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Abstract

A multisymplectic structure on a manifold is defined by a closed differential form with zero characteristic
distribution. Starting from the linear case, some of the basic properties of multisymplectic structures
are described. Various examples of multisymplectic manifolds are considered, and special attention is
paid to the canonical multisymplectic structure living on a bundle of exterior fc-forms on a manifold. For
a class of multisymplectic manifolds admitting a 'Lagrangian' fibration, a general structure theorem is
given which, in particular, leads to a classification of these manifolds in terms of a prescribed family of
cohomology classes.
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1. Introduction

A canonical structure which naturally appears in the covariant Hamiltonian formula-
tion of classical field theories, is that of a closed (more precisely, exact) nondegenerate
differential form of degree k + 1 on a bundle of exterior it-forms over a (fibred) mani-
fold (see [6,10-12]). Nondegenerate here means that the characteristic distribution of
the form consists of the zero vector field only. This form yields a natural extension of
the canonical symplectic form on a cotangent bundle, and we will follow the previous
authors in calling it a multisymplectic form. Multisymplectic structures in field theory
play a role similar to that of symplectic structures in classical mechanics. In particular,
they provide a natural geometric framework adapted to the variational character of the
theory.
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The use of multisymplectic structures in field theory seems to originate from
Tulczyjew's 1968 Warsaw seminars on 'Phase Space Theory' (see also [4] for some
historical comments). Many of the ideas which were presented in these seminars have
later gradually found their way into the literature (see [19,30,33]). In the seventies,
Kijowski and Szczyrba have developed a finite dimensional canonical formalism for
classical field theory which explicitly relies on the notions of multiphase space and
multisymplectic structure, first introduced by Tulczyjew (see [17,18]). Around the
same time, similar ideas were also developed by others (see [8,9]).

In the present paper we extend the concept of multisymplectic form to any closed
and nondegenerate differential form on a manifold. Symplectic forms and volume
forms in particular belong to this category. Apart from these two extreme cases there
are, however, various other interesting types of manifolds which carry a distinguished
multisymplectic form such as, for instance, quaternionic (almost) Kahler manifolds.
The study of these manifolds may therefore benefit from a better insight into the
geometry of multisymplectic structures. Recently, one of us has also pointed out
the existence of multisymplectic structures on the moduli spaces of some Yang-
Mills theories in dimensions 3 and 4 [15]. To our knowledge, the first detailed study
devoted to the structure of multisymplectic manifolds, is due to Martin [22]. Although
Martin's definition of a multisymplectic form is somewhat more restrictive than ours,
and appears to be less suited for applications to canonical field theory, his work has
certainly shed some light on the nice geometry induced by such forms and he has
also indicated some other potential areas of application (see also [23]). All of this
has motivated us to initiate a systematic study of general multisymplectic structures.
Attention will thereby be paid to purely theoretical aspects as well as to applications.
In the present paper we will confine ourselves to some of the basic concepts and
properties related to the existence of a multisymplectic structure on a manifold.

The structure of the paper is as follows. In Section 2, Section 3 and Section 4, we
will deal with the linear theory, that is the study of multisymplectic vector spaces. In
Section 2, after some introductory definitions, we briefly comment on the general clas-
sification problem of linear multisymplectic structures, and certain canonical models
of multisymplectic vector spaces are described. Section 3 starts with a discussion
of the notion of orthogonal complement of a subspace of a multisymplectic vector
space. It is pointed out that for a multisymplectic form of degree k + 1 > 2 there
is a possibility of defining k different types of 'orthogonal complement', each giving
rise to a corresponding notion of isotropic, coisotropic and Lagrangian subspace. In
Section 4, necessary and sufficient conditions are established for a multisymplectic
vector space to be isomorphic to a canonical one. Section 5 then passes to the study of
multisymplectic manifolds. The concepts introduced in the previous sections are ex-
tended to the differentiable setting, and some interesting examples of multisymplectic
manifolds are given. The canonical multisymplectic structure on a bundle of exterior

https://doi.org/10.1017/S1446788700036636 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036636


[3] On the geometry of multisymplectic manifolds 305

forms is studied in Section 6. Finally, in Section 7 we introduce a notion of polarized
multisymplectic manifold and present a general structure theorem for such manifolds.
Throughout this paper, all manifolds and related objects (maps, vector fields, forms,
. . . ) are assumed to be of class C°°.

To close this introduction we wish to emphasize that our notion of multisymplectic
structure should be clearly distinguished from certain other structures which have
recently been discussed in the literature such as, for instance, ifc-almost cotangent
structures [20]. The latter, in particular, constitute a generalization of the so-called
polysymplectic structures [13] and fe-symplectic structures [2,3]. A polysymplectic
structure refers to a particular vector valued differential form on (the affine dual
of) a first order jet bundle, which plays a key role in some geometric approaches to
Hamiltonian field theory (see [13,16,28,29]). A &-symplectic structure on a manifold
is determined by k closed 2-forms which verify some compatibility conditions. A
canonical model of a i-symplectic structure is provided by the 'generalized symplectic
structure', determined by the soldering form on the linear frame bundle of a manifold,
which has recently been studied by Norris et al. [7,26]. In an appropriate setting it can
be shown that polysymplectic and ifc-symplectic structures are essentially equivalent
and can be identified with an integrable ^-almost cotangent structure.

2. Multisymplectic vector spaces

Given a vector space V we will denote the space of exterior &-forms on V by /\ V*.
By an exterior form (or simply a form) on a vector space, we mean an alternating
multilinear function on that space with values in the field of scalars. In particular, we
have / \ ' V* = V*, that is the dual space of V. The contraction of a vector v e V and
an exterior /fc-form won V will be denoted by ivco.

DEFINITION 2.1. (i) A multisymplectic vector space (¥, co) of order k + 1 consists
of a vector space ¥ and an exterior (k + l)-form co on ¥ (with 1 < k + 1 < dim ¥)
which is nondegenerate in die sense that ivco = 0 if and only if v = 0. The form co is
called a multisymplectic form (of degree k + 1).

(ii) Two multisymplectic vector spaces (¥, co) and (¥, co) of equal order k + 1 are
said to be isomorphic if there exists a linear isomorphism * : f i ^ f such that

for all vt € r ( i = 1, . . . , Jfc+1).

We note that for k = 1 the above definition reduces to mat of a symplectic vector
space. Nondegeneracy of a multisymplectic form co of degree k + 1 means that the
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induced linear map

cb : Y -+ /\k Y*, U H ivco

is injective. Alternatively, one can say that an exterior form w o n a vector space Y is
multisymplectic if its rank is equal to the dimension of Y. It immediately follows that
a n-dimensional vector space cannot admit a multisymplectic form of degree n — 1.
Indeed, it is known that a (nonzero) (n — l)-form on a n-dimensional space can only
have rank n — 1. (In fact, it can be shown more generally that a p-form can never
have rank p + 1). In the sequel we will restrict ourselves to the case of real finite
dimensional vector spaces. Much of what follows can be easily carried over, however,
to the case of complex and infinite dimensional linear spaces.

EXAMPLES. 1. A volume form on a n-dimensional space defines a multisym-
plectic structure of order n.

2. Consider a 6-dimensional space Yo with basis [e, | i = 1 , . . . , 6} and dual
basis [6' \ i = 1 , . . . , 6). One easily verifies that the 3-form

= ex A #4
 A e5 + e2 A e4 A 6>6 + e3 A e5 A e6 + 94 A e5 A 6

is nondegenerate in the sense specified above and, hence, induces a multisymplectic
structure of order 3 on Yo. We will return to this example later on.

