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1 I n t r o d u c t i o n 

The present communication is concerned with the problem of calculating the 
rotation-vibration energies and the absorption intensities of a triatomic molecule 
from the effective nuclear potential energy function and the dipole moment sur­
faces within the Born-Oppenheimer approximation (Born & Oppenheimer 1927). 
There are at least two astrophysical applications of such calculations: 

— Detailed spectra of triatomic molecules can be computed under the condi­
tions prevailing in stellar atmospheres and compared with observed spectra. 

— Such spectra can also be used for constructing a wavenumber-dependent ab­
sorption coefficient which can be employed for opacity calculations as out­
lined, for example, by J0rgensen & Jensen (1993). 

In the Born-Oppenheimer approximation (Born k, Oppenheimer 1927), the 
rovibronic energies of a molecule are calculated in two steps: 

— In the first step, the nuclei are held fixed in space, and the Schrodinger 
problem for the electrons (which interact with the "clamped" nuclei and 
with each other through Coulomb forces) is solved for many different nuclear 
geometries. The energy eigenvalue obtained in this calculation, taken as a 
function of the nuclear coordinates (which we denote as R n here), is the 
Born-Oppenheimer potential energy function V(R„). 

— The second step is the solution of the Schrodinger equation for the nuclear 
motion, 

fn + ^(R n ) ]Vn(Rn) = £'ne^n(R.n) (1) 

where Tn is the operator representing the kinetic energy of the nuclei, ipn(Rn) 
is a nuclear wavefunction, and Ene is the corresponding energy eigenvalue. 
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One may think of the motion of the nuclei as a superposition of translation 
(uniform motion of all nuclei along straight lines through space), vibration (mo­
tion of the nuclei relative to each other), and rotation. It can be shown that 
the nuclear kinetic energy operator Tn can be separated into the sum of two 
commuting operators 

Tn — Tirana + Tkot-Vib, (2) 

where Titans describes the kinetic energy resulting from translation and TR0t-vib 
that resulting from rotation and vibration. In theoretical studies aimed at de­
scribing "spectroscopic" phenomena (i.e., the interaction between molecules and 
radiation) for isolated molecules in a field-free space we can ignore the effects 
of translation since radiation will not induce transitions between translational 
states. We are then left with the Schrodinger equation for rotation and vibration 

Tkot-Vib + V(Rvib)| V'Rot-Vib(RRot,Rvib) = •E'Rot-VibV'Rot-Vib(RRot, Rvib)-

(3) 
In Eq. (3), we have indicated that the rotation-vibration wavefunction V"Rot-vib 
depends on rotational coordinates Rn.ot and vibrational coordinates Rvib> whereas 
the potential energy function V depends on the vibrational coordinates only. 

We discuss here the solution of Eq. (3). In theoretical spectroscopy, the tra­
ditional approach to obtaining the rotation-vibration energies £"Rot-Vib and the 
corresponding eigenfunctions V'Rot-vib involves perturbation theory: The molec­
ular vibration is modelled by a set of independent harmonic oscillators, and the 
molecular rotation is modelled as that of a rigid molecule. The deviation between 
the real molecule and this idealized model is treated as a perturbation. 

In recent years it has become apparent that in many cases, the perturbation 
treatment of molecular rotation and vibration leads to considerable inaccuracies 
in the calculated energies, and a number of more accurate methods for solving Eq. 
(3) have been developed for small (mostly triatomic) molecules. In the present 
communication we shall describe one such method for triatomic molecules, the 
MORBID (Morse Oscillator Rigid Bender Internal Dynamics) approach (Jensen 
1988a, 1988b, 1992). The computer programs developed on the basis of the 
MORBID model can be used for three different types of calculations: 

- If the nuclear potential energy function V(R„) for one isolated electronic 
state is known, the rotation-vibration energies belonging to this electronic 
state can be calculated. 

- The parameters in an analytical representation for V(R„) (see below) can 
be refined in a least squares fitting to experimentally observed rotation-
vibration energy spacings. 

- If V(R„) and the dipole moment components are known as functions of the 
nuclear coordinates, absorption spectra (i.e., transition wavenumbers and 
intensities) can be calculated. 

