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Abstract

Commercial targeted sprayer systems allow producers to reduce herbicide inputs but risks the
possibility of not treating emerging weeds. Currently, targeted applications with the John Deere
system have five spray sensitivity settings, and no published literature discusses the effects of these
settings on detecting and spraying weeds of varying species, sizes, and positions in crops. Research
was conducted inArkansas, Illinois, Indiana,Mississippi, andNorthCarolina on plantings of corn,
cotton, and soybean to determine how various factors might influence the ability of targeted
applications to treat weeds. These data included 21 weed species aggregated to six classes with
height, width, and densities ranging from 25 to 0.25 cm, 25 to 0.25 cm, and 14.3 to 0.04 plantsm−2,
respectively. Crop and weed density did not influence the likelihood of treating the weeds. As
expected, the sensitivity setting alters the ability to treat weeds. Targeted applications (across
sensitivity settings, median weed height and width, and density of 2.4 plants m−2) resulted in a
treatment success of 99.6% to 84.4% for Convolvulaceae, 99.1% to 68.8% for decumbent broadleaf
weeds, 98.9% to 62.9% for Malvaceae, 99.1% to 70.3% for Poaceae, 98.0% to 48.3% for
Amaranthaceae, and 98.5% to 55.8% for yellow nutsedge. Reducing the sensitivity setting reduced
the ability to treat weeds. The size of weeds aided targeted application success, with larger weeds
being more readily treated through easier detection. Based on these findings, various conditions
can affect the outcome of targeted multinozzle applications. Additionally, the analyses highlight
some of the parameters to consider when using these technologies.

Introduction

Weeds often emerge in clumps or patches throughout a field, creating an opportunity for site-
specific management in these localized regions, and reducing overall inputs in specific
production systems (Cardina et al. 1997; El Jgham et al. 2023; Metcalfe et al. 2019; Rew and
Cousens 2001; Sapkota et al. 2020; Stafford and Miller 1993; Wiles et al. 1992). Spray systems to
detect emerged weeds on bare soil (i.e., green-on-brown) have been used for several decades in
fallow systems (Felton and McCloy 1992; Haggar et al. 1983). However, recent technological
advancements have enabled the development of foliar application systems to discern between
the crop plant and emerged weeds (i.e., green-on-green). Despite several years of research in
developing targeted sprayers, limited processing capability, intermingling and occlusion of
weeds and crops, and plasticity of weeds across environments create a challenging situation for
highly accurate and efficient machine vision technology (Fernandez-Quintanilla et al. 2018;
Franz et al. 1991; Munier-Jolain et al. 2014). However, technologies such as Greeneye™
(Greeneye Technology, Lincoln, NE) and See & Spray™ (Deere & Company, Moline, IL, aka
John Deere) are becoming more common, offering machine vision technologies that target-
apply herbicides through simultaneous detection and action (Khait et al. 2023; Padwick et al.
2023; Walter and Houis 2024). The recent commercial development of targeted sprayer
technologies provides an opportunity to reduce herbicide inputs through targeted applications,
specifically to weeds, rather than broadcasting the herbicide over an entire field.
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Weed control is vital in almost all cropping systems to sustain
the increasing food and fiber demand across the globe. Herbicides
are practical and economical for controlling weeds and have been
used extensively since the 1960s (Gianessi and Reigner 2007).
However, the overreliance on herbicides and lack of integrated
tactics have driven widespread herbicide resistance (Heap 2024;
Norsworthy et al. 2012). If machine vision technologies are not
optimized for maximum efficacy, these systems may accelerate
herbicide resistance evolution by missing weeds at susceptible
growth stages, resulting in larger-than-recommended sizes at later
applications or low-dose exposure from partial coverage (Hearn
2009; Norsworthy et al. 2012; Villette et al. 2021).