Vector spaces equipped with an exterior form of a given rank have already been con-
sidered extensively in the literature. For completeness we recall here some interesting
results from a paper by Martinet [24]. Let E*+' denote the set of exterior (k + l)-forms
of rank r on a n-dimensional vector space Y. Martinet has demonstrated that each
non-void E*+' is a regular submanifold of /\k+l f* of dimension C*+l + r(n — r)
(or 0 for r = 0), and that these submanifolds determine a stratification of /\*+1 Y*.
The closure of E*^1, which is given by £*+' = f ) s < r S*^1, is an algebraic manifold.
Furthermore, it can be shown that f o r 3 < f c + l < n — 3 and for each allowable
value of r (that is r = 0, k + 1, k + 3 , . . . , n), E*^1 is non-void and, in particular, for
r = n it yields an open dense submanifold of f\k+l Y*. Hence, on vector spaces of
dimension n > 6, multisymplectic structures of order 3 < £ + l < n — 3 are generic.

Returning to the case of multisymplectic forms (r = n), an important problem
concerns their classification. Classifying multisymplectic structures amounts to de-
scribe the orbits of the group of linear automorphisms Gl(Y) of Y acting on E*+'
(see [24,27,35,36]). For the symplectic case, with n even and k + 1 = 2, the situ-
ation is well-known: Gl(Y) acts transitively on E^n. For a discussion of the case
k+\ = n—2, we may again refer to the paper by Martinet. The classification of multi-
symplectic structures of order 3 on real vector spaces up to dimension 7 has also been
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established (see [27,36] and references therein). In particular, on a 6-dimensional
space there are 2, and on a 7-dimensional space there are 8 equivalence classes (that
is G/(?0-orbits) of multisymplectic forms of degree 3. To our knowledge, apart from
these particular cases, the general classification problem of multisymplectic structures
largely remains open up to date. To illustrate the complexity of the problem, we may
still point out that for n > 9 and 3 < k+l < n —3, it is easy to show that the dimension
of E**1 is greater than the dimension of Gl(V). The orbit space E*+'/Gl(V) turns
out to be a manifold of dimension greater than 1, the description of which, however,
is not yet known.

In what follows we will concentrate on a particular class of multisymplectic struc-
tures that possess some remarkable properties which, in a sense to be discussed below,
extend the properties of symplectic structures.

It is well-known that for any vector space V, the space V x V* admits a canonical
symplectic form £2, defined by

(2) £2((ui, oil), (v2, a2)) = ctzivi) — et\(v2)

for vlt v2 G V and ot\,a2 € V* (see [1,21]). This structure has the following natural
extension to the multisymplectic setting. For any k, with 1 < k < dim V, the space
V x / \ V* can be equipped with a canonical exterior (Jk + l)-form £2 which is given
by

(3) Q((vuai),... ,(vk+i,ak+i)) =

for Vj e V and a, e / \ V*, where 0, means that vt is omitted. It is now a simple
exercise to show that the following holds.

PROPOSITION 2.2. (V x /\* V*, Q) is a multisymplectic vector space of order k + l.

REMARKS. 1. The (irreducible) length of an exterior form co can be defined as
the number of decomposable forms appearing in the shortest representation of co as a
sum of decomposable forms. It has been pointed out in [24] that both the rank and
the length of an exterior form are invariants under the group of linear automorphisms.
One can now add to the statement of the previous proposition that the multisymplectic
form Q has length C*, where n = dim V. (A proof of this can be easily deduced from
the discussion in Section 4.)

2. If k = dim V, f\k V* is a 1-dimensional linear space. Fixing a volume form v
on V, each exterior )fc-form is a constant multiple of v. The canonical multisymplectic
form Q then yields a volume form on V x f\k V*, and putting a, = k, v with A, € K,
(3) reads
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For convenience, we introduce the shorthand notation

yv* = v x A* v*.

We will now identify an important class of multisymplectic subspaces of (¥$, Q).
For the remainder of this section, both V and k (with 1 < k < dim V) are supposed
to be fixed.

Let n : V —> W be a linear surjective map of V onto a vector space W and
consider the short exact sequence

0-*ker7r^+ V -4 W -» 0.

For any r, with 0 < r < k — l,we denote by /\* 7r the space of exterior jfc-forms on
V which vanish whenever r + 1 of its arguments belong to ker n (that is, are vertical
with respect to the 'fibration' n). More explicitly, a &-form a on V belongs to /\* n
if and only if

for all V\,... , vr+i e ker jr. Elements of f\k
rn are also called (& — r)-horizontal

jt-forms on V (with respect to n) and we have the following filtration:

In particular, note that /\* 7r = /\* W*, and if dim(ker7r) < yt, then /\k
rn — /\k V*

for all r > dim (ker 7r). Next, put

Clearly, for each 0 < r < k, y£k'r) is a subspace of y*. Now, whenever k—r < dim W,
one easily verifies (using a similar argument as in the proof of Proposition 2.2) that the
restriction of the canonical multisymplectic form £2 to ̂ ( t r ) is also nondegenerate and,
hence, induces a multisymplectic structure on ^<*r). This induced multisymplectic
form is still given by the expression (3), with vt e V and a, € /\* n and, therefore,
we will also denote it by Q. We thus have the following result.

PROPOSITION 2.3. For each r, with 0 < r < k - 1 and k- r < dim W, {f^Kr\ SI)
is a multisymplectic vector space of order k + 1.

This proposition tells us that any fibration n of a given vector space V, gives
rise to a family of multisymplectic vector subspaces of Q^, !3). In particular, the
multisymplectic structure obtained by restricting £2 to ^kA) = V x /\* n is a linear
model for the canonical multisymplectic structure arising in the covariant Hamiltonian
formulation of field theory (see [6,10,12]).
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3. Isotropic, coisotropic and Lagrangian subspaces

On a symplectic vector space there is a natural notion of orthogonal complement
of a subspace with respect to the given symplectic 2-form. On a multisymplectic
space of order k + 1 > 2, however, there are several options for defining some kind
of 'orthogonality'. Indeed, let (Y, co) be an arbitrary multisymplectic vector space
with a> a nondegenerate (k + l)-form, and let W be a subspace of "V. For each /, with
1 < / < k, the Z-th orthogonal complement of W is the linear subspace of "¥ defined
by

W1-1 = [v e V | iVA«,lA...Aa(|<u = 0, for all w, , e W, i = 1 , . . . , /}.

From this definition it can immediately be deduced that for each subspace W there
exists a filtration of orthogonal complements

(4) W±A c WL-2 c . . . c Wx*

and, moreover, W1-' = y whenever / > dim W. One also readily verifies that

(5) WD WJ-*

where co\w denotes the restriction of a> to W andker(a>\w) — [w e W \ iw(a)\w) = 0}.
Although it will soon turn out that only the orthogonal complements of 'lowest'

and 'highest' order (that is for / = 1 and I = k, respectively) have a significant role
to play in the further development of the theory, we will nevertheless, for the sake of
completeness, also present some properties of general orthogonal complements.