We give examples of such calculations below. 

https://doi.org/10.1017/S025292110002145X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110002145X


The MORBID Method 355 

2 T h e M O R B I D A p p r o a c h 

We give here a very sketchy outline of the ideas behind the MORBID approach. 
The reader is referred to Jensen (1988a, 1988b, 1992) for details. 

2.1 Coordinates 

In order to describe a quantum mechanical system such as a triatomic molecule, 
we must initially choose a set of coordinates defining its instantaneous configu­
ration. In the MORBID approach, we follow the work of Hougen et al. (1970) 
in that we base the coordinate definitions on a socalled reference configuration 
(Fig. 1) which follows the rotation and the bending motion. The reference con­
figuration is chosen as having fixed internuclear distances r | 2 [the equilibrium 
distance between the "outer" nucleus j =1 or 3 (Fig. 1) and the center nucleus 
2], but with a variable bond angle a. The coordinate p = w — a is chosen to 
describe the large amplitude motion, and the stretching motions are described 
as displacements from the reference geometry through the coordinates 

Arj2 = rj2 - r?2, (4) 

j = 1 or 3, defined as the displacement of the instantaneous internuclear distance 
Vj2 from its equilibrium value rU. We attach a molecule fixed axis system xyz 
to the reference configuration (Fig. 1) and describe the rotation of the molecule 
through usual Euler angles 0, <f>, and \ (see, for example, Papousek & Aliev 
(1982)) which give the instantaneous orientation of the xyz axis system relative 
to a laboratory fixed axis system XYZ. 

2.2 The potential energy operator 

We choose the potential energy function for a triatomic molecule to be given by 
the analytical function 

V{Ar12, Ar32, p) = V0{p) + £ Fj(p)Vj + Yl FJk(p)yjVk 
3 3<k 

+ ]T] Fjkm(p)yjykym+ ^ Fjkmn(p)yjykymyn, (5) 
j<k<m j<k<m<n 

where all of the indices j , k, m, and n assume the values 1 or 3. In Eq. (5), p is 
the supplement of the instantaneous value of the bond angle (which is almost, 
but not quite, equal to the vibrational coordinate p discussed above), and 

yj = 1 - exp(-ajArj2), (6) 

where the Arj2 are defined in Eq. (4) and the a, are molecular parameters. The 
Fjkm... expansion coefficients of Eq. (5) are functions of p. The function Vo(p) 
is the pure bending potential energy function, i.e. the potential energy for the 
molecule bending with its bond lengths fixed at their equilibrium values. 
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Fig. 1. The numbering of the nuclei and the molecule fixed coordinate system used in 
the MORBID approach. The molecule fixed x axis is perpendicular to the plane of the 
molecule. The open circles are the positions of the nuclei in the reference configuration 
(which has the bond angle supplement p) and the filled circles are the instantaneous 
positions of the nuclei (with bond angle supplement p). 

The p-dependent functions entering into Eq. (5) are defined as general cosine 
expansions: 

Fi(P) = Yl fj'\cos Pe ~ cosP)'> 
t=i 

N 
Fjk.ip) = fill+Y,$Jc°ap< - cospy (7) 

where pe is the equilibrium value of p and the n\' are expansion coefficients. 
The function Fjk(p) has N = 3, Fjki(p) has N — 2, and Fjkim(p) has N = 
1. Symmetry relations exist between the potential energy parameters for the 
symmetrical ABA molecule to ensure that V is totally symmetric under the 
interchange of Ar\2 and Ar^- For Vb(p), we use two different parameterizations, 

VoiP) = Yl^\cosPe ~ cosp)1, (8) 
i=2 

Vo(p) = X ) / o ( l - « » p ) i . (9) 
i=l 
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The parameterization given by Eq. (8) has pe as an independent parameter and 
is appropriate for bent molecules, i.e. molecules with pe ^ 0. Equation (9) has 
/o ' as an independent parameter, whereas pe is determined as a function of the 
/o quantities. This parameterization is appropriate for both linear and bent 
molecules. 