Field research is needed to evaluate commercial machine vision
technologies in corn, cotton, and soybean fields to improve system
efficiency and avoid unintended effects of targeted sprays. Existing
research has reported comparable Palmer amaranth control from
targeted and broadcast applications of herbicides to corn and
soybean with the Greeneye and John Deere systems (Leise et al.
2025), with broadcast and targeted applications providing similar
Palmer amaranth control of between 94% and 99%. Other research
has demonstrated that targeted applications performed similarly to
a broadcast application for control of Palmer amaranth,
morningglory (Ipomoea spp.), purslane (Portulaca spp.), and
broadleaf signalgrass [Urochloa platyphylla (Munro ex C. Wright)
R.D. Webster] within a program approach (Avent et al. 2024).
However, both sources (Avent et al. [2024] and Leise et al. [2025])
noted that a range of sensitivity settings are available for targeted
applications with John Deere sprayers and could influence the
results observed.

The John Deere sprayers use computer vision and deep
learning to perform simultaneous detection and action (Fu et al.
2022; Padwick et al. 2023). The detection algorithm classifies
individual pixels in images as either weeds, crops, or neither.
Technically, the algorithm predicts the probability of being one
of these classes using several observed variables called
predictors. Such probabilities are then turned into an actual
predicted class using decision thresholds (James et al. 2021).
With machine vision, the threshold to classify a weed could be
adjusted and ultimately affect performance, which is mentioned
in patents held by Blue River Technology (Fu et al. 2022;
Padwick et al. 2023; Redden 2023; Venkataraju et al. 2023). Once
a weed is detected, the processors determine where the weed is
and activate any nozzle body where droplets from the nozzle tip
can contribute to the area deemed a weed based on the specific
nozzle tips and position in three-dimensional space at the time
of activation.

John Deere targeted sprayers provide a setting called spray
sensitivity, which consists of five levels: lowest, low, medium, high,
and highest. Spray sensitivity adjusts the decision threshold for
detecting a weed (Lazaro et al. 2024; Patzoldt et al. 2022), which
could also be subject to change with software updates. Plant
reflectance and architecture are considered predictors, providing a
predicted probability (Fu et al. 2022; Padwick et al. 2023) that must
then exceed the decision threshold to be classified as a weed
(Redden 2023). Therefore, different colors, species, sizes, and
positions of weeds in crops could be more difficult to detect than
others. Targeted applications are currently supported in fallow,
soybean, corn, and cotton production, with different algorithms
(i.e., models) for detecting weeds. The objective of these experi-
ments was to determine the extent to which selected factors (spray
sensitivity, weed size, weed position, weed species, and crop)
influence the likelihood of treating weeds with targeted
applications.

Materials and Methods

The experiment was conducted using a randomized complete
block design with two factors and four replications. Factor A
consisted of application timing: 14, 21, or 28 d after planting
(DAP). Factor B included the application method: broadcast and
three detection sensitivity settings: highest, medium, and lowest
corresponding to internal algorithm threshold levels of 0.4, 0.7, and
0.9, respectively. Nontreated, preemergence-only, and hand-
weeded controls were added for comparisons but are not included
in this analysis. Each experiment was conducted in corn, cotton,
and soybean fields across various sites in 2022 (Table 1). Corn
experiments were conducted in Champaign, IL; West Lafayette,
IN; and Greenville, MS. Cotton experiments were performed in
Kinston, NC; Keiser, AR; and Greenville, MS. Soybean experi-
ments were established in Champaign, IL; West Lafayette, IN;
Greenville, MS; Keiser, AR; and Kinston, NC.

Each soybean and cotton experiment was planted with a
glyphosate- and glufosinate-resistant cultivar at regionally recom-
mended seeding rates in fields containing a natural population of
weeds (Table 1). Corn hybrids were at least glyphosate-resistant
and planted into natural weed populations at regionally
recommended seeding rates. The corn experiments used labeled
rates of S-metolachlor þ atrazine þ paraquat applied preemer-
gence followed by (fb) atrazine þ mesotrione þ glyphosate þ
S-metolachlor applied postemergence (Table 2). The soybean
herbicide program included S-metolachlor þ metribuzin þ
paraquat applied preemergence fb glufosinate þ S-metolachlor

Table 1. Site information of each crop and cultural practice.

