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GORDON MARSHALL PETERSEN

Gordon Marshall Petersen, a member of the London Mathematical Society from

1958, was born on 25 November 1921 in San Francisco, and died on 9 November

1996 in Christchurch, New Zealand.

His father was Danish, born in 1883 in Esbønderup, a village on the island of

Zealand. While still only 15, he suddenly announced to his family that, having secretly

saved up his fare, he was emigrating to America the next day. He had little formal

education, but was able to support his family comfortably. One day during the

Depression, father and son, in their shabbiest clothes, visited a Cadillac showroom

and were about to be ejected when the father produced a paper bag stuffed with

enough banknotes to buy the car they had been inspecting. No wonder Gordon, an

only child, adored his father !

Gordon’s mother Catherine was born in 1883 in America to Richard and Ann

Marshall, who had not long before emigrated from Nottingham in England. She had

three older siblings and also a younger brother, Gordon, who operated several

garages and built his own aeroplanes. He survived the First World War in the US

Army Air Force, but was killed in an air crash in 1920, at the age of 32.

After obtaining his BA degree from Stanford University in 1943, Gordon taught

for a while at a boys’ boarding school in Deep Springs, a remote Californian

settlement not far from Death Valley; he also worked at Moffett Field, a Government

aeronautical establishment in the San Francisco area. He subsequently returned to

Stanford, taking his MA degree in 1947, and from then until 1949 he taught at the

University of British Columbia. His next move was to the University of Toronto, to

work for a PhD under the supervision of G. G. Lorentz, and this he achieved within

two years, in 1951. There followed short-term posts at the Universities of Manitoba

(1951}2), Arizona (1952}3) and Oklahoma (1953}5). Next, Gordon secured a two-

year Senior Research Fellowship at the University College of Swansea (1955}7),

which he—and the College—found enormously stimulating. On its expiry, Gordon

returned to America as an Associate Professor at the University of New Mexico.

However, two years later, in 1959, a Lectureship fell vacant at Swansea and he was

appointed, having eagerly applied in spite of the considerable financial sacrifice that

success entailed. Gordon was promoted to Senior Lecturer in 1961 and to Reader

in 1964. He was awarded the degree of DSc (Wales) in 1963. His last move came in

1965, when he was elected to the Chair of Pure Mathematics in the University

of Canterbury in Christchurch, New Zealand. In 1967 he became head of the

Department of Mathematics, and in 1973 he was elected a Fellow of the Royal

Society of New Zealand. Sadly, after a stroke, he had to take early retirement in 1984.

Further strokes, from 1990 onwards, necessitated continuous nursing care. The

devoted attention accorded to him in the St John of God Hospital in Christchurch,

and his powerful constitution, enabled him to survive for six more years, the last few

of which were distressing for himself and his friends.
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Gordon was well over six feet tall and unusually broad. His exceptional bulk went

with a great booming voice, which gave him a formidable presence. He himself

recorded with amusement an incident when he asked a widow and her young son to

tea. In response to their knock, Gordon flung open the door and roared a welcome.

Thereupon the boy, who had wondered what the initials G. M. stood for, asked his

mother ‘do you think it’s Great Monster Petersen?’. Gordon could, in fact, be

intimidating, but for every person who found him so, there were many who enjoyed

his stimulating company. A friend from his Swansea days called him a gentle giant.

Of course, a giant has a commensurate appetite, and anyone who entertained Gordon

came up against this problem. On the other hand, a satisfying meal produced a degree

of appreciation that was ample reward. But Gordon also greatly enjoyed the role of

host, in or out of doors, and in Swansea the picnics he organised are still fondly

remembered. In addition, he was always happy to show the local sights to visitors or

to new members of the Department and their families, but the pleasure he thus gave

was not always unalloyed: though his driving record was actually admirable, this was

sometimes hard to believe.

While still living in America, Gordon began to explore his roots in England and

Denmark. He grew close to some of his English relatives, especially the younger

generation, and on a number of occasions he took a party of the latter on long cycle

trips in England and Denmark. They stayed mostly in youth hostels, but fed lavishly.