PROPOSITION 3.1. Let (y,co)bea multisymplectic vector space of order k+l, and
let U and W be arbitrary subspaces of Y. Then, for any I, l\, li € {1,... , k]:

(i) {0}J"' = r a n d r J ~ ' = {0};
(ii) UCW=* W±J C Uu\

(iii) (£/+ HO1'' C UL-' n W1-';
(iv) U±M n W1-'* C(U+ W)J~''+fe-1/orZ1 + l2 < k + 1;
(v) U±J' + WL-h c (U n W)lJ with I = max{/,, l2}.

PROOF. The proofs of (i) and (ii) follow immediately from the definition of l-th
orthogonal complement (and the nondegeneracy of co).

(iii) Since U C U + W and W C U+W, (iii) is an immediate consequence of (ii).
(iv) Let v e U±M n W±J', with /, +l2 < k+1. Take /, +/ 2 - 1 arbitrary elements of U+
W : Ui + wu ... , M/ 1 + / 2 _ ,+IO / I + / 2 _I . Then, co (v, «] + wu... ,uh+h^ + wh+h^u . . . )
can be expanded into a sum of terms containing p elements M, € U and q elements
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u\ € W, with p + q = h +l2 — 1. If p < h, then q > l2, and the corresponding term
in the expansion vanishes because v e W1-'2. On the other hand, the terms for which
p > l\ vanish since v € U^-'1. Therefore, co{v, u\ + u > i , . . . , w;1+/2-i + wil+tl-i,...) =
0 for all K,- + it;,- € U + W and so v e (U + W)-*-'1*'2-1.

(v) Since UDW C U, combination of (ii) and (4) yields U±J> C (U D W0x'.
Similarly, from [ / f l f f c W we derive that WUl C ( t / D W)x'' and the result now
readily follows. •

In the symplectic case (k + 1 = 2), the above relations reduce to the well-known
properties of the orthogonal complement of a subspace of a symplectic vector space,
see [21]. Moreover, when putting / = l\ — l2 = 1 in (iii) and (iv) of the previous
proposition, we immediately derive the following result.

COROLLARY 3.2. For any two subspaces U and W of a multisymplectic vector
space (Y, a>)

( [ / + WO1'1 = t / x > 1 n w1-1.

We can now introduce the following special types of subspaces of a multisymplectic
vector space, generalizing the corresponding notions from symplectic geometry.

DEFINITION 3.3. A subspace W of a multisymplectic vector space (V, co) of order
k + 1 is called: l-isotropic if W C W 1 ' ; l-coisotropic if W1'1 C W and l-Lagrangian
if W = W±J, for 1 < / < k. W is a multisymplectic subspace of (Y, co) if
W D W^ = {0}.

EXAMPLE. Consider the multisymplectic space (%, co0) of order 3, introduced in
Example 2 of the previous section, with d im% = 6 and eo0 given by (1). Consider
the subspaces W — span{ei, e2, e3} and U = span{e4, e5, e6}. It is straightforward to
check that W = W±A and U-1-2 = {0}. Therefore, W is a l-Lagrangian subspace and
U is a multisymplectic subspace of %.

In view of (4) it is clear that an /-isotropic (respectively /-coisotropic) subspace is
also T-isotropic (respectively /"-coisotropic) for all /' > I (respectively for all I" < I).
Note also that every subspace W is /-isotropic for all / > dim W. Moreover, one
easily verifies, taking into account (ii) of Proposition 3.1, that every subspace (of a
multisymplectic space) containing a /-coisotropic subspace is itself /-coisotropic, and
that every subspace of a /-isotropic subspace is /-isotropic.

In the next proposition we collect a few other interesting properties concerning the
concepts of isotropic, coisotropic and Lagrangian subspaces.

PROPOSITION 3.4. Let (Y, co) be a multisymplectic vector space, with d i m ^ = n
and co of degree k + 1 < n. Then:
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(i) Each subspace of dimension 1 (respectively codimension 1) is \-isotropic
(respectively k-coisotropic).

(ii) If U is a l-isotropic subspace ofY, then codim U > k.
(iii) If U is a l-isotropic subspace of V, then for every V > I there exists a

V-Lagrangian subspace which contains U.
(iv) Ifk + l = n (that is a) is a volume form on V), then every subspace UofY

is l-Lagrangian, with I = dim U and, moreover, U1-1' = {0} for all I' < I.

PROOF, (i) If U is a 1-dimensional subspace of Y it readily follows from the
definition of the orthogonal complement that U c C/X1, that is U is l-isotropic.

Let W be a (n — l)-dimensional subspace of "V and let {eu ... , en_{} denote a
basis of W. For any v e W±k we then have, by definition,

co(v,eit,... ,eik) = 0

for all 1 < ii < • • • < ik < n — 1. If v & W, then it readily follows that iv<o = 0,
which contradicts the assumed nondegeneracy of u>. Hence, we necessarily have that
Wx-k C W, that is W is /t-coisotropic.

(ii) Let U be l-isotropic and consider a complementary subspace W in "V such
that V = U © W. Take any u € C/11, with u ^ 0. By assumption, the /fc-form iuco
vanishes whenever one of its arguments belongs to U. Therefore, the restriction of
this form to W should be different from zero, for otherwise u would be a nonzero
vector in the kernel of co. Consequently, we necessarily have dim W > k.

(iii) It suffices to prove that every /-isotropic subspace U is contained in a l-
Lagrangian subspace of V since, as noticed above, a /-isotropic subspace is also
/'-isotropic for every /' > /. By assumption, U C £/"""•'. If U ^ U±J, take a vector
vi e Uu \ U and put U{ = U © {kv{ | A. e R}. Take / + 1 arbitrary vectors in Ux:
wt = Ui + XjVi, with M, e U and A., € R. Using the fact that U is /-isotropic and
vi € U1-1, it follows that

and, hence, Ut c f/,x>', that is f/i is also /-isotropic. Moreover, from (ii) of Proposition
3.1 it follows that U\L'1 C C/X|/. Summarizing, we thus have the inclusions U C U\ C
C/iX/ C t/Xi/. Continuing this way, we may construct a chain of /-isotropic subspaces
U C f/i C C/2 • • • which necessarily possesses a maximal element £/ for which
U = f/1', that is t/ is /-Lagrangian.

(iv) Let {eu ... , e{\ denote a basis of U and complete this to a basis {ei,... ,
ehe,+u... ,en] of y . From the definition of orthogonal complement it readily
follows that U c i / x / . In order to prove the converse inclusion, take any v e U±J

and put v = Yl"i=i ^iei w i m *•« s o m e r e a l constants. Then, by definition of U±J we
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have

aKA^i -\ h X n e n , e u . . . , e t , e l + 2 , . . . , e n ) = 0 ,

from which we deduce A.(+i = 0. Similarly, replacing el+2 in the previous relation by
eM, we obtain X,+2 = 0, and so on. Eventually, we find that A/+1 = • • • = Xn = 0 and
thus v € U. Consequently, U = U±J.
For the second part of (iv), take any v e ULJ~X and put again v = J2"=i ^'e>- We now
have by definition of U±J~l,

co(v,eu ... ,et,... ,en) — 0

for all i = 1 , . . . , n, whereby et means that e, is omitted. From this it immediately
follows that Xj = 0 for all i and, hence, v = 0. This proves already that UL'l~l = {0}
and, in view of (4), it is seen then that the same holds for all U±J' with V <l—\. •

Since {0} is an /-isotropic subspace of (V, co) for all I (compare Proposition 3.1, (i))
we can deduce from (iii) of the previous proposition that there exist /-Lagrangian sub-
spaces. In fact, /-Lagrangian subspaces are the maximal elements of the (nonempty)
partially ordered set of /-isotropic subspaces (with respect to the inclusion relation).
This argument may also serve as a proof of the existence of Lagrangian subspaces in
the infinite dimensional case.