Crop Site Planting date Cultivar Population Row spacing Soil series

seeds ha−1 cm
Corn Champaign, IL June 9 G12S75-5122 84,000 76.2 Drummer silty clay loam

West Lafayette, IN June 1 DKC56-65 79,100 76.2 Drummer silty clay
Greenville, MS May 17 P2057VYHR 86,500 96.5 Commerce silt loam

Soybean Champaign, IL May 31 AG33XF2 345,900 76.2 Flanagan silt loam
West Lafayette, IN June 9 AG29XF1 345,900 76.2 Chalmers silty clay
Keiser, AR June 5 B4885XF 345,900 96.5 Steele loamy sand
Greenville, MS June 1 AG48XF2 358,300 96.5 Commerce silt loam
Kinston, NC June 27 AG48XF0 296,500 76.2 Johns sandy loam

Cotton Keiser, AR May 17 DP2020B3XF 108,700 96.5 Sharkey-Steele complex
Greenville, MS May 21 ST4990B3XF 111,200 96.5 Commerce silt loam
Kinston, NC June 12 DP2127B3XF 98,800 76.2 Johns sandy loam
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applied early postemergence fb glufosinate þ acetochlor applied
mid-postemergence. The cotton herbicide program was the same
as the soybean program, with the exception being fluometuron
rather than metribuzin was applied to cotton preemergence. Corn
experiments did not have sequential postemergence applications,
but soybean and cotton received mid-postemergence applications
14 d after early postemergence applications. All postemergence
treatments also included a nonionic surfactant (Preference;
Winfield United, Arden Hills, MN) at 0.25% (v/v). To indicate
whether weeds were treated or not, postemergence-active
herbicides included blue dye (Super Signal Blue; Precision Labs
LLC, Kenosha, WI) at 0.25% (v/v). Cultural practices and soil
information, including planting dates, soil series and textures, and
row widths are listed in Table 1. All plots were 3.8 m wide and 29.5
m to 32.8 m long.

The sprayer used in the studies was previously described by
Avent et al. (2024) as a dual-boom targeted sprayer engineered by
Blue River Technology and wasmounted to the front-end loader of
a tractor. Ten nozzle bodies were spaced 38.1 cm apart. All
herbicides were applied using the dual-boom system, which is
capable of applying both broadcast and targeted applications in the
same pass. At the preemergence application timing, broadcast
treatments used PSLDMQ2003 nozzle tips (Deere & Company)
calibrated to deliver 140 L ha−1 of water. Preemergence targeted
herbicides were applied using SF4003 nozzles (Greenleaf
Technologies, Covington, LA) calibrated to deliver 140 L ha−1 of
water, and placed in a prototype cap that inclined the nozzle tip
rearward at 30 degrees.

Postemergence treatments included the soil residual herbicides
S-metolachlor or acetochlor applied through the broadcast
boom with AIXR11002 nozzles (TeeJet Technologies, Glendale
Heights, IL) calibrated to deliver 97 L ha−1 of water. In contrast, the
foliar-active herbicides, glufosinate and mesotrione þ atrazine þ
glyphosate, were sprayed through the targeted application boom.
Glufosinate used in cotton and soybean experiments was applied
with Deere & Company PS3DQ0004 nozzles all orientated toward
the rearward position and calibrated to deliver 140 L ha−1 of water.
Herbicides applied to corn, including mesotrione þ atrazine þ
glyphosate, used Deere & Company PSLDMQ2003R4 nozzles all
orientated to the rearward position and calibrated to deliver 140 L
ha−1 of water.

Nozzles were selected based on droplet spectrum and
characterization requirements for targeted applications (Gizotti
de Moraes 2024). Broadcast treatments contained foliar-active and

residual herbicides in the same tank and were applied using the
same nozzles as the targeted herbicide applications, but in the
standard configuration for broadcast applications (Supplementary
Figure 1). For example, the PS3DQ0004 nozzles were alternated on
the boom to create a twin-fan pattern, and the PSLDMQ2003
nozzles tips were orientated straight down. While the different
nozzle orientations could affect spray particle coverage, the
different orientations should not affect the ability to hit a weed
(Ferguson et al. 2016).