However, what is mainly remembered by at least some of the then teenagers is

Gordon’s enthusiasm for all they saw and his ability to pass it on to his young

companions. Years later, the sons of one of these relatives were also taken on trips

by Gordon, but now by car or canal boat. Gordon always had a special affinity for

the land of his father’s birth, and he called the diary he kept of some of his wanderings

there ‘Three trips home to Denmark’. He even left instructions for his ashes to be

interred in the family plot in Esbønderup. Another country that he particularly

enjoyed visiting was China; in fact, travel was one of his great pleasures.

A characteristic that made Gordon such an interesting friend was his erudition.

His knowledge of history may well have led to his delight in coin collecting; but he

also avidly collected objects as diverse as chess sets, teapots, enamelled coins and

oriental rugs. However, unlike many collectors, he freely made presents of items from

his collections. Major gifts were his entire collection of coins, with the heads of all

the Roman emperors, to the University of Canterbury, and another collection of

Parthian and Roman Imperial coins to the University College of Swansea. Particulars

of his generosity in financial affairs were, naturally, kept confidential.

Gordon had a great interest in the arts. In Swansea he painted abstract pictures

and did some sculpting, but lack of time must have precluded these activities in

Christchurch. On the other hand, as something of a real-life showman, he always

made time for acting, which he loved. He also much enjoyed opera.

On taking up his Chair in Christchurch, Gordon gave first priority to the

promotion of research. Overseas visitors provided an extra stimulus, and everything

was done to encourage the Department’s MSc and PhD programmes. On the wider

national stage, Gordon was one of the prime agents in the establishment of the New

Zealand Mathematical Colloquium, which first met a year after his arrival. Later,

Gordon was the instigator and chief organiser of the first ever Australasian

Mathematics Convention, appropriately held in the University of Canterbury in

1978.

Gordon took his Departmental and Faculty duties very seriously, and he enjoyed
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ceremonial occasions, resplendent in his scarlet DSc robes. That he cared about

advanced teaching was very evident, but the book [B1] shows that he was also

interested in the presentation of elementary material. During his first sojourn in

Swansea (1955}7), he and Hazel Perfect, then a lecturer in the department, both noted

the dearth of introductions in English to abstract algebra, and independently

conceived the notion of translating the German edition of Alexandroff’s classic text.

In the event, they collaborated in the enterprise, providing also about 60 exercises.

The fact that the book had seven printings proves that it very much filled a need.

Incidentally, success did not bring riches : there were no royalties, only a modest once-

for-all fee.

Po! lya in Stanford, Lorentz in Toronto and Goffman in Oklahoma were regarded

by Gordon as the principal moulders of his mathematical personality. He, in turn,

must have left a lasting impression on his students and on his many collaborators

who, though often not primarily interested in his field, were seduced by his bubbling

enthusiasm. He was a powerful classical analyst whose forte was the solution of hard

problems rather than the creation of new theories. In this context, his special gift for

constructing examples to illustrate, prove and disprove propositions was particularly

useful. Although his reputation to a great extent derives from his work in general

summability theory, he also published extensively on a variety of other topics. An

indication of the subjects tackled by him follows.

General analysis

A. Almost con�ergence [26, 30]. The sequence (s
k
) is said to be almost con�ergent

to s if p−"3n+p

k=n+"
s
k
! s as p!¢, uniformly for n ` ²1, 2, 3,…´. The concept, which

implies (C, 1) limitability to the same value, was introduced by Lorentz in ©9ª.

The principal result of [26] is that if the real function F is of bounded variation

on [0, 2π] and c
n
¯ (2π)−" !#π

!
einθdF(θ) (n¯ 0, 1, 2,…), then (rc

n
r#) is almost convergent

to (4π)−#3µ#
m
, where the µ

m
are the jumps of F at its discontinuities. This leads to an

improvement of a theorem of Wiener ©14ª which states that F is continuous if and

only if (rc#
n
r) is (C, 1) limitable to 0: for F to be continuous, it is necessary that (rc#

n
r)

is almost convergent to 0, and it is sufficient that (rc#
n
r) is limitable to 0 by some

method containing almost convergence.