For a potential energy function with a single minimum, the analytical ex­
pression given by Eqs. (5-9) has a physically reasonable asymptotic behaviour 
at all coordinate boundaries: at p = 0 and p = n it has zero slope for all values 
of 7*i2 and r32, at large bond length values it approaches a constant for any value 
of p, and at short bond lengths it approaches a very large (although not infinite) 
value. 

2.3 The kinetic energy opera tor 

Using the rules of quantum mechanics, we can derive a kinetic energy operator 
TMORBID expressed in terms of the coordinates given in Sect. 2.1. This operator 
is obtained as 

TMORBID = ^ X ( ^ ~ P6)^y(Ar12, Ar32, p)(Jy ~ P7) 

+ \ J2 PjG%\Ar12,Ar32,p)Pk + Ui(Ar12,Ar32,P) + U0(p), (10) 

>,* = 1,3 
where J&, 6 = x,y, z, are the components of the total angular momentum along 
the molecule fixed axes, Jp = —ihd/dp, ps-y (6, y = x, y, z, p) are the elements of 
the 4 x 4 "inverse inertial" matrix n defined by Eqs. (45-50) of Jensen (1988a), 
Pj = —ihd/0Arj2 is the momentum conjugate to Arj2, the vibrational angular 
momentum p^ is given by 

ft = | E { ^ M 4 ) + x W 3 } , ( I D 
j,Jb=l,3 

the Xk b e m g Coriolis coupling coefficients, and the Gjk' matrix elements are 
defined by Eq. (40) of Jensen (1988a). The U\ and UQ functions are pseudopo-
tential terms defined in Eqs. (42-44) of Jensen (1988a). The dependence of UQ 
on the stretching coordinates Ar\2 and Ar%2 has been neglected; this possibly 
explains why sometimes splittings due to Fermi resonances are calculated to be 
too small by the MORBID program [see Bunker et al. (1990) and Barclay et al. 
(1993)]. 

The functions psy, Gjk, and xk entering into Eq. (10) all depend on the 
coordinates Ar\2, Ar32, and p, and we expand them as polynomials in j/i and 
2/3 with p-dependent coefficients, e.g. 

A* = PO(P) + '%2l*j(p)Vi +J2t*jk(p)yjyk 

+ Yl Vjkm(p)yjykym+ Y2 »jkmn(p)yjyi<ymyn (12) 
j<k<m j<k<m<n 
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where Hjk.Xp) is a 4 x 4 matrix with elements pqy " (p), 6,7 = 2, 2/> z, P-
The expansion of the jj-tensor elements are truncated after the quartic terms, 
the expansions of the xi functions are truncated after the cubic terms, and 
the expansions of the GQ matrix elements are truncated after the quadratic 

terms. In this way, we obtain TMORBID a s a n expansion to fourth order in the 
vibrational operators yj and P*. 

2.4 The calculation of the rotation-vibration energies 

The MORBID Hamiltonian is now given as 

^MORBID = TMORBID + V(Ar12, Ar32, p) (13) 

where TMORBID is given by Eq. (10) (with the coordinate-dependent functions 
expressed as the series expansions described above) and the potential function V 
from Eq. (5) has been transformed so that instead of depending on Ar\2, Ar32, 
and the instantaneous value of the bond angle supplement p [see Sect. 2.2], it 
now depends on Ari2, Ar32, and the coordinate p. The transformation is carried 
out using basic geometrical identities as shown in Eqs. (34-36) of Jensen (1988a). 

We obtain the solutions of the eigenvalue problem 

#MORBID ^>MOKBw{Ari2, Ar32, p, 6, <j>, \) 

= ^MORBID '/'MORBID(^12, Ar32, p, 6, <j>, \) (14) 

by "taking the molecule apart". That is, we consider three simplified molecules, 
each of which only carries out part of the molecular motion. 