Individual Plant Data

Before each postemergence herbicide application, weeds were
marked with numbered wooden stakes in 3.3-m increments,
traversing with the rows. Stakes were placed perpendicular to the
direction of travel and at an angle to avoid blocking the camera
view of each weed. Additionally, stake color (natural wood, orange,
and red) was tested before application to ensure the stake did not
trigger applications, and various sites used different colors. The
goal was to mark at least 10 plants in the area; if 10 weeds did not
occur within the first 3.3 m, an additional 3.3 m was marked. Areas
of interest were only within the center furrow to avoid wheel tracks
and could be as long as the entire plot (29.5 m to 32.8 m). Each
weed was recorded for species, height, width, and position relative
to the crop (in-row or between rows). The position of the weed was
classified as “in-row” if the weed was within or beneath the crop
canopy. Otherwise, it was denoted as “between rows.” The success
of treating a weed was determined immediately after application by
the presence or absence of blue dye on the plant: yes or no,
respectively.

Data Preprocessing

A data column was created for each plot: the number of weeds was
divided by the length of the area of interest to estimate weed
density because some weeds could have been treated due to the
presence of neighboring, larger weeds frommultinozzle activation.
Other predictors included crop (corn, cotton, or soybean),
application timing, and sensitivity setting. In the results, the
detection algorithm decision threshold will be referenced back to
the 2022 sensitivity settings for clarity and consistency. A decision
threshold set at zero was tested and confirmed that targeted
applications would broadcast the entire area, so broadcast
applications were zero for the decision threshold predictor.
Lowest, medium, and highest sensitivity settings were set to the

Table 2. Herbicides used in the experiments.a,b

Corn Soybean Cotton

Timing Herbicide Rate Herbicide Rate Herbicide Rate

g ai/ae ha−1 g ai/ae ha−1 g ai/ae ha−1

PRE S-metolachlor 1,750 S-metolachlor 1,550 S-metolachlor 1,390
Atrazine 2,250 metribuzin 370 fluometuron 1,120
Paraquat 716 paraquat 716 paraquat 716

EPOST S-metolachlor 1,400 S-metolachlor 1,390 S-metolachlor 1,390
Mesotrione 105 glufosinate 657 glufosinate 657
Atrazine 674
Glyphosate 1,260

MPOST acetochlor 1,260 acetochlor 1,260
glufosinate 657 glufosinate 657

aAbbreviations: EPOST, early postemergence; MPOST, mid-postemergence; PRE, preemergence.
bHerbicide sources: Acetochlor, Warrant, Bayer Crop Science, St. Louis, MO; Atrazine, Atrazine 4L, Drexel Chemical Company, Memphis, TN; fluometuron, Cotoran 4L, ADAMA, Raleigh, NC;
glufosinate, Noventa, BASF Corporation, Research Triangle Park, NC; glyphosate, Roudnup PowerMAX 3, Bayer Crop Science; mesotrione, Callisto, Syngenta Crop Protection, LLC, Greensboro,
NC; metribuzin þ S-metolachlor, Boundary 6.5 EC, Syngenta Crop Protection; S-metolachlor, Dual Magnum, Syngenta Crop Protection; paraquat, Gramoxone SL, Syngenta Crop Protection.
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corresponding decision thresholds (0.9, 0.7, and 0.4, respectively).
Continuous predictors included weed height, weed width, weed
density, and decision threshold, while application timing, crop,

weed aggregate class, and weed position relative to the crop were
considered categorical predictors.

Across all sites and crops, 7,971weedsweremarked and recorded
as treated or missed, but some species had too few observations to
characterize the relationship or were never missed. The weeds with
too few observations included common cocklebur (Xanthium
strumarium L.), honeyvine swallowwort [Cynanchum laeve
(Michx.) Pers.], Carolina horsenettle (Solanum carolinense L.),
and sicklepod [Senna obtusifolia (L.) H.S. Irwin & Barneby]. All
weeds >25.4 cm (height and width) were never missed or killed,
so these observations were excluded. Weeds were aggregated into
specific groups to preserve as many observations as possible
(Table 3). All grasses were grouped into Poaceae. Three
morningglory species were combined into Convolvulaceae.
Palmer amaranth and waterhemp [Amaranthus tuberculatus
(Moq.) J.D. Sauer] became Amaranthaceae. Yellow nutsedge
(Cyperus esculentus L.) remained individually. Prickly sida (Sida
spinosa L.) and velvetleaf (Abutilon theophrasti Medik) were
combined to Malvaceae. Lastly, decumbent broadleaf weeds
included carpetweed (Mollugo verticillata L.), curly dock (Rumex
crispus L.), dandelion (Taraxacum officinale L.), horse purslane
(Tranthema portulacastrum L.), and wild radish (Raphanus
raphanistrum L.). A total of 21 different weeds were classified into
six distinct groups. All other weeds were excluded from the
analysis either because they did not occur in two or more
experimental sites or they had never been missed. A total of 7,164
observations remained in the data set (Table 4).