B. Uniformly and well-distributed sequences [12, 23, 38, 39, 45, 52, 56, 57, 60, 73,

76]. For any interval [a, b]X [0, 1], let I
[a,b]

(x) be the characteristic function of [a, b].

Then (see Weyl ©13ª) the sequence (s
k
) in [0, 1] is uniformly distributed if for every

[a, b]X [0, 1], p−"3p

k="
I
[a,b]

(s
k
)! b®a as p!¢, that is, if (I

[a,b]
(s

k
)) is (C, 1) limitable

to b®a. In [12] Gordon strengthens this property: (s
k
) in [0, 1] is called well-distributed

if for every [a, b]X [0, 1], (I
[a,b]

(s
k
)) is almost convergent to b®a. Several well-known

results on uniformly distributed sequences are shown to have analogues for well-

distributed sequences. When α is irrational, (²kα´) is well-distributed (where ²θ ´
denotes the fractional part of θ). In addition, it is proved in [23] that to every

irrational α, there corresponds a sequence (n(k)) of integers such that n(k)}n(k®1)

" λ" 1 and (²n(k)α´) is well-distributed.

In the next six papers of this group, the aim is largely to obtain results of a type

opposite to the last one. The principal theorem of [38] is that if the sequence of

integers n(k) is such that n(k)}n(k®1) increases to ¢, then, for almost all α ` (0, 1],
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(²n(k)α´) is not well-distributed. The condition on n(k) is gradually relaxed until, in

[57], (n(k)) is required only to be a sequence of real numbers such that n(k)}n(k®1)

" λ" 1.

If (s
n
) is well (uniformly) distributed and (t

n
) converges, then (s

n
­t

n
) is well

(uniformly) distributed. These facts motivate the following definitions in [60] : (t
n
)

is called admissible (u-admissible) if, whenever (s
n
) is well (uniformly) distributed,

then so is (s
n
­t

n
). Among the results of this paper, two stand out. Theorem 5: if

rt
n
®t

n−"
r% "

#
for all n, then (t

n
) is admissible if and only if (rt

n
®t

n−"
r) almost con-

verges to 0. Theorem 6: if rt
n
®t

n−"
r% "

#
and t

n
¯ u

n
­�

n
, where ru

n
®u

n−"
r¯O(1}n)

and (r�
n
®�

n−"
r) is (C, 1) limitable to 0, then (t

n
) is u-admissible.

C. An inequality of Hardy [36, 42, 62]. The Hardy inequality which inspired

these papers is

3
¢

n="

0An

n 1
p

! 0 p

p®11
p

3
¢

n="

ap

n
,

where p" 1, A
n
¯ a

"
­I­a

n
, and a

n
& 0 for all n, but a

n
is not 0 for all n. More-

over, the constant is best possible (see ©7, page 239ª).

In [36] the arithmetic means are replaced by the means derived from Jurkat and

Peyerimhoff’s M-matrices (a
mν) (see ©8ª) which are positive, triangular and satisfy

some additional conditions. Also, f(m) is a certain positive increasing function, and

uν & 0 for ν& 1. Then

3
¢

m="

03m
ν="

a
mν uν1p %C 3

¢

m="

(u
m

f(m) a
mm

)p,

where p¯ 2, 3,… and C is a constant. The result is improved in [42] : p is now any

real number " 1, while (a
mν) and f are less restricted than before. There is also an

inequality in the opposite direction when 0! p! 1.