Stretching. We initially consider a molecule which carries out stretching of its 
bond lengths rj2 with the bond angle fixed at the equilibrium value ae and the 
rotation frozen. This molecule has the Hamiltonian 

H - 1 

-"Stretch — ̂  

1 1 ' 

mi ni2 
P? + l 

2 
J_ J_ Pi COSPePjPa 
m3 m2 J m2 

+ ^2fj°kyjyk+ Yl fj°kmyjykym+ Yl / j tLyj^ymj /n (15) 
j<k j :£*<>" j<k<m<n 

[see Eq. (58) of Jensen (1988a)], where nij is the mass of nucleus j . We obtain 
the eigenfunctions |iVvibTsym) of this Hamiltonian [and the corresponding eigen­
values, which are our zero order stretching energies] by setting up the matrix 
of //stretch m a basis of symmetrized Morse oscillator functions as described in 
Sect. V of Jensen (1988a). The eigenfunctions are labeled by the index Nv\\> 
which characterizes the zeroth order stretching state, and by Tsym which is the 
irreducible representation spanned by the function |-/Vvib.Tsym) in the appropriate 
molecular symmetry group. 
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Bending and K-Type Rotation. We then consider a molecule which carries 
out bending motion and rotation around the molecule-fixed z axis (Fig. 1) with 
its bond lengths fixed at the equilibrium values r\2 and r|2. The molecule fixed z-
axis becomes the molecular axis when the molecule is in a linear configuration. It 
is necessary to consider these two types of motion together since, for a triatomic 
molecule with a linear equilibrium configuration, the rotation around the z-axis 
is only made possible through the bending motion. This simplified molecule has 
the Hamiltonian 

+ \#ffi{p) 9{p) + ^oy)-l/4[Jp, lffl\[Jp, (^(0))1/4] + V0(p), (16) 

[see Eq. (63) of Jensen (1988a)] where fi^ is the determinant of the matrix fj,0 

from Eq. (12), and the function g(p) is given by Eq. (43) of Jensen (1988a). We 
obtain the eigenfunctions \v2, K) for this Hamiltonian through Numerov-Cooley 
numerical integration (Cooley 1961) as described in Sect. V of Jensen (1988a). 
The index v2 is the bending quantum number for a bent triatomic molecule, and 
K is the rotational quantum number describing the rotation around the z-axis. 

End-over-end Rotation. Finally, we consider a drastically simplified molecule 
which carries out rotation around the molecule fixed x- and y-axes. We assume 
this molecule to be a rigid symmetric top, so that its rotational eigenfunctions 
are the symmetrized symmetric top eigenfunctions \J, K, M, r) defined in Eq. 
(7.1) of Jensen (1983). 

The Complete Molecule. We use the products |./VvibAym) |"2, K) \J> K> M, T) 
as basis functions for constructing a matrix representation of the rovibrational 
Hamiltonian //MORBID f°r the "complete" molecule. We may label the eigen­
functions ^MORBID of this Hamiltonian through an index s together with the 
good quantum numbers J, M, and rrv, where Mh is the projection of the total 
angular momentum on the space-fixed Z-axis and rrv is the symmetry of the 
wavefunction, and we approximate such a function as 

'/'MORBID = \s;J,M,rrv) 

E CN'f3f;:LKW^rSym)\v2,i<)\j,K,M,r). a ? ) 

By diagonalizing the matrix representation of the Hamiltonian, we can determine 
its eigenvalues (which, in the approximation adopted here, are the rotation-
vibration energies) and the expansion coefficients c^'f^f^l K defining the 
rotation-vibration wavefunction in Eq. (17). 
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2.5 Intensity calculations 

With the rotation-vibration wavefunctions given by Eq. (17) we can calcu­
late the intensities of absorption transitions between rotation-vibration states. 
If we consider molecules in thermal equilibrium at an absolute temperature 
T, the integrated absorption coefficient for a transition from an initial state 
\sf, Ji, M{, rr„(,)) to a final state \sj; Jj, Mj, r r„(/)) is given by (Smith et al. 
1985) 

jit -\ _ 8*3NAgn,Uif exp(-Ej/kT)[l - expj-hcLjjj/kT)} 

where NA is Avogadro's number, gns is the nuclear spin statistical weight, u>ij is 
the wavenumber of the transition (in cm - 1 ) , E, is the energy of the initial state, 
k is the Boltzmann constant, h is Planck's constant, c is the vacuum velocity of 
light and the partition function Q is given by 