Data Analysis

The analysis did not include the experimental site as a predictor to
infer how targeted multinozzle applications performed across all

Figure 1. The effect of decision threshold on the likelihood of treating each weed class, averaged over the median height and width of each class, 2.4 plants m−2, and the
categorical combination of between soybean rows. This figure should not be used to compare differences between weed classes due to differences between median weed height
and width: Covolvulaceae, 3.8 cm and 5.1 cm; decumbent broadleaf, 1.3 cm and 1.3 cm;Malvaceae, 1.3 cm and 1.5 cm; Poaceae, 3.2 cm and 5.1 cm; Amaranthaceae, 1.9 cm and 2.5
cm; yellow nutsedge, 7.6 cm and 8.3 cm; respectively. Decision thresholds of 0.4, 0.7, and 0.9 correspond to the highest, medium, and lowest sensitivity settings in 2022,
respectively. Broadcast applications are represented by 0. Average range odds ratio for decision threshold = 0.0192 (from broadcast to the lowest sensitivity). The solid lines
represent the predicted likelihood to treat a weed, while the dotted lines represent the 95% confidence interval. Both lines were generated using the save columns function within
the fit report of JMP Pro software (v. 18.0; SAS Institute, Cary, NC), with a smooth spline curve λ= 0.05.

Table 3. Aggregate weeds and number, median height and width, and common
name within each class after preprocessing the data set.a

Aggregate species Number Height Width Common name

––––– cm –––––
Convolvulaceae (2,446) (3.8) (5.1)

2,199 3.8 5.1 pitted morningglory
200 1.9 2.5 ivyleaf morningglory
47 5.1 10.2 tall morningglory

Amaranthaceae (2,149) (1.9) (2.5)
1,985 1.5 2 Palmer amaranth
164 3.8 4.1 waterhemp

yellow nutsedge (956) (7.6) (8.3) –
Poaceae (614) (3.2) (5.1)

24 2.5 2.5 barnyardgrass
9 1.9 11.4 bermudagrass

216 2.5 3.2 broadleaf signalgrass
14 5.1 5.1 fall panicum
174 5.7 7.6 giant foxtail
94 7.6 7.6 goosegrass
81 1.3 1.3 large crabgrass
2 11.4 7.0 yellow foxtail

Malvaceae (504) (1.3) (1.5)
387 1.0 1.0 prickly sida
117 3.2 6.4 velvetleaf

Decumbent broadleaf (495) (1.3) (1.3)
366 1.3 1.3 carpetweed
1 7 19 curly dock
4 5.1 7.6 dandelion

119 1.3 5.1 horse purslane
5 5.1 10.2 wild radish

aObservations, heights, and widths in parenthesis correspond to the aggregate species.
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locations. Additionally, application timing was not considered
because this factor was implemented in the experimental design for
whole-plot comparisons, and ultimately generated varying weed
sizes and densities. Some weeds survived the early postemergence
application and were present at mid-postemergence. These weeds
were staked again for the sequential application, but injured weeds
were not readily missed (visual observation). All other predictors
were included in the analysis as one-way effects in the interest of
parsimony. The response was a proportion of the weeds hit and is
represented by ph, which ranges between 0 and 1. To link the
proportion of treated weeds to the predictors, a logistic regression
model (Eq. 1) was used,

ln
phi

1� phi

� �
¼ β0 þ β1Xi1 þ β2Xi2 þ β3Xi3 þ β4Xi4 þ β5Z

p
i

þ β6Z
c
i1 þ β7Z

c
i2 þ β8Z

s
i1 þ β9Z

s
i2 þ β10Z

s
i3

þ β11Zs
i4 þ β12Zs

i5

[1]

where Xi1, Xi2, Xi3, and Xi4 is the ith observation of decision
threshold, weed width, weed height, and weed density, respectively,
with i ¼ 1; . . . ; 7; 164. The variables Zp

i , Z
c
ij, and Zs

ij are binary
dummy variables corresponding to the categorical predictors of
weed position, crop, and aggregated weed species, respectively. The
variables are explained as follows:

• Zp
i ¼ 1 if the weed position is in-row and 0 otherwise.