D. Infinite linear systems [40, 41, 43, 44, 46]. The (real) systems considered are

of the form

3
¢

j="

a
ij
u
j
¯ b

i
(i¯ 1, 2,…), (n)

where (a
ij
) is a given matrix and (b

i
) is an arbitrary sequence. Po! lya ©12ª has shown

that if (i) a
"j

1 0 for infinitely many j, and (ii) lim inf
j!¢ A

ij
¯ 0 for every i, where

A
ij
¯ (3i−"

k="
ra

kj
r)}ra

ij
r, then, for each sequence (b

i
), (n) has a solution (u

j
) for which

the left-hand side of (n) converges absolutely.

In [40] a theorem cognate to Po! lya’s is proved: (i) is retained, while (ii) is replaced

by more elaborate conditions on (a
ij
), and also the left-hand side of (n) need not

converge absolutely. There is an example of a system to which the new theorem

applies, but not Po! lya’s, and in which all left-hand sides converge conditionally.

[41] investigates the extent to which Po! lya’s sufficient conditions are also

necessary. It is shown that if (i)« a
"j

1 0 for j¯ 1, 2,… , and the conclusion of Po! lya’s

theorem holds, then (ii)« lim inf
j!¢ A

ij
¯ 0 for infinitely many i. This motivates the

variant of Po! lya’s theorem proved in [43] : the conclusion of the theorem holds if (i)«,
(ii)« and three further conditions are satisfied.

https://doi.org/10.1112/S0024609398005177 Published online by Cambridge University Press

https://doi.org/10.1112/S0024609398005177


 101

E. Metric density and Lusin’s theorem [63, 68, 72]. The basic Lusin–Menchoff

theorem for Euclidean space E
n

is that if E is a Borel set, X is a closed subset of E

and d
o
(x,E ), the ordinary metric density of E at x, equals 1 for all x `X, then there

exists a perfect set P with XXPXE and d
o
(x,P)¯ 1 for all x `X. There is a proof

in ©5ª, where it is also shown that when n& 2, the metric density d
o

may not be

replaced by the strong kind d
s
. On the other hand, in [63] it is proved that an

appropriate concept is uniformly regular metric density d(λ,x,E ). Here λ is a family

of rectangles such that for each x `E
n
, there is a sequence of members of λ which

converges to x and is uniformly thick (in a precise sense). An example shows that the

thickness condition must not be infringed even at a single point, and another, in [68],

that thickness at each point, but without uniformity, is also inadequate.

F. Miscellaneous topics (i ) [1, 13, 29]. Hardy ©6ª proved that if f `Lp (p& 1)

and f(x)C3 a
n
cos nx, then there is a function in L

p
with Fourier constants A

n
¯

n−"3n

k="
a
k
. It is shown in [1] that Hardy’s Lp may be replaced by other Banach

spaces, for example, by (see ©10ª) Λ(α) (0!α! 1), the space of measurable f on

(0, 1) with norm α !"
!
xα−"f *(x) dx, where f * is the decreasing rearrangement of f.

Also, other means can replace A
n
.

In [13] the Riesz product 0¢

n="
(1­cos 4nθ) is expanded as the formal series

1­3¢

n="
α
n
cos p

n
θ with a set procedure for evaluating each α

n
and p

n
.

A Hardy–Littlewood theorem (for example, ©15, page 63ª) is that the Fourier

series of an integrable function fC (a
n
, b

n
) converges at x to f(x) if (i) r f(x­h)®f(x)r

¯ o((log rhr−")−") and (ii) a
n
, b

n
¯O(n−δ ) for some δ" 0. However, (i) alone is

compatible with divergence of the Fourier series ©15, page 303ª. Nevertheless,

according to [29], (i) implies summability to f(x) by triangular matrices of a certain

kind.

Summability

G. Special summation methods [2, 3, 32, 74]. The series 3¢
ν=!

uν is said to be

summable to s by Bernstein’s method (Bh) if 3n
ν=!

uν cos "

#
π 0 ν

n­h1! s as n!¢. The

first parts of both [2] and [3] deal with this method. It was known that (Bh)Y (C, 1)

for all h, and the challenge was to make this relation more precise. In [2] it is shown

that (Bh)3 (C, 1) for h" "

#
, and in [3] that (Bh)[ (C, 1) for h! 0. These results and

others in ©1ª combine comprehensively : for h¯ 0 and h" "

#
, (Bh)3 (C, 1), and for all

other h, (Bh)[ (C, 1).

