrast to Lemma 7.10, we do not always obtain equality

on the left, but this is enough to obtain a lower bound. It is also worth
remarking that ↑�k (m – 1) < ↑�k m for allm > 0 is equivalent to the statement
that if n < m, then ↑�k n < ↑�k m and thus the�-base change is monotone, just
as the finitary ones. This lemma will allow us to compare Hardy hierarchies
with the length of the standard Goodstein process.
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Theorem 7.16. For all m ∈ N and x ≥ 2,

H↑�x m(x) ≤ GE
∞(m|x) + x ≤ H↑�x m(x + 1).

Proof. The upper bound is immediate from Lemmas 7.14 and 7.15
and Proposition 7.8, while the lower bound follows from Lemma 7.15 and
Proposition 7.7. 


Corollary 7.17. PA does not prove that for everym ∈ N, GE
∞(m) is finite.

Proof. If this were provable in PA, it would be provable in IΣn
for some n. For k > 0, it would follow that the function f given by
f(x) = GE

∞(2n+x+1) + 2 is total, where xy denotes the superexponential
function. But ↑�2 2n+x+1 = �n+x+1, and it is easy to check using Theorem
7.5 and an easy induction thatH�n+x+1(2) > H�n+1(x), so f(x) > H�n+1(x),
contradicting the second item of Theorem 7.6. 


§8. Goodstein walks. In this section we introduce and study Goodstein
walks. These are Goodstein-like processes which are defined independently
of a normal form representation; natural numbers may be written in an
arbitrary way using the functions from F . Aside from this, the definition is
analogous to that of standard Goodstein processes.

Definition 8.1. Fix a notation system F . A Goodstein walk (for F) is a
sequence (mi)i<α, where α ≤ ∞, such that for every i < α, there is a term
�i ∈ T

F
i+2 with |�i | = mi and mi+1 = ↑i+3� – 1.

Theorem 8.2. LetF be a normalized notation system with + and 1. Suppose
that F is base-change maximal, and that for every m ∈ N there is i ∈ N such
that GF

i (m) = 0. Then, every Goodstein walk for F is finite.

Proof. Let F satisfy the assumptions of the theorem and (mi)αi=0 be
a Goodstein walk for F . Let m = m0. By induction on i, we check that
mi ≤ GF

i (m). For the base case this is clear. Otherwise, mi+1 = |↑i+3�i | – 1
for some term �i ∈ T

F
i+2, and thus

mi+1 = |↑i+3�i | – 1 ≤ ↑i+3
i+2mi – 1

ih

≤ ↑i+3
i+2GF

i (m) – 1 = GF
i+1(m),

where the second inequality uses Proposition 3.1 and the assumption that F
is base-change maximal. Thus if we choose i such that GF

i (m) = 0, we must
have α ≤ i . 


As a corollary, we obtain the following extension of Goodstein’s theorem.

Theorem 8.3. Any Goodstein walk for M, E , or L is finite.

Example 8.4. Consider alternative normal forms based on L as follows.
Let k ≥ 2 and m ≥ 0. First, set nfk(0) = 0. For m > 0, let p1 ···pn be the
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decomposition of m into prime factors. If n ≤ 1, we write m = kr + b with
m < kr+1 (as in the exponential normal forms) and set nfk(m) = knfk(r) +
nfk(b). Otherwise, set nfk(m) = nfk(p1) ···nfk(pn).

These normal forms do not have the natural structural properties that
are useful in a direct proof of termination. For example, 7 =3 31 + 31 +
1 and 8 =3 2 · 2 · 2. It follows that ↑4

37 = 41 + 41 + 1 = 9 and ↑4
38 = 2 · 2 ·

2 = 8. Thus the base-change operator is not monotone, in the sense that the
analogue of Corollary 5.7 fails. Similarly, the natural ordinal assignment
would not be monotone, as it would yield ↑�3 7 = � · 2 + 1 and ↑�3 8 = 8.
Without these monotonicity properties, a termination proof as given in
Section 4 would not go through. Nevertheless, the Goodstein process based
on these normal forms is terminating by Theorem 8.3, and such a direct
proof is not needed.

§9. Phase transitions. We have defined general Goodstein sequences
Gi(m|r), where r ≥ 2 is the base of the first term. In this section, we
aim to find weakenings of this statement provable in IΣn. The strategy
is to bound the value of n, but for any fixed r and N, the statement
∀m < N (GE

∞(m|r) <∞) is provable in IΣ1 (or even weaker systems) since it
can be proved by checking finitely many instances. Instead, we may let r vary,
and moreover have N depend on r. Specifically, we will set N = rk , where
we recall that xy denotes the superexponential function. The provability of
the termination of such restricted Goodstein processes in IΣn depends on
whether k ≤ n.

Theorem 9.1. For k ≥ 1, let ϕk be the statement

For every r ≥ 2 and every m < rk , GE
∞(m|r) is finite.

Then, for every n, k ≥ 1, IΣn � ϕk if and only if k ≤ n.

Proof. Fix n, k ≥ 1. Let r ≥ 2 and m < rk . By Lemma 7.15, ↑�r m <
↑�r rk = �k .

By Theorems 7.16 and 7.5, along with mc(↑�r m) < r by Lemma 7.14,
GE

∞(m|r) < H↑�r m(r + 1) < H�k (r + 1). Moreover, we established these
inequalities using elementary means, so they are provable in IΣn. If k ≤ n,
from the provable totality ofH�k in IΣn (Theorem 7.6), we conclude that ϕk
is provable in IΣn.