Q = YJ9weM-Ew/kT). (19) 
w 

In Eq. (19), Ew is the energy and gw the total degeneracy of the state w and 
the summation extends over all such states of the molecule. The line strength 
S(f <— i) of an electric dipole transition is defined as 

S(/<-*") = J2 E \{sS\Js^MS^rvU)\pA\si;Ji,Mi,rrv(i))\
2 (20) 

A=X,Y,Z M,,Mj 

where PA is the component of the electronically averaged molecular dipole mo­
ment operator along the A axis (A = X, Y, or Z) of the space fixed coordinate 
system and M; and Mj are the rotational M quantum numbers (quantizing the 
Z component of the total angular momentum) of the initial and final states, 
respectively. 

As described by Jensen (1988c), the MORBID program can calculate the 
linestrengths given by Eq. (20) on the basis of the wavefunctions from Eq. (17) 
and the electronically averaged dipole moment surfaces of the molecule. The 
dipole moment functions are chosen as follows: A pq axis system is defined for 
the triatomic molecule. This axis system has its origin at the nuclear center of 
mass and the p and q axes are in the plane defined by the three nuclei. For an 
unsymmetrical ABC molecule, the p axis is parallel to the bond between nucleus 
2 and nucleus 3 and points so that the p coordinate of nucleus 1 is negative. The q 
axis is perpendicular to the p axis and points so that the q coordinate of nucleus 
1 is positive. For a symmetical ABA molecule, the q axis is the bisector of the 
angle Z(ABA) and points so that the two A nuclei have positive ^-coordinates. 
The p axis is perpendicular to the q axis and points so that the p coordinate of 
nucleus 3 is positive. The dipole moment component along the p axis, fi(p\ is 
expanded as: 

p^(Ar12, Ar32, p) = ^\p) + £ pf\p)Arj2 
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+ Y,l$(P)Ari*ArM + E l$Jp)Arj2Ark2Arm2 

j<k j<k<m 

+ E riPL„(p)Arj2Ark2Arm2Arn2, (21) 
j <k<m<n 

where all of the indices j , k, m, and n assume the values 1 or 3 and 

JV 

$JP) = Y,P$...(™*Pe ~ ™PY- (22) 
.=0 

The function $\p) has N = 8, pf\p) has N = 4, pfk\p) has N = 3, ^ „ » 

has iV = 2, and f$mn(p) has AT = 1. 
The dipole moment component along the q axis, pSq\ is represented by 

/i(«)(ziri2)4r32)p) = s i n p [p{
0
q\p) + Y,$\j>)Arj2 

3 

+ J2»%)(p)Ari2Arki+ E / ^ ( / O ^ Z ^ Z h - ^ 
j < fc j < k < m 

+ E $m«(p)Arj2Ark2Arm2Arn2]. (23) 

Again, all of the indices j , k, m, and n assume the values 1 or 3. The equations 
for the pAm (p) functions are obtained when p is replaced by q in Eq. (22). 

The values of the parameters p-'j- and o-jT in Eqs. (21-23) are obtained 
by fitting the analytical expressions through ab initio dipole moment values. As 
explained by Jensen (1988c) 

— The dipole moment components along the molecule fixed y and z CLXGS, fly 
and fiz, can be obtained by rotating the components p,^ and p(q\ 

— The functions py and p2 can be transformed into polynomials in the quan­
tities yk = 1 — exp(—akArk2) [with expansion coefficients depending on the 
bending coordinate p\. 

— The matrix elements of these expansions between vibrational basis functions 
can be straightforwardly calculated using Morse oscillator matrix elements 
from Spirko et al. (1985). 

— On the basis of the vibrational matrix elements of py and pz and the expan­
sion coefficients c ^ J r^ ™'V2 K from Eq. (17), the line strength S(f <— i) for 
an individual rotation-vibration transition can be obtained from Eq. (55) of 
Jensen (1988c). 