Let k" 0 and 0¯ λ
!
! λ

"
! λ

#
!I. In the study of trigonometric series,

(i) Riesz’s typical means and (ii) Riemann’s method occur in a natural way. 3 u
n

is

(i) summable (R, λ
n
,k) to s if 3λ

n
!ω(1®λ

n
}ω)k u

n
! s as ω!¢, and (ii) summable

(R,k, λ
n
) to s if u

!
­3¢

n="
(sin λ

n
h}λ

n
h)k u

n
! s as h! 0. It is proved in [32] that if

0! p% λ
n+"

®λ
n
% q (n¯ 1, 2,…), then, when k" 2, (R,k, λ

n
)Y (R, λ

n
, 1).

Denote by E the set of sequences s¯ (s
n
) such that s

n
®s

n−"
¯O(1}n). According

to a famous theorem of Littlewood, if s is Abel limitable and also s `E, then s

converges. Gordon shows in [74] that E may be replaced by Ea , the closure of E in the

topology generated by sss¯ sup
n
rs

n
r.

H. Sets of subsequences [28, 33, 35]. Each subsequence s* of a given sequence s

is formed by the deletion from s of all terms s
k

with k in a certain set KX ²1, 2,…´ ;
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and s* is paired with x ` (0, 1] if the non-terminating binary expansion of x has 0 in

the kth place when k `K and 1 when k aK. The resulting bijection between (0, 1] and

the set of all subsequences of s enables one to talk of ‘almost all subsequences of s ’

or ‘a set of subsequences of s of measure "

#
’, and so on.

[28] exhibits an intriguing pair (s
n
), (t

n
) of sequences ; both are almost convergent

(see Subsection A) though not convergent, while almost all subsequences of (s
n
) are

almost convergent, and almost no subsequences of (t
n
) are almost convergent.

Let (p
n
) be a real sequence, and put P

m
¯ p

"
­I­p

m
. Then (s

n
) is limited by the

Riesz method (R, p
n
) to s if (p

"
s
"
­I­p

m
s
m
)}P

m
! s as m!¢. An interesting result

of [33] is that if (R, p
n
) is regular (which means P

m
!¢ as m!¢) and satisfies some

additional conditions, then almost all subsequences of a bounded (R, p
n
) limitable

sequence are (R, p
n
) limitable to the same value.

In [35] there is a theorem of opposite type. Conditions on a matrix A are found

which ensure that if almost all subsequences of a sequence (s
n
) are A-limited to s, then

(s
n
) itself is A-limited to s.

I. Tauberian theorems [21, 22, 34, 71(ii), 77]. R. C. Buck proved in ©4ª that a

real sequence (s
n
) converges if there exists a regular matrix limitation method which

limits every subsequence of (s
n
). In [21] it is shown that when the subsequences of (s

n
)

and the real numbers in (0, 1] are paired as in Subsection H, this theorem can be

strengthened by the replacement of ‘every subsequence’ by ‘a set of subsequences of

the second category’.

The main result of [34] is that s
n
®s

n−"
¯O(1}n) is a Tauberian condition for a

class of matrices related to the M-matrices featuring in Subsection C; and in [71(ii)]

a general technique involving M-matrices leads fairly rapidly to known Tauberian

conditions for Riesz and Nørlund means.

Let f(n) decrease and tend to 0 as n!¢, and let E be the set of sequences s¯ (s
n
)

such that s
n
®s

n−"
¯O( f(n)). The most attractive result in the interesting paper

[77], Gordon’s last, is that if A is a member of a wide class of limitation methods,

and E is a Tauberian set for A, then so is the closure Ea of E generated by the norm

sss¯ sup
n
rs

n
r (compare Subsection G, [74]).