• Zc
i1 ¼ 1 if the crop is corn and 0 otherwise.

• Zc
i2 ¼ 1 if the crop is cotton and 0 otherwise.

• Zs
i1 ¼ 1 if the aggregated weed species is decumbent broadleaf

and 0 otherwise.
• Zs

i2 ¼ 1 if the aggregated weed species is Malvaceae and 0
otherwise.

• Zs
i3 ¼ 1 if the aggregated weed species is Poaceae and 0

otherwise.

• Zs
i4 ¼ 1 if the aggregated weed species is Amaranthaceae and

0 otherwise.
• Zs

i5 ¼ 1 if the aggregated weed species is yellow nutsedge and
0 otherwise.

In Equation 1, βj is the coefficient of the jth predictor or dummy
variable, which captures the average change in the log-odds to treat
a weed (left-hand side of Equation 1) when the value of a predictor
changes (James et al. 2021; Menard 2002). The estimation of the
coefficients was calculated using the standardmaximum likelihood
estimation method.

Likelihood ratio tests were used to measure the overall
significance of the predictors (James et al. 2021). A variable was
deemed significant at α≤ 0.05. Odds ratios with Wald tests were
used for pairwise comparisons within the categorial predictors.
Odds ratios are uncommon in weed science research (Menard
2002). In layman’s terms, the odds of treating one scenario are
compared to the odds of another scenario while holding all other
predictors constant, and if the ratio has 95% confidence interval
including 1, then the two scenarios are similar. A value of
<1 indicates a reduction in the odds to treat a weed, while a
value >1 indicates an increase. For continuous predictors, 95%
confidence intervals were generated to visualize the estimated
effects. The data analysis was performed using the fit model
platform in JMP Pro software (v. 18.0; SAS Institute, Cary, NC)
with a generalized regression personality.

Interpreting the Model

A range of responses are possible depending on the different
predictors, and context is needed when stating a specific response
in multivariate analyses. For clarity, predicted responses to aid in
discussion will include specific scenarios that consider the other
predictors and the median height and width of each species
(Table 3). Equation 1 can be used in combination with the
parameter estimates to calculate the likelihood of treating a weed
(Supplementary Table 1). Figures were generated for each
aggregate weed class using the median height and width of the

Table 4. Weeds evaluated and where they were found.a,b

Common name Genus Species Authority States where found

Barnyardgrass Echinochloa crus-galli (L.) P. Beauv AR, IN, MS
Bermudagrass Cynodon dactylon (L.) Pers. NC, MS
Broadleaf signalgrass Urochloa platyphylla (Munro ex C. Wright) R.D. Webster AR, MS, NC
Carpetweed Mollugo verticillata L. IN, NC
Curly dock Rumex crispus L. AR
Dandelion Taraxacum officinale F.H. Wigg. IN
Fall panicum Panicum dichotomiflorum Michx. NC
Giant foxtail Setaria faberi Herrm. IL, IN
Goosegrass Eleusine indica (L.) Gaertn NC
Horse purslane Tranthema portulacastrum L. AR, MS, NC
Ivyleaf morningglory Ipomoea hederacea Jacq. AR, MS, NC
Large crabgrass Digitaria sanguinalis (L.) Scop. AR, MS, NC
Palmer amaranth Amaranthus palmeri S. Watson AR, IL, MS, NC
Pitted morningglory Ipomoea lacunosa L. AR, IL, IN, MS, NC
Prickly sida Sida spinosa L. AR, IL, MS, NC
Tall morningglory Ipomoea purpurea (L.) Roth NC
Velvetleaf Abutilon theophrasti Medik IL, IN, NC
Waterhemp Amaranthus tuberculatus (Moq.) J.D. Sauer IL, IN
Wild radish Raphanus raphanistrum L. NC
Yellow foxtail Setaria faberi Herm. IN
Yellow nutsedge Cyperus esculentus L. IN, MS