When the linestrengths S(f <— i) have been obtained, the integrated ab­
sorption coeffients I(f <— i) can be calculated from Eq. (18) if the absorbing 
molecules are in thermal equilibrium. For non-equilibrium situations the calcu­
lation of / ( / <— i) requires detailed knowledge about the population distribution 
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of the molecules under study. In order to allow direct comparison with experi­
mental results it might be necessary to compute peak absorption coefficients for 
the rotation-vibration transitions. Such calculations require further knowledge 
about the line shape function (i.e., about the broadening effects present in the 
experiment). An example of a calculation of this type is given by Jensen et al. 
(1992). 

3 A p p l i c a t i o n s 

We give here a brief survey of results from MORBID calculations. 

3.1 HaO 

Calculations from ab initio data. Two calculations of the rotation-vibration 
energies of the water molecule have been carried out (Jensen 1988b,1988d) on 
the basis of ab initio potential energy surfaces from Kraemer et al. (1982) and 
Bartlett et al. (1987), respectively. 

Fitted potential energy surfaces. The parameters of Eqs. (5-9) have been 
optimized (Jensen 1989a) through a least squares fitting to an extensive set 
of rotation-vibration energy spacings for H2

1 60 and its isotopic species. These 
input data consisted of 550 experimental energy separations involving rotation-
vibration energy levels with J < 2 in 103 vibrational states [with energies up 
to 19 000 cm - 1 above the (0,0,0) state] belonging to the six isotopic molecules 
H 2

1 6 0 , D 2
1 6 0 , HD1 60, H2

1 70, H2
1 80, and T 2

1 6 0 . In the fitting 19 parameters 
were varied, and the standard deviation was 0.63 cm - 1 . In a careful compari­
son between four potential energy surfaces for water available in the literature 
(Jensen 1989a; Carter k Handy 1987; Halonen k Carrington 1988; Kauppi k 
Halonen 1990) Fernley et al. (1991) found the MORBID potential (Jensen 1989a) 
to be the most accurate surface currently available for the water molecule. This 
potential has also been used for calculations of water energies by Wattson k 
Rothman (1992) and by Choi k Light (1992). On the basis of the MORBID po­
tential energy surface and dipole moment surfaces calculated ab initio, J0rgensen 
and Jensen (1993) have recently carried out an extensive calculation of the vi­
brational transition moments for water, which they intend to use as input for an 
accurate calculation of the absorption coefficient as a function of wavenumber. 
A new refined potential for H20 based on experimental data involving J < 10 
is presently being fitted with the MORBID program (Jensen k Tyuterev 1993). 

3.2 CH2 

Calculations from ab initio data. Ab initio calculations of the rotation-
vibration energies in the vibrational ground state X3B\ of the methylene radical 
CH2 have been carried out by Jensen (1988a) (who used a potential energy sur­
face calculated by McLean et al. (1987)) and by Comeau et al. (1989), who also 
did calculations for the first excited electronic state (a1 A\). 
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Fitted potential energy surfaces. Jensen k Bunker (1988) have fitted the 
potential energy surfaces for the X3Bi and ~alA\ electronic states of CH2. For 
the XZB\ state, they used all extant rotation-vibration data as input for the 
fitting, whereas only the J = 0 data for the ~a}A\ state were fitted. On the basis 
of the fitted potential energy surfaces, the stretching fundamental energies of 
X 3 5 i 12CH2 were predicted at E(v{) = 2992 cm-1 and E(vz) - 3213 cm"1. By 
combining the results of the MORBID fittings with experimental data for the 
X and a states Jensen k. Bunker (1988) obtained the energy splitting between 
the vibrational ground states of these two electronic states as To (a1 A\) = 3147 
c m - 1 (8.998 kcal/mol) and the splitting between the equilibrium energies of the 
two states as Te (a1 Ax) = 3223 cm"1 (9.215 kcal/mol) for 12CH2. 

3.3 C3 

Calculations from ab initio data. The rotation-vibration energy spectrum 
of C3 in the electronic ground state have been calculated by Jensen & Kraemer 
(1988a) on the basis of an ab initio potential energy surface by Kraemer et al. 
(1984). Recently, more extensive ab initio calculations have been carried out by 
Jensen et al. (1992). These authors also considered the intensities of the allowed 
v-i and 1/3 fundamental bands of 12C3 and showed that their theoretical transition 
moments were in keeping with recent experimental observations (Schmuttenmaer 
et al. 1990). 