J. Limitation of bounded and of unbounded sequences [7, 8, 10, 11, 15, 16, 24, 25,

27, 37]. Let A,B be limitation matrices. If the comparison AYB refers to (a) all

sequences, (b) all bounded sequences, then A is called (a) a-stronger, (b) b-stronger

than B. If each of A,B is a-stronger than the other, then A,B are called a-equi�alent ;

b-equi�alence is similarly defined. Finally, A,B are said to be (a) a-consistent,

(b) b-consistent if they limit to the same value (a) every sequence limited by both,

(b) every bounded sequence limited by both.

[25] consists of concise proofs of four fundamental theorems of Brudno in ©2ª.

The earlier papers [8, 10] contain slightly longer proofs of the first two. Let A,B be

regular matrices : (i) if A is b-stronger than B, then A, B are b-consistent ; (ii) if A is

strictly b-stronger than B, written A[B, then there is a regular matrix C such that

A[C[B. A generalisation of (i) is proved in [27].

In [7] there is a simple example of a set ! of regular matrices, b-consistent in pairs,

such that every bounded sequence is limited by at least one member of !. Here ! is

the set of all regular non-negative matrices with "

#
in each row and column.

One of the differences between the situations when unbounded sequences are and
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are not admitted is shown up in [24] : there are pairs of regular matrices which are

a-equivalent, but not a-consistent (though they are necessarily b-consistent).

K. Iterations and norms [9, 17–20, 31, 49]. The following notation and no-

menclature relating to regular limitation matrices A¯ (a
mn

), B¯ (b
mn

) are used in

this subsection.

(i) If c
mn

¯3¢

k="
b
mk

a
kn

, then C¯ (c
mn

) is called the product B[A or the iteration

of B with A.

(ii) The limitation method ! is the (equivalence) class of regular matrices

b-equivalent to A.

(iii) The norm h(A) is sup
m

3¢

n="
ra

mn
r, and the norm s!s is defined as inf h(A*),

where the infimum is taken over all A* `!. Also, N(A) is defined as sup rA-lim sr,
where the supremum is taken over all sequences s in the unit sphere limited by A (see

©2, 3ª).

It is shown in [20] that if h«(A)¯ lim sup
m

3¢

n="
ra

mn
r, then s! s is also given by

inf h«(A), where the infimum is taken over the same matrices as before. One of

Brudno’s striking theorems in ©2ª is that if the method ! is b-stronger than ", then

s! s& s" s. In [19] Gordon proves the complementary result that ! being strictly

b-stronger than " does not imply that s! s" s"s. The theme of [49] is the

attainment of norms. For instance, there is a new proof of Brudno’s theorem in ©3ª
to the effect that if A is regular, then there is a sequence s in the unit sphere such that

N
A
¯A-lim s.

A specimen theorem of [9] is that if A,B are regular, then there exists a regular C

such that C and B[C are b-equivalent to A. The sole and surprising result of [18] is

that if the regular matrices A
k
are such that 0¢

k="
h(A

k
)!¢, then there exists a matrix

which is b-stronger than each of the products A
k
[A

k−"
IA

"
(k¯ 1, 2,…).

L. Singularities [47, 48, 50, 51, 53, 55, 58, 59, 64, 66, 66a, 70, 75]. Some of the

notation introduced in Subsection K is now changed. Given the regular matrix A, in

this section ! denotes the limitation field of A, that is, the set of bounded sequences

limited by A.

There are various types of singularity, most with highly technical definitions.

However, very informally one may say that two or more regular matrices have a

singularity if there are bounded sequences such that they and their transforms behave

rather differently.

Singularities were first defined in ©11ª. One of these, the type S
#
, concerns a finite

number of matrices, but an extension, the type S
$
for a countable set of matrices, is

introduced in [47]. The significance of both types is explored in this paper. For

instance, there is Theorem 8: if A,B are regular and !­" spans all the bounded

sequences, then A,B have a singularity S
#
. In [50] it is deduced that under the previous

conditions, A,B are not b-consistent.