Finally, it should be pointed out that in a multisymplectic space of order k + 1 > 2,
the /-Lagrangian subspaces (for each fixed / € { 1 , . . . ,k}) need not all have the
same dimension. To illustrate this, we return to our example of the 6-dimensional
multisymplectic space (%, coo) of order 3, with basis {eu ... , e6] and with COQ given by
(1). We have seen already above that the 3-dimensional subspace W = spanfei, e2, e3]
of V is 1-Lagrangian. Now, consider the 2-dimensional subspace W spanned by e2

and e5. By definition,

W±l = {v € y | ivie2(o0 — iviei(o0 = 0}.

A simple computation shows that Wx-1 = W and so W is also 1-Lagrangian. The
situation is thus quite different from the (finite dimensional) symplectic case (k +
1 = 2), where all Lagrangian subspaces have the same dimension, namely half the
dimension of the given symplectic space.

4. Characterization of canonical multisymplectic structures

Recall from symplectic geometry that, given any (finite dimensional) symplectic
vector space (f, co) and an arbitrary Lagrangian subspace L of V (which always
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exists), one can construct a symplectic isomorphism between (f, to) and (LxL*, Q),
with Q given by (2) (see [21]). It follows from this that all symplectic vector spaces
of the same dimension 'look the same': they are isomorphic to some (T ,̂1, fi). From
the discussion of the classification problem of multisymplectic structures (compare
Section 2), one can already infer that this will no longer be true in the general
multisymplectic case. In particular, the canonical multisymplectic structures (fy, £2),
introduced in Section 2, cannot be expected to be the natural representatives of all
multisymplectic structures of order it + 1. The main purpose of the present section
precisely consists in identifying the class of multisymplectic vector spaces which are
isomorphic to one of type (fy, £2).

Consider a canonical multisymplectic structure (Vy, £2), with Yy = V x / \ V*
for some (finite dimensional) vector space V and with £2 defined by (3). Identifying
V and A* V* with the subspaces V x {0} and {0} x /\k V* of Y*, respectively, we
have the following interesting property.

THEOREM 4.1. V is a k-Lagrangian subspace of (Vy, £2) and /\k V* is a \-La-
grangian subspace.

PROOF. By definition, (u, or) € fy belongs to VL-k if and only if S2((u, a), (vi, 0),
. . . , (vk, 0)) = 0 for all u, € V, (i = 1 , . . . , k). Using (3), this is still equivalent with

a(vu... ,vk)=0

for all vt e V, and hence, a = 0. Consequently, V1* = V, that is V is &-Lagrangian.
Now, let (u, a) be an element of (/\* V*)"""1. Then,

n((u, a), (0, P), fa, a2), • • • , (vk, a*)) = 0

for all /3 € /\k V* and all (vit a,) € V^ for i = 2,... , it. Again using (3) we see that
(v, a) € (A* V*)1'1 if and only if iv0 = 0 for all $ € A* V*, that is if and only if
v = 0. From this we conclude that (A* V*) ' = /\k V*, which completes the proof
of the theorem. •

Putting W = A* V*, again regarded as a subspace of V$, we note that

/\k(^/W)* = f\kV* = W,

which, in particular, yields
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If we put dim yk — n and dim W = p, this dimensional relation reads:

(6) p =

From this one can already deduce that, given a n-dimensional multisymplectic space
(V, co) of order k + 1, a necessary condition for it to be isomorphic to a canonical n-
dimensional multisymplectic space (Py, £2) is that y admits a l-Lagrangian subspace
W of dimension p, such that the relation (6) holds. As a matter of fact, one can prove
that this condition is also sufficient. Before doing so, we first need the following
useful result which has also been established by Martin (see [23, Proposition 2.4]).

PROPOSITION 4.2. Let (y, co) be a multisymplectic vector space of order k + 1
and W a l-Lagrangian subspace such that dim W — dim f\ (y/ W)*. Then, there
exists a k-Lagrangian subspace V which is complementary to W, that is such that

y = v®w.

PROOF. Let U be a &-isotropic subspace of y with UDW •= {0}. Such a U always
exists and one may even assume dim U > k since, according to (ii) of Proposition
3.4, codim W > k. First consider the case where y = U © W. One then easily
verifies that any vector in WD f/x* belongs to kerco, which necessarily implies that
W n Ux-k = {0}. Since, by assumption, U C UL-k, it follows that U - UL-k, that is
U is ^-Lagrangian, which already completes the proof in this case.

In case U 0 W ^ y, one may further proceed along the same lines as in [23,
Proposition 2.4]. The idea of the proof is the following. Using a dimensional
argument one can deduce that there exists a nonzero vector u { e UL-k which is not
contained in UUW. Putting £/, = f/©span{«i}, it can be shown that Ux is &-isotropic.
Since, by construction, Ui D W = {0}, one can repeat the whole argument starting
from U\. Continuing this way, one will eventually arrive at a /t-isotropic subspace V
which is complementary to W. The first part of the proof then tells us that V is in fact
/t-Lagrangian. •

Notice that for k + I = 2 we recover the well-known property from symplectic
geometry which says that a Lagrangian subspace of a symplectic space always admits
a Lagrangian complement. We now arrive at the main result of this section.

THEOREM 4.3. Let (y, co) be a multisymplectic vector space of order k + 1. Then,
(y,co) is isomorphic to a canonical multisymplectic space (yk, £2) if and only if
there exists a subspace W of y such that: (i) W is l-Lagrangian, (ii) dim W =
dim /\* C*7 WO*.
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PROOF. The proof of the 'only if part immediately follows from the considerations
at the beginning of this section. Let us now assume that the conditions of the theorem
hold for some subspace W of y. According to the previous proposition, there exists
a fc-Lagrangian subspace V which is transversal to W, that is such that y = V © W.
Consider then the following mapping:

Taking into account the assumptions (i) and (ii), one readily verifies that 0 is a linear
isomorphism. Next, we define the mapping

y :y=V®W—> V x A* V*, v + w i—• (w, 0(io)),

for any v € V and w e W. It is easy to see that * is a linear isomorphism and, using
(7) and the defining relation (3) for fi, it is straightforward to check that **£2 = co. •

From this theorem we immediately deduce the following interesting property.

COROLLARY 4.4. Let v be a volume form ona(k +1)-dimensional vector space y,
then the multisymplectic space {f, v) is isomorphic to a canonical multisymplectic
space of order k+\.

PROOF. Take an arbitrary 1-dimensional subspace W of y. From Proposition 3.4
(iv) it follows that W is 1-Lagrangian. Moreover, p (= dim WO = 1 verifies relation
(6) and, hence, the conditions of the previous theorem are verified. •

More explicitly, consider an arbitrary subspace V of y transversal to W. Then,
dim V = k and, again by Proposition 3.4 (iv), we know that V is /fc-Lagrangian. Let w
be a non-zero vector in W and put v = iwv\v. The fc-form v is a volume form on V.
The multisymplectic space (y, v) then is isomorphic to (T^, Q), where £2 is given by

with vt e V and a, = A., v e f\k V* (see the Remark in Section 2).
As a further illustration of Theorem 4.3, let us consider again the example (%, a>0)

treated before. We have seen already that W = spanfei, e2, e3} is a 1-Lagrangian
subspace of y0. Moreover, dim W = 3 = dim / \2 (%/ W7)*- Consequently, (%, COQ)
is isomorphic to a canonical multisymplectic space of order 3. A 3-Lagrangian
subspace V which is complementary to W is given by V = span{e3 — e4, e5, e6}.