Fitted potential energy surfaces. Jensen (1989b) fitted a very limited set 
of rovibrational data for 12C3 and obtained a potential energy function with a 
small barrier to linearity (16.5 cm - 1 ) . This agreed well with the ab initio results 
by Kraemer et al. (1984) and apparently supported suggestions by Matsumuraet 
al. (1988) who argued on experimental grounds that C3 might be slightly bent. 
A recent fit to a more extended data set by Jensen et al. (1992), however, yields 
a potential energy surface with a linear equilibrium geometry, in agreement with 
the ab initio calculation by these authors. 

3.4 H3Se 

Jensen & Kozin (1993) have fitted a potential energy surface for the electronic 
ground state of hydrogen selenide H2Se. On the basis of this potential energy 
function, the rovibrational energy structure in the vibrational ground state 
(Jensen & Kozin 1993) and in the fundamental vibrational states (Kozin & 
Jensen 1993) has been calculated. In all the vibrational states studied, it was 
found that four-fold energy clusters (i.e., four-member groups of nearly degen­
erate energies) form at high rotational excitation. This effect has been experi­
mentally verified for the vibrational ground state of H2

80Se (Kozin et al. 1992a, 
1992b, 1993). 
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3.5 Other molecules 

Other molecules for which MORBID calculations have been carried out include 
NH+ (Jensen et al. 1987; Barclay et al. 1993), HOC+ (Jensen k Kraemer 1988a), 
CCN+ and CNC+ (Jensen & Kraemer 1988b), LiOH (Bunker et al. 1989), NH2 

(Jensen et al. 1990), H2F+ (Bunker et al. 1990), HNC+ (Kraemer et al. 1992), 
Si2C (Barone et al. 1992), H0 2 (Bunker et al. 1992), and HNSi (Chong et al. 
1993). 

Acknowledgments. Since 1989, this work has been supported by the Deutsche 
Forschungsgemeinschaft. Additional funding has been provided by the the Fonds 
der Chemischen Industrie, the Dr. Otto Rohm Gedachtnisstiftung, and the Fritz 
Thyssen-Stiftung. Computer time has been made available by the Computer 
Center of the Justus Liebig-Universitat Giessen, the Computing Center of the 
Technical University Darmstadt, and the Deutsche Versuchsanstalt fur Luft-
und Raumfahrt, Oberpfaffenhofen near Munich. B.P. Winnewisser is thanked 
for critically reading the manuscript and suggesting improvements. 

R e f e r e n c e s 

Barclay V.J., Hamilton I.P., Jensen P., 1993, J. Chem. Phys., submitted for publication 
Barone V., Jensen P., Minichino C, 1992, J. Mol. Spectrosc, 154, 252 
Bartlett R.J., Cole S.J., Purvis G.D., Ermler W.C., Hsieh H.C., Shavitt I., 1987, J. 

Chem. Phys., 87, 6579 
Born M., Oppenheimer J.R., 1927, Ann. der Physik, 84, 457 
Bunker P.R., Hamilton LP., Jensen P., 1992, J. Mol. Spectrosc, 155, 44 
Bunker P.R., Jensen P., Karpfen A., Lischka H., 1989, J. Mol. Spectrosc, 135, 89 
Bunker P.R., Jensen P., Wright J.S., Hamilton LP., 1990, J. Mol. Spectrosc, 144, 310 
Carter S., Handy N.C., 1987, J. Chem. Phys., 87, 4294 
Choi S.E., Light J.C., 1992, J. Chem. Phys., 97, 7031 
Chong D.P., Papousek D., Chen Y.-T., Jensen P., 1993, J. Chem. Phys., 98, 1352 
Comeau D.C., Shavitt I., Jensen P., Bunker P.R., 1989, J. Chem. Phys., 90, 6491 
Cooley J.W., 1961, Math. Comp., 15, 363 
Fernley J.A., Miller S., Tennyson J., 1991, J. Mol. Spectrosc, 150, 597 
Halonen L., Carrington Jr., T., 1988, J. Chem. Phys., 88, 4171 
Hougen J.T., Bunker P.R., Johns J.W.C., 1970, J. Mol. Spectrosc, 34, 136 
Jensen P., 1983, Comp. Phys. Reports, 1, 1 
Jensen P., 1988a, J. Mol. Spectrosc, 128, 478 
Jensen P., 1988b, J. Chem. Soc Faraday Trans. 2, 84, 1315 
Jensen P., 1988c, J. Mol. Spectrosc, 132, 429 
Jensen P., 1988d, J. Mol. Structure, 190, 149 
Jensen P., 1989a, J. Mol. Spectrosc, 133, 438 
Jensen P., 1989b, Collection of Czechoslovak Chemical Communications, 54, 1209 
Jensen P., 1992, in Methods in Computational Molecular Physics, S. Wilson and G. H. 