The notion of b-consistency is in [51] generalised to more than two matrices, and

the new concept leads to the corresponding generalisation of the theorem of [50].

Another extension appears in [58] : if the !i (i¯ 1, 2,…) span the bounded sequences,

then, for some p,A
"
,… ,A

p
are not b-consistent. Yet another related result is Theorem

5 of [66] : if the ! i are such that ! i X! i+" (i¯ 1, 2,…), then they cannot span the

space of bounded sequences densely.
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M. Factor sequences [61, 65, 67, 69]. Let A¯ (a
mn

) be a regular matrix.

Changing earlier notation again, denote by ! the set of bounded sequences limited

by A, and by !
!

the set of bounded sequences limited by A to 0.

The bounded sequence ξ¯ (ξ
n
) is now called a factor sequence for ! (or A) if

ξx `!
!
whenever x `!

!
. The set of factor sequences for ! is denoted by !*. (This is

the definition as it appears in [65] ; the form given in [61] is less compact.) In [67] it is

shown that !*, with the usual definitions of x­y, xy and sxs for x, y `!*, is a

Banach algebra.

A further definition (in [61]) is productive. If (n
k
) is such that lim

m!¢ 3
k
ra

mnk

r¯ 0

and (t
n
) is such that t

n
¯ 0 when n1 n

k
, then (t

n
) is called a thin sequence (with

respect to A).

The theorems below give a flavour of the results in [65] and [69].

(i) If A is regular, then !* is the set of all bounded sequences if and only if !

consists of the sequences r­t, where r converges and t is thin.

(ii) If A is regular and !* is the set of bounded sequences, then A is b-equivalent

to a positive regular matrix.

N. Miscellaneous topics (ii ) [4–6, 14, 54, 71(i)]. Much as in Subsection H, sets of

submethods of a regular matrix method [6] and sets of subseries [14] can be associated

with subsets of (0, 1]. An appealing theorem in [6] is that the (C, 1) method is

b-equivalent to almost all of its submethods.

The long review paper [54] appeared soon after the book [B2], but is very different

in character. As Gordon says, the content is much influenced by his own preferences,

and therefore leans towards areas in which he has been active. However, the last four

of the 13 sections, on summability factors, Abel typical means, logarithmic means and

Tauberian classes for functions, are entirely devoted to the work of others.

[71(i)] is a highly appreciative and affectionate biographical sketch of G. G.

Lorentz which introduces a special volume of the Journal of Approximation Theory

celebrating his 65th birthday. Gordon’s mathematical tribute is [71(ii)], noted in

Subsection I.

Regular matrix transformations [B2]. Although, in the preface, Gordon

acknowledges his debt to G. H. Hardy’s Di�ergent series (1949), R. G. Cooke’s

Infinite matrices and sequence spaces (1950) and K. Zeller’s Theorie der

Limitierungs�erfahren (1958), there is very little overlap between these books and [B2].

After two classical chapters on matrix limitation methods and some well-known

particular instances as well as Abel’s method, [B2] proceeds to much newer material.

Thus Chapter III introduces almost convergence and strongly regular matrices, and

leads up to the Universal Tauberian Theorem of [21]. Chapter IV contains material

on bounded convergence fields, with Brudno’s fundamental theorems proved in the

simple way set out in [25]. The discussion of matrix norms is continued in Chapter V,

much of which is devoted to singularities and the inclusion of matrices. It is

remarkable how this short book leads the reader from the very beginning of

summability theory to what, in the late 1960s, was the frontier of research.

A. I am very grateful to Dr Anne C. Baker, Dr J. W. Baker,

Mr J. Barrowcliffe, Mr W. Hansen, Dr M. T. McGregor, Dr Hazel Perfect, Professor

N. A. Watson and Professor B. A. Woods, who helped me in many ways to portray
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Gordon’s life and work. I thank the Royal Society of New Zealand for the loan of

the photograph, which was taken in about 1973.
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