A simple example of a multisymplectic vector space which is not isomorphic
to a canonical one, is obtained by considering a 5-dimensional vector space with
basis {e, | i = 1, . . . , 5} and dual basis {6' | i = 1 5}. The 3-form u> =
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A ^ A ^ + ^ A ^ A 9S is nondegenerate, that is multisymplectic.
However, it is readily seen that there exists no positive integer p satisfying (6) with
n = 5 and k = 2 and, therefore, a 5-dimensional multisymplectic space of order 3 can
never be isomorphic to a canonical multisymplectic space.

In the next proposition, we identify some particular ifc-coisotropic and &-isotropic
subspaces of (Vy, £2).

PROPOSITION 4.5. Let U be a subspace of V and let U° C V* denote its annihila-
tor.

(i) U, identified with U x {0}, is a k-isotropic subspace ofYy. In particular, we
have

(8) UL'k = V x (A* V* n J?(lf)),

where S(U°) is the ideal in /\ V* generated by U°.
(ii) If dim U > k, then U x / \ V* is a k-coisotropic subspace of' {Yy, Q). In

particular, we have

(9) (f/ x f\k V*) ' = j(0, a) | a € A* V* n

PROOF, (i) By definition, (v, a), with v 6 V and a € /\* ^*. belongs to f/±<: if
and only if for all « i , . . . , uk € U

0 = fi((w, a), («,, 0 ) , . . . , (M4, 0)) = - O ( H , , . . . , «*).

This holds if and only if a e «^(£/°), which proves (8). Since, obviously, t/ x {0} c
V x (A* V* n ./(f/0)), it follows that, with the appropriate identification, U is a
fe-isotropic subspace of "fy.

(ii) Let (ei , . . . , em) be a basis of [/, with m = dim U > k. We further complete this
to abasis (e\,... , em, em+i,... , en) of V, and denote the dual basis by (0l,... , 0").
Now, (u, a) € (£/ x A* V*)-1-* if and only if fi((u, a), («,, aO , . . . , («t, at)) = 0,
for all M, e t/ and or, e /\k V*. Putting, for instance, ux = 0, it follows from the
definition (3) of Q that

(10)

for all «i 6 A* ̂ * ̂ d all M, e f/. In particular,

(0> A 0 1 ' A - - - A 0 * - ) ( v , « , „ . . . , « * _ , ) = <)

for all j > Jfc, 1 < ii < • • • < 4-i 5 £• This clearly implies that v € U. Relation (10)
now reads iv(ai\v) = 0, for all ai e A ^* anc^' hence, we necessarily have v = 0.
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Next, again using (3) and the definition of k-th orthogonal complement, we see that
(0, a) e ([/ x /\* V*)Xk if and only if a(«i "*) = 0 for all «, e U. This holds
if and only if a 6 J?(U°), which proves (9), and it then readily follows from this that
U x /\* V* is /t-coisotropic. D

To close our discussion of the linear case, we wish to make a brief comparison be-
tween our notion of multisymplectic structure and the one studied by Martin [22,23].
A multisymplectic vector space, as defined by Martin, corresponds to a multisymplec-
tic space (in our sense) verifying the assumptions of Theorem 4.3, with the additional
restriction that codim W > k. Volume forms and structures of die kind described in
Proposition 2.3, do not fit into this definition. We also note that in Martin's terminol-
ogy, a Lagrangian subspace of a multisymplectic space of order k + 1 corresponds
to what we call a it-Lagrangian subspace (that is a Lagrangian subspace of 'highest
order'). In [22] Martin has demonstrated that a multisymplectic space (Y, co) of order
k +1 (in his sense) always admits a special basis, called a Darboux basis, with respect
to which the multisymplectic form co takes on a 'canonical' form. More precisely,
putting dimY = n and dim W = p, with (n, p,k) satisfying (6), he has proved that
there always exists a basis {/(,,...;t) I 1 < 'i < • • • < h < " — P) of W, which can be
extended to a basis {/Ol ,t), e\,... , en-p] of Y, such that in terms of the dual basis
{qdi u) 0 1 , . . . , 9n~p], the multisymplectic form co reads

( i i ) a, = J2 r? ( 1"'") A e'1 A ... A eik.
l<ii<- •<ik<n— p

In some sense, Theorem 4.3 can be seen as providing an alternative proof for the exis-
tence of a Darboux basis for the class of multisymplectic spaces under consideration.
Indeed, with respect to a natural basis for V x /\k V*, the canonical multisymplectic
form Q on Yy will precisely be of the form (11). Note mat one can also deduce from
this that the 'length' of £2 equals the dimension of /\k V* (see Remark 1 following
Proposition 2.2).

5. Multisymplectic manifolds

Having defined the notion of multisymplectic vector space, one can subsequently
introduce the notion of multisymplectic vector bundle as a vector bundle, the fibres of
which possess a multisymplectic structure (of fixed order) with smooth dependence
on the point in the base manifold. In case the vector bundle is the tangent bundle TM
of a smooth manifold M, a multisymplectic structure of order k + 1 on TM is defined
by a differential (k + l)-form co on M which is nondegenerate in the sense that for a
vector field X on M

ixco = 0 if and only if X = 0.
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The pair (M, co) will then be called an almost multisymplectic manifold. Of special
interest to us is the subclass of almost multisymplectic manifolds for which the almost
multisymplectic structure is 'integrable' in the sense that the corresponding differential
form co is closed.

DEFINITION 5.1. A multisymplectic manifold (M, co) of order k + 1 consists of a
smooth manifold M and a closed (Jc + l)-form co on M which is nondegenerate (in
the above sense). The differential form co is called a multisymplectic form (of degree

A submanifold N of a multisymplectic manifold (M, co) of order k + 1 will be
called l-isotropic (respectively l-coisotropic, l-Lagrangian), for 1 < I < k, if at
each point n e N, TnN is a /-isotropic (respectively /-coisotropic, /-Lagrangian)
subspace of the multisymplectic vector space (TnM,con). Using the obvious notation
TNXJ = {JneN(TnN')-"-', one can equivalently state that N is /-isotropic (respectively
/-coisotropic, /-Lagrangian) if TN c TNU (respectively TNU c TN, TNU =
TN). In the sequel we will only be concerned with submanifolds which are either 1-
or ^-isotropic (respectively coisotropic, Lagrangian).

The results stated in the following proposition are straightforward extensions of
the corresponding properties in symplectic geometry: see [1, Proposition 5.3.22 and
Theorem 5.3.23], to which we also refer for the general idea of the proof.

PROPOSITION 5.2. (i) Let N be a submanifold of a multisymplectic manifold
(M, co) of order k + 1. IfTND TNx'k is a subbundle of TM\N, then it defines an
integrable distribution on N {and we denote the induced foliation by ^V).

(ii) If, under the previous conditions, the quotient space N /^Y is a smooth man-
ifold and the projection n : N —>• N/^Y is a surjective submersion, then N IJf
admits a multisymplectic structure cb of order k + 1 which is uniquely determined by
n*co = i*co, where i : N ^-^ M denotes the inclusion map.