F. Diercksen, eds., Plenum Press, New York. 
Jensen P., Buenker R.J., Hirsch G., Rai S.N., 1990, Mol. Phys., 70, 443 
Jensen P., Bunker P.R., 1988, J. Chem. Phys., 89, 1327 
Jensen P., Bunker P.R., McLean A.D., 1987, Chem. Phys. Lett., 141, 53 

https://doi.org/10.1017/S025292110002145X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110002145X


The MORBID Method 365 

Jensen P., Kozin I.N., 1993, J. Mol. Spectrosc, 160, 39 
Jensen P., Kraemer W.P., 1988a, J. Mol. Spectrosc, 129, 172 
Jensen P., Kraemer W.P., 1988b, J. Mol. Spectrosc, 129, 216 
Jensen P., Rohlfing CM., Almlof J., 1992, J. Chem. Phys., 97, 3399 
Jensen P., Tyuterev V.G., 1993, in preparation. 
J0rgensen U.G., Jensen P., 1993, J. Mol. Spectrosc, 161, 219 
Kauppi E., Halonen L., 1990, J. Phys. Chem., 94, 5779 
Kozin I.N., Belov S.P., Polyansky O.L., Tretyakov M.Yu., 1992a, J. Mol. Spectrosc, 

152, 13 
Kozin I.N., Jensen P., 1993, J. Mol. Spectrosc, 161, 186 
Kozin I.N., Klee S., Jensen P., Polyansky O.L, Pavlichenkov I.M., 1993, J. Mol. Spec­

trosc, 158, 409 
Kozin I.N., Polyansky O.L., Pripolzin S.I, Vaks V.L., 1992b, J. Mol. Spectrosc, 156, 

504 
Kraemer W.P., Bunker P.R., Yoshimine M., 1984, J. Mol. Spectrosc, 107, 191 
Kraemer W.P., Jensen P., Roos B.O., Bunker P.R., 1992, J. Mol. Spectrosc, 153, 240 
Kraemer W.P., Roos B.O., Siegbahn P.E.M., 1982, Chem. Phys., 69, 305 
Matsumura K., Kanamori H., Kawaguchi K., Hirota E., 1988, J. Chem. Phys., 89, 3491 
McLean A.D., Bunker P.R., Escribano R., Jensen P., 1987, J. Chem. Phys., 87, 2166 
Papousek D., Aliev M.R., 1982,Molecular Vibrational-Rotatonal Spectra, Elsevier, Am­

sterdam. 
Schmuttenmaer C.A., Cohen R.C., Pugliano N., Heath J.R., Cooksy A.L., Busarow 

K.L., Saykally R.J., 1990, Science, 249, 897 
Smith M.A.H., Rinsland C.P., Fridovich B., Narahari Rao K., 1985, in Molecular Spec­

troscopy: Modern Research, Vol. Ill, K. Narahari Rao, ed., Academic Press, Or­
lando. 

Spirko V., Jensen P., Bunker P.R., Cejchan A., 1985, J. Mol. Spectrosc, 112, 183 
Wattson R.B., Rothman L.S., 1992, J. Quant. Spectrosc. Radiat. Transfer, 48, 763 

https://doi.org/10.1017/S025292110002145X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110002145X