If k > n, let m = (r + 1)k – 1. Note that H�k (r) = H�k [r](r + 1). By
Lemma 7.15, ↑�r+1m ≥ �k[r] = �kr. Since mc(�kr) = r, in view of
Theorems 7.5 and 7.16, it follows that H�k [r](r) < H↑�r+1m

(r + 1) ≤
GE

∞(m|r + 1) + r + 1. Thus the function

r �→ GE
∞((r + 1)k – 1|r + 1) + r + 1
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grows faster thanH�n+1(r); hence, once again by Theorem 7.6, the statement
∀r

(
GE

∞(rk – 1|r) <∞
)

is not provable in IΣn. Since clearly rk – 1 < rk ,
neither is ϕk . 


§10. Concluding remarks. We have explored two notions of ‘optimality’
for notations for Goodstein processes. The first, norm minimality, is
naturally motivated, but we have seen that it may fail for some otherwise
well-behaved normal forms; specifically, for the notation system L and the
standard Goodstein normal forms. The second, base-change maximality, is
perhaps more subtle but leads to some very interesting consequences: most
notably, it allows for ‘normal form-free’ Goodstein processes. In the context
of M and E , normal forms are simple enough that the benefit of eliminating
them is debatable. However, already for elementary terms we have that the
standard normal forms are not norm-minimizing, and it is unclear if norm-
minimizing terms will lead to a Goodstein process with a natural ordinal
interpretation. Thus it is surprising that such an ordinal interpretation—
or even identifying norm-minimizing normal forms to begin with—is not
needed to establish the termination of any Goodstein processes based on
this notation system.

However, for more powerful notation systems, the elimination of normal
forms becomes more pressing, and here the base-change maximality
technique is crucial. For notation systems based on the Ackermann
function [1], normal forms are already quite cumbersome, so normal
form-free Goodstein principles would lead to substantially more accessible
independent statements. We have already applied base-change maximality
to fast-growing hierarchies [7], where once again normal forms can be quite
complex. We believe that, going forward, the analysis of norm-minimality
and, especially, base-change maximality will become an essential ingredient
in the study of new and ever-more-powerful Goodstein principles.
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[16] M. Loebl and J. Nešetřil, An unprovable Ramsey-type theorem. Proceedings of the
American Mathematical Society, vol. 116 (1992), no. 3, pp. 819–824.

[17] F. Meskens and A. Weiermann, Classifying phase transition thresholds for Goodstein
sequences and hydra games, Gentzen’s Centenary: The Quest for Consistency (R. Kahle and
M. Rathjen, editors), Springer, Cham, 2015, pp. 455–478.

[18] J. Paris and L. Harrington, A mathematical incompleteness in Peano arithmetic,
Handbook of Mathematical Logic (J. Barwise, editor), North-Holland, Amsterdam, 1977,
pp. 1133–1142.

[19] M. Rathjen, Goodstein’s theorem revisited, Gentzen’s Centenary: The Quest for
Consistency (R. Kahle and M. Rathjen, editors), Springer, Cham, 2015, pp. 229–242.

[20] D. Schmidt, Built-up systems of fundamental sequences and hierarchies of number-
theoretic functions. Archive for Mathematical Logic, vol. 18 (1977), no. 1, pp. 47–53.

[21] S. S. Wainer and W. Buchholz, Provably computable functions and the fast growing
hierarchy, Logic and Combinatorics (S. G. Simpson, editor), Contemporary Mathematics,
vol. 65, American Mathematical Society, Providence, 1987, pp. 179–198.

[22] A. Weiermann, Classifying the provably total functions of PA, this Journal, vol. 12
(2006), no. 2, pp. 177–190.

DEPARTMENT OF PHILOSOPHY
UNIVERSITY OF BARCELONA

BARCELONA, SPAIN
E-mail: fernandez-duque@ub.edu

https://doi.org/10.1017/bsl.2024.1 Published online by Cambridge University Press

https://arxiv.org/abs/2111.15328
https://arxiv.org/abs/2203.07758
mailto:fernandez-duque@ub.edu
https://doi.org/10.1017/bsl.2024.1


A WALK WITH GOODSTEIN 19

DEPARTMENT OF MATHEMATICS: ANALYSIS
LOGIC AND DISCRETE MATHEMATICS

GHENT UNIVERSITY
GHENT, BELGIUM

E-mail: Andreas.Weiermann@UGent.be

https://doi.org/10.1017/bsl.2024.1 Published online by Cambridge University Press

mailto:Andreas.Weiermann@UGent.be
https://doi.org/10.1017/bsl.2024.1

	1 Introduction
	Layout.
	2 The classical Goodstein process
	3 Optimality criteria for normal forms
	4 A weak Goodstein principle
	4.1 Norm minimality
	4.2 Maximality of base change

	5 Optimality of exponential normal forms
	5.1 Properties of normal forms
	5.2 Norm minimality
	5.3 Maximality of base change

	6 Elementary functions
	7 Termination times of the Goodstein processes
	7.1 Hardy functions and independence
	7.2 Termination of the weak Goodstein process
	7.3 Termination of the classic Goodstein process

	8 Goodstein walks
	9 Phase transitions
	10 Concluding remarks
	REFERENCES