Given a closed (k + l)-form co of constant rank on a manifold M, and assuming
its characteristic distribution induces a regular foliation ^ on M, a standard argument
shows that co projects onto a multisymplectic form of degree k + 1 on the quotient
space M/'tf. In such a case we may call co pre-multisymplectic.

Symplectic manifolds and orientable manifolds (equipped with a volume form), are
examples of multisymplectic manifolds. It is possible to show that, unlike symplectic
structures, multisymplectic structures of higher order are much more abundant. In
particular, for 3 < it + 1 < n — 3, the set of multisymplectic structures is residual in
the space of smooth (k + l)-forms on a n-dimensional manifold M, see [24, Theorem
II 2.2 and Proposition II 4.2].
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In the next section we will describe a canonical model of a multisymplectic man-
ifold, which arises as a natural extension of the concept of a cotangent bundle. To
conclude the present section we present some other interesting examples of manifolds
which carry a multisymplectic structure.

EXAMPLES. (1) Let (M,$,77) be a cosymplectic manifold, that is M is a (In+1 )-
dimensional smooth manifold with a closed 2-form <t> and a closed 1-form r\, such
that <t>" A r\ 5̂  0. In appropriate Darboux coordinates (/, q', p,) we have

r) = dt, <t> = dpi Adq',

and it is easily seen that the 3-form Q = r) A 4> is multisymplectic.
(2) Consider a compact semisimple Lie group G and let (, ) denote the nondegen-

erate left invariant metric on G, induced by the Killing form of its Lie algebra. One
can then define the following 3-form on G:

«(X, Y, Z) = (X, [Y, Z]> + (Y, [Z, X]) + (Z, [X, Y])

for arbitrary vector fields X, Y, Z. It is routine to check that this form is closed and
nondegenerate and, hence, (G, £2) is a multisymplectic manifold of order 3.
(3) For the definitions and properties related to the following example, we mainly

rely on [31]. A An -dimensional manifold M is called almost quatemionic if there is
a subbundle £1 of End(TAf) such that for each x e M there exists a neighborhood U
ofx over which &\v has a basis [Jt, J2, J3} satisfying

J\ = J\ = - 1 and J3 = JiJ2 = -J2Ji-

In particular, the 7, are three almost complex structures on U. A Riemannian metric g
on M is said to be compatible with i2if at each point*, g(Av, Aw) = g(v, w) for all
v, w € TXM and A e £lx with A2 = — 1. It can be shown that, given any Riemannian
metric g' on an almost quatemionic manifold, one can always construct a compatible
metric g. A triple (M, i?, g) consisting of an almost quatemionic manifold (M, £!)
with a compatible metric g, is called a quaternion-Hermitian manifold.

On a quaternion-Hermitian manifold (M, «S, g), the subbundle £1 of End(7M)
can always be isometrically embedded into / \ 2 T*M by assigning to each element A
of £1 the 2-form coA defined by

This enables us to define, in terms of the above introduced local basis [Jlt J2, J3} of
2, the following 4-form on M

n = COJt A COjt + COj2 A COj2 + (Oj3 A (Oj3.
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It can be shown that this form, which is called the fundamental A-form, is glob-
ally defined and nondegenerate ([5,31] and references therein). A 4n-dimensional
quaternion-Hermitian manifold (M, £!, g), with n > 1, is said to be quatemionic
almost Kahler if dQ = 0, and quatemionic Kahler if Vfi = 0, where V is the Levi-
Civita connection corresponding to g. Note that in the 4-dimensional case, Q, is a
volume form and both dQ and V£2 then trivially vanish. A 4-dimensional quaternion-
Hermitian manifold will be called quatemionic Kahler if it is Einstein and self-dual.
Since V£2 = 0 implies dSl = 0, it follows that quatemionic Kahler manifolds are
automatically quatemionic almost Kahler. Swann has proved that for An > 12 the
converse also holds, that is dQ. = 0 implies WQ = 0 (see [31]).

From the above we may now conclude that a quatemionic (almost) Kahler manifold
is multisymplectic, with multisymplectic form given by the fundamental 4-form Q.
An important special case is provided by the hyper-Kdhler manifolds. A quatemionic
Kahler manifold is called hyper-Kahler if the almost complex structures Jit J2, J3 are
globally defined and are such that dcoJi = 0 (i = 1,2, 3). Hitchin [14] has shown
that this implies that J\, J2, J3 are integrable and, hence, they define three Kahler
structures on M.

6. The bundle of exterior it-forms on a manifold

As in the linear case, there is a straightforward way of constructing a class of
manifolds which admit a canonical multisymplectic structure. Given an arbitrary
smooth n-dimensional manifold E, let /\* E denote the bundle of exterior &-forms on
E (for 1 < k < n), with canonical projection pk : /\k E -> E. This is a vector bundle
with C*-dimensional fibres: for x € E, pt~l(x) = f\k T*E. For k — 1 we have
/ \ ' E = T*E. On f\k E there exists a canonical k-fona @E which can be defined as
follows. For a e /\k E and t>, e Ta(/\

k E),(i = 1, . . . , k) put

(12) (®E)a(vu ...,vk) = attptUv!),..., (pkUvk)).

This is an immediate extension of the construction of the canonical Liouville 1-form
on a cotangent bundle, which is also illustrated by the property that for any smooth
fc-form @ on E we have

P*(®E) = P,

where on the left-hand side fi is regarded as a section of pk. Next, it is easy to verify
that the closed (k + l)-form

QE = deE
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is nondegenerate and, hence, (/\* E, £2£) is a multisymplectic manifold of order£+l.
Let (U, <p) be a local coordinate chart on E, with coordinates (ql,... , q"). On the

corresponding chart (/\* U, 0») of /\k E the coordinates are denoted by {q\ p,,...^),
with 1 < i! < • • • < ik < n. In terms of these bundle coordinates, the canonical forms
©E and QE read:

(13) eE=ph...ikdq" A...Adqlt, fi£ = dph..,k A dqh A . . . A dql\

with summation running over all 1 < i\ < • • • < ik < n. The local model for
the multisymplectic manifold (/\* E, QE) is the vector space >£ = W x /\k R",
equipped with its canonical multisymplectic structure. Indeed, if (j>(U) = U' (an
open subset of IT), then 4>t(/\

m U) = U' x /\k IR" and, clearly, n£|(/ is 0,-related to
the canonical multisymplectic form of Vf. which is precisely of the form (11).

As on any vector bundle, there exists a canonical dilation vector field on /\* E,
which is here given by

= E Pil-H

Using (13) it is straightforward to check that AE is also uniquely determined by

i A e n £ - &E.

We now consider the interesting case where E itself is fibred over some manifold
M, with projection n : E -> M. For any r, with 0 < r < k — 1, let f\r E
denote the bundle over E consisting of those exterior it-forms on E which vanish
whenever r + 1 of its arguments are vertical tangent vectors (with respect to the given
fibration). Clearly, /\k E is a subbundle of /\* E and smooth sections of the bundle
/ \ 0 E are semi-basic Jk-forms on E with respect to n. Let i t r : f\r E «->• f\ E denote
the natural inclusion. Using Proposition 2.3 it is then straightforward to prove the
following result.

PROPOSITION 6.1. The (k + X)-form it,r*(SiE) is a multisymplectic form on /\* E.

In particular, for r = 1 this precisely yields the kind of multisymplectic structure
appearing in first order field theories [6,10,33].