aAbbreviations: AR, Arkansas; IL, Illinois; IN, Indiana; MS, Mississippi; NC, North Carolina
bNames and authorities are from the WSSA composite list of weeds since not all names are present in the USDA plants database (https://wssa.net/weed/composite-list-of-weeds/)
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specific weed class except when the figures use height or width as
the independent variable. Additionally, the figures use the
intercept for the categorical predictors, which are specific to
between soybean rows.

Results and Discussion

Initial Observations

If weeds were always treated, there is no variance in the response,
and the data do not provide a contribution to the analysis.
Additionally, if there are too few observations, the parameter
estimate is biased and may not accurately portray the relationship
(Menard 2002). Despite occurring in multiple sites, some weed
species had to be excluded due to insufficient observational data,
which caused biased estimates on the probability to treat weeds.
Common cocklebur was never missed, with 52 observations. The
other species that did not have enough data to determine the
likelihood of treatment included honeyvine swallowwort, with
three misses in 65 observations; Carolina horsenettle, with one
miss in 41 observations; and sicklepod, with two misses in 27
observations. Unfortunately, there were insufficient observations
for these species, resulting in biased parameter estimates and the
need to be excluded.

Based on the likelihood ratio tests, the most significant
predictor for treating a weed was the decision threshold
(Table 5), with a likelihood ratio χ2= 750.5. In order of
importance, other significant predictors included aggregate weed
species, weed width, weed position (in-row or between rows), and
weed height. Weed density and the crop were not significant
according to the likelihood ratio tests, and did not influence the
likelihood of treating a weed. Decision threshold (sensitivity
setting) is the most important predictor, which is unsurprising
because this setting dictates that weeds are classified as such. The
weed width also appears to drive the predictions more than height,
which is likely due to the orientation of the cameras being angled
downward and collinearity between weed height and width
(r= 0.727). The decision to leave height and width in the model
despite collinearity is due to the width being more relevant for the
detection algorithm. However, height is more practical for
operators who measure height, not width, before herbicide
applications.

Differences among Aggregate Species, Weed Position, and
Crop to Treat Weeds

Targeted applications (across sensitivity settings, median weed
height and width, and density of 2.4 plants m−2) resulted in a
treatment success of 99.6% to 84.4% for Convolvulaceae, 99.1% to
68.8% for decumbent broadleaf weeds, 98.9% to 62.9% for

Malvaceae, 99.1% to 70.3% for Poaceae, 98.0% to 48.3% for
Amaranthaceae, and 98.5% to 55.8% for yellow nutsedge (data not
shown). On average, Convolvulaceae and decumbent broadleaf
weeds were among the easiest to target (Table 6). These two
aggregate classes would have a high groundcover percentage
(Bryson and DeFelice 2009), presumably because they are easier to
detect with downward-oriented cameras (Lazaro et al. 2024).
Yellow nutsedge was more difficult to control than all other
aggregate species when using comparable sensitivity settings,
which is unsurprising due to the plant’s thin leaves and upright
architecture (Bryson and DeFelice 2009), which suggests different
machine settings would be required to increase the probability of
treating this species. Alternatively, those who apply herbicides
could consider broadcasting an effective foliar-active herbicide
along with targeted applications to improve control of specific
species such as yellow nutsedge.

Some species may require special attention when considering
settings to target-apply herbicides, such as those from the
Amaranthus genus. There have been many reports that Palmer
amaranth and waterhemp are developing herbicide resistance
(Carvalho-Moore et al. 2022; Evans et al. 2019; Foster and Steckel
2022; Heap 2024; Randell-Singleton et al. 2024). Other research has
also demonstrated that young waterhemp and Palmer amaranth
plants can grow up to 16.8 and 29 cm per week, respectively
(Heneghan and Johnson 2017; Spaunhorst et al. 2018). Operators
who use targeted applications cannot afford to miss small
Amaranthus species, which could be uncontrollable within a week
after application.