One of the characteristic features of a cotangent bundle T*E, with its canonical
symplectic structure, is the existence of a polarization which admits a transverse
Lagrangian section (namely, the Lagrangian foliation determined by the fibres and the
zero section, identified with the base manifold E). A similar property now holds for
the canonical multisymplectic manifolds /\k E, except that for it > 1, the fibres and
the zero section are Lagrangian submanifolds of a 'different order'. More generally,
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in the next proposition we prove that the image of any closed £-form on E (regarded
as a section of pk) determines a it-Lagrangian submanifold of /\* E, whereas the
fibres are 1-Lagrangian submanifolds. Herewith, we have identified on (/\* E, QE)
the analogue of the two canonical types of Lagrangian submanifolds encountered in
the symplectic geometry of a cotangent bundle.

PROPOSITION 6.2. The fibres ofpk : /\k E -> E are l-Lagrangian submanifolds of
(A E, £2£) and the graph of any closed k-form on E (and thus also, in particular,
the zero section of pk) is a k-Lagrangian submanifold.

PROOF. The local model for (A* E, QE) tells us that at each point a e /\* E we
have

with n = dim E. On the other hand, for the tangent space to the fibre through a we
find

and, hence, it follows from Theorem 4.1 that this is a 1-Lagrangian subspace of
Ta(/\

kE).
Next, let /3 be an arbitrary closed &-form on E. It follows from the considerations

at the beginning of this section that

This already implies that ^(£) is a fc-isotropic submanifold of A* E. Consequently, at
each point a e P(E), Tafi(E) is a fc-isotropic subspace of Ta(/\

k E) which, moreover,
is transversal to the 1-Lagrangian subspace Ta (pk~

l(Pk(«)))• The argument used at
the beginning of the proof of Proposition 4.2 then shows that Tafi(E) is in fact
fc-Lagrangian. •

In the remainder of this section we will put, for notational convenience, E(k) =
A E. The subbundle of TE(k) consisting of all tangent vectors that are vertical with
respect to pk, is denoted by VE(k). We will show that there exists a canonical vertical
lift operation mapping any fc-form on E into a vertical vector field on £(t). First, we
establish an isomorphism between VE(k) and Ao E(k\ the bundle of exterior k-forms
on E(k) that are horizontal (or basic) with respect to the projection onto E.

LEMMA 6.3. The mapping $ : TE(k) -+ f\k Eik), v e TaE
{k) H> ivQE(a) induces

a vector bundle isomorphism between VE(k) and Ao
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PROOF. Since QE is nondegenerate, <t> is necessarily injective. The previous propo-
sition tells us that the fibers of E(k) are 1-Lagrangian. From this one can easily deduce
that

Since, obviously, 4> is linear, the result now immediately follows by observing that
dimVEik) =dimf\k

0E
(k\ •

Herewith we now derive the following lifting procedure of it-forms on E to vertical
vector fields on E(k).

PROPOSITION 6.4. There exists a mapping which sends any k-form $ on E into a
vertical vector field fiv on E(k) (= /\k E), where fiv is uniquely determined by

(14) ifi.QE = pk*p.

Moreover, for any two k-forms ft and y on E we have:

(15) [PV,YV] = O-

PROOF. The fact that (14) uniquely determines a vertical vector field ft", for given
P, is an immediate consequence of the previous lemma.

In order to prove (15), note that

; o ffi li Ct \ .' ( C/> O \
l\fi",y"\ ̂ E — -Zp'(lyi\£E) — lyoX-CpviLE)

= Sffi*(pk*y) - iyd(ip.QE)

= ip*d(pk*y) + dip,pk*y - iy,d(pk*P),

where the symbol j£f denotes the Lie derivative operator. Now, d(pk*fi), pk*y and
d(pk*y) are basic forms on E(k). Hence, /J" and y" being vertical vector fields on
E(k), it follows that

and therefore, since QE is nondegenerate, [/5V, yv] = 0. •

Note again that the previous results are immediate extensions of known results for
cotangent bundles (see [37]).
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7. Polarized multisymplectic manifolds

Proposition 6.2 tells us that the canonical multisymplectic manifold (/\* E, Q.E)
possesses a 1-Lagrangian foliation with a transversal jt-Lagrangian section. Moreover,
the leaves of this foliation all have the same dimension, namely

dimpr'C*) = dim/\* T*E.

These observations prompt us to introduce the following definition.

DEFINITION 7.1. A polarized multisymplectic manifold is a triple (M, co, &) con-
sisting of a multisymplectic manifold (M, co) and a foliation &', the leaves of which
are immersed 1-Lagrangian submanifolds which all have the same dimension.

Note that, unlike in the symplectic case, 1-Lagrangian submanifolds (and, more
generally, /-Lagrangian submanifolds) of a given multisymplectic manifold need not
have a fixed dimension (see, in that respect, the comment made at the end of Section 3).
Therefore, it may happen that a multisymplectic manifold of order k + 1 > 2 admits
a 'generalized' foliation with 1-Lagrangian leaves which do not all have the same
dimension.

REMARK. The notion of multisymplectic manifold considered by Martin [22] cor-
responds, in our terminology, to a n-dimensional polarized multisymplectic manifold
(M, co, &) of order k + 1, where & is induced by an integrable 1-Lagrangian dis-
tribution of constant rank p, such that the triple (n, p, k) satisfies the relation (6).
Generalizing a result of Weinstein for symplectic manifolds with a Lagrangian fo-
liation (see [34]), Martin then further proves the following. If there exists a global
transversal ^-Lagrangian section L of &, then there exists a tubular neighbourhood
U of L, a manifold E and a multisymplectic diffeomorphism between (U, co\u) and
(W, QE | w), with W a neighbourhood of the zero section in /\k E.

Given a polarized multisymplectic manifold (M, co, &), the foliation & is called
regular if the space of leaves M/& admits a smooth manifold structure such that M
becomes a fibred manifold over M/& with the canonical projection p : M -*• M/&
being a surjective submersion. Taking into account Proposition 3.4 (ii) it can then be
easily deduced that dim M/& > k.

DEFINITION 7.2. A polarized multisymplectic manifold (M, co, &) of order k + 1
will be called saturated if & is a regular foliation and if, moreover, for each x e

Ot) = dim A* TX*(M/^),
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Clearly, / \ E with its canonical multisymplectic structure QE is a saturated polar-
ized multisymplectic manifold. In the remainder of this section we intend to analyse
in more detail the structure of saturated polarized multisymplectic manifolds. In par-
ticular, we will establish conditions for such a mamfold to become an affine bundle
modelled on a bundle of exterior forms. We thereby proceed entirely along the same
lines as in [32], where a similar result was presented for symplectic manifolds with a
Lagrangian fibration.

First we observe that, in full analogy with the construction in Proposition 6.4,
a saturated polarized multisymplectic manifold (M, a>, &) of order k + 1 admits a
vertical lift operation, assigning to each it-form jS on M/& a vertical vector field fiv

on M according to the prescription

ifivco = p*f5,

and such that any two vertical lifts commute. For each x e M/& and any p G p~l(x),
the vertical lift induces an isomorphism between the vector spaces f\k T*(M/&) and
VpM = Tp(p-l(x)):

<t>p : A* Tx*(M/&) -+VPM

a i—> <j>P(a) = a"(p),

where a is any (local) £-form on M/& for which 6c(x) = a. We will also use
the notation a" for the vector field on p~l(x) defined by av(p) = 4>p(a), that is
a» = o" |p-.(;t).

We can now state the following structure theorem for saturated polarized multi-
symplectic manifolds.

THEOREM 7.3. Let (M, co, &) be a saturated polarized multisymplectic manifold
of order k+\ and put M/& = E. Let p ; M —* E denote the natural projection and
assume all the fibres of p are connected. Then:

(i) For each x € E, the corresponding fibre p~l(x) is an affine manifold (that is,
it admits aflat, torsion free, linear connection).

(ii) If, in addition, all the fibres of p are simply connected and complete (with
respect to its affine structure), then M is an affine bundle modelled on f\ E. Any
section s of p determines a dijfeomorphism 4>s : M —>• / \ E such that

(16) 4>SnE = a> + p*a>,

for some closed (k + \)-form cos on E. Moreover, the cohomology class [<os] €
Hk+l(E, R) is independent of the chosen section s.
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PROOF. The proof is completely similar to the one given by Thompson for the
symplectic case (see [32, Theorem 2.3]), to which we refer for the details.

(i) From the above we know that for each x € E and p e p~l{x), there exists an
isomorphism <\>p between / \* T*E and Tp(p~l{x)). Given a positive definite metric
{, ) on the linear space /\k T*E, one can then define a Riemannian metric g on the
fiber p~\x) according to

gP(vu v2) = (<i>p~
l(vi), <t>p~\v2)),

for all p € p~\x) and vuv2 € Tp(p~l(x)). Note that for any ax,a2 € /\k T*E,
we have g(aiu , a2

v) = {ax,a2). It can then be shown that for each a € A* T*E,
the (vertical) vector field a" on p~l(x) is a Killing vector field with constant length
with respect to g. Now, starting from a basis (a,) of / \* T*E, the corresponding
vertical lifts (a;") determine a basis for the module of vector fields on the fibre p~l (x),
consisting of pairwise commuting Killing vector fields with constant inner product
relative to g. It then easily follows that the Levi-Civita connection corresponding to
g has zero curvature. Each fibre thus admits a flat, symmetric linear connection and,
therefore, is an affine manifold.

(ii) Fora e A* T*E a n d P ^ P~x(x), let ya(p,.) : R -» p'l(x) denote the unique
integral curve of a" for which ya(p, 0) = p. Since vertical lifts commute, we find
that for any au a2 € A * T*E, ya2(,yai(p, t),t) = y a 2 + a i ( p , t). Again following the
same argument as in [32] one can then prove that, under the given assumptions, the
map

kx : A* TX*E x p-'(;c) — • p~\x), (a,p) ^ > ya(p, 1),

determines a free and transitive action of the vector space A* ^*^- regarded as an
additive Lie group, on p~\x). Hence, p" 1 (x) is an affine space modelled on /\k T*E.
Since this holds for each fibre of p, it easily follows that (A/, p, E) is an affine bundle
modelled on the vector bundle (A* E, pk, E).

Let * : E -*• M be an arbitrary global section of p. (Affine bundles, having
contractible fibres, always admit global sections.) This induces a vector bundle
structure on M and we can then construct a bundle isomorphism 4>s : M -*• f\ £ as
follows. For each p € M, with pip) = x, let $>s(p) be that element of A* T*E which
is uniquely determined by kx($s(p), s(x)) = p. In particular, we have pk o Oj = p
and ®s maps s(E) onto the zero section of A* E. Consider then the (k + l)-form

<bs =

on M, which is obviously closed. Moreover, for any jt-form p on E one easily finds
that ipibs = 0 and S£^u>s = 0. Since at each p e M, the vertical tangent space VPM
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is spanned by the vertical lifts of fc-forms, it follows from the previous considerations
that a>s is the pull-back of a (k + l)-form cos on E, that is

ci)s = p*cos

and, p being a surjective submersion, cos is necessarily closed. This completes the
proof of (16). Finally, given any two sections s\ ,s2oip we have

from which it follows that coSl and coS2 belong to the same cohomology class. •

The previous theorem tells us that each saturated polarized multisymplectic man-
ifold (M, co, &) of order k + 1, satisfying the appropriate topological assumptions,
determines a unique element of Hk+l(M/^, K).

We will say that a saturated polarized multisymplectic manifold (M, co, &) of
order it -I-1 is equivalent to (/\* E, QE), with E = M/&, if co = dd for some ifc-form
9 on M and if there exists a bundle isomorphism <1> : M -*• /\k E over the identity
such that <t>*0£ = 9. From Theorem 7.3 one can now easily deduce the following
result.

COROLLARY 7.4. A saturated polarized multisymplectic manifold (M, co, &) of
order k + 1 which verifies all the assumptions of Theorem 7.3, is equivalent to
(/\ E, nE) if and only if it determines the zero cohomology class in Hk+1(E, K).

The proof is rather straightforward and is again completely similar to the one given
for the symplectic case in [32, Corollary 2.4].

Finally, it is interesting to compare the above approach to the characterization of a
bundle of exterior forms, with Nagano's approach to the characterization of a cotangent
bundle structure (see [25]). More precisely, Nagano has established necessary and
sufficient conditions for an exact symplectic manifold (M, d9) to be a cotangent
bundle such that 9 is the canonical Liouville 1-form. A central role in his analysis
is played by the canonical vector field A on M which is determined by the relation
iAd9 = 9. In particular, Nagano has given necessary and sufficient conditions for A
to induce a vector bundle structure on M with respect to which it becomes the dilation
vector field. These conditions are the following:

(a) A is complete;
(b) for each x e M, lim,.*^ exp(t A)(x) determines a unique point in M;
(c) at each singular point x0 of A, the linearization A'(*o) : TXoM -*• TXoM is

idempotent;
(d) the set of singular points x0 of A constitute a submanifold of M of codimension

equal to the rank of A'(x0) (this rank being a constant, independent of x0).
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We can now state the following generalization of Nagano's result, the proof being
completely similar to the one given in [25, Theorem 4.1].

THEOREM 7.5. Let (Af, dO) be a multisymplectic manifold of order k + 1 and
suppose there exists a (necessarily unique) vector field A such that iAd9 = 9. Then,
M admits the structure of a bundle of exterior k-forms f\ E on a manifold E, such
that 9 becomes the canonical k-form ®E< if and only if A verifies the above conditions
(a), (b), (c) and (d). Moreover, this exterior bundle structure is unique in the sense
that E is determined up to a diffeomorphism.

Note that for an exact multisymplectic structure (M, d6) of order k +1 > 2 it need
not be true, in general, that there exists a vector field A on M for which i&d9 = 9.
This is due to the fact that on a (finite dimensional) multisymplectic manifold (M, co)
of order k + 1, the 'musical map' X —> ixco, which sends vectors into /fc-forms, is
bijective in the symplectic case and in the case of a volume form, whereas it is merely
injective in the general case (for 2 < k + 1 < dim M). This explains why we have
to include the existence of A as an additional assumption in the above theorem. A
simple counterexample, however, is provided by the following. Consider the 2-form
9 on K5 given by 6 = x ldx2 A dx3 + x2dx3 A dx4 + x3dx4 A dx5. One easily verifies
that dO — dx' A dx2 A dx3 + dx2 A dx3 A dx4 + dx3 A dx4 A dx5 is nondegenerate,
but there exists no vector field on K5 whose contraction with dO equals 9.

In forthcoming work we intend to investigate, among others, symmetry and reduc-
tion properties of multisymplectic structures, Poisson brackets induced by multisym-
plectic forms and generalized Hamiltonian systems on multisymplectic manifolds.
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