Regarding weed position, odds ratios indicated that weeds were
more easily treated between rows (96.1%) versus within the crop
rows (94.9%), averaged over all other predictors (Table 6). The
higher success rate for treating weeds between rows was expected
because weed occlusion by intermingling plant parts has already
been reported by Franz et al. (1991) and herbicide coverage by
Creech et al. (2018). However, herbicides used in this research were
applied while the machine traversed with the rows, rather than at
an angle against the rows. The results could be more severe if
herbicides are applied at an angle, which could more readily
occlude weeds. Additionally, the lack of differences between the
three crops evaluated in this study indicates that the different
detection algorithms performed similarly.

Differences in Treating Weeds among Sensitivity Settings,
Weed Size, and Weed Densit

To reiterate, the continuous decision thresholds of 0.4, 0.7, and 0.9
corresponded to the highest, medium, and lowest spray sensitiv-
ities in 2022, respectively. Broadcast applications were set at a
threshold of zero, and applications at this setting confirmed
uniform deposition across the area (100% area sprayed). Figure 1
uses the median height and width of each aggregate weed class to
present a visualization of the decision threshold and is not intended
to compare the different weed classes. On average, the range odds
ratio (probability of a hit at 0 versus the probability of a hit at 0.9) is
0.0192 for the range of decision thresholds, indicating a decrease in
the odds to treat a weed with decreasing sensitivity levels.
Interestingly, the standard error for the likelihood to treat a weed
also increased with the decision threshold from 0 to 0.9. The
increase in the standard error demonstrates the uncertainty
associated with changes in the sensitivity setting.

The fact that lower sensitivity settings (increasing decision
thresholds) reduces the ability to treat weeds is concerning since

Table 5. Likelihood ratio effect summary for the logistic regression of treated
weeds.a

Effect DF χ2 P > χ2

Decision threshold (sensitivity settings) 1 750.50 < 0.0001
Aggregate weed species 5 211.60 < 0.0001
Weed width 1 56.492 < 0.0001
Weed position (in-row or between row) 1 9.8209 0.0017
Weed height 1 7.3847 0.0066
Crop 2 3.8941 0.1427
Weed density 1 0.4061 0.5240

aAbbreviation: DF, degrees of freedom.
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producers will be inclined to reduce the area they spray both to
reduce the amount of herbicides they use and thus save money, or
to implement herbicide mitigation efforts outlined by the U.S.
Environmental Protection Agency’s Herbicide Strategy (US EPA
2024). However, understanding these dynamics coupled with weed
sizes can broaden the utility of targeted applications. If operators
intend to mimic a broadcast treatment with targeted applications,
the highest sensitivity setting (decision threshold 0.4) could
maximize weed control success with targeted multinozzle
applications. Alternatively, the low sensitivity setting (decision
threshold 0.9) is not intended for typical applications. The low
sensitivity setting makes the most sense when producers want to
target only large weeds; examples include 1) when volunteer crops
appear, 2) when dual-boom applications are used at a standard rate
in the broadcast tank and the targeted tank contains a spiking dose,
and 3) when multiple herbicides are applied, where one is
broadcasted for small weeds and targeted herbicides are used to
control larger weeds (e.g., glufosinate broadcast and 2,4-D
targeted, or atrazine broadcast and mesotrione targeted). Future
research should evaluate the efficacy and economics of these
scenarios to aid in the utility of targeted sprayers.

Both weed height and width positively influenced the ability to
treat weeds with targeted applications (Figures 2 and 3). Averaged
over all other predictors, both height and width had unit odds
ratios (1 cm increments) of 1.07 and 1.15, respectively, meaning
increases in either predictor result in increasing the odds to treat a
weed. One of the primary limitations of a one-way analysis is not
being able to ascertain the effects in combination with other main
effects. However, when considering the Amaranthaceae aggregate
class at an averaged medium spray sensitivity (decision threshold
0.7) and weed density of 2.4 plants m−2, the probability of treating a
2.5-cm plant (height and width) was 0.69 to 0.84 based on 95%
confidence intervals. Increasing the same weed size to 5 cm
resulted in likelihoods to treat from 0.75 to 0.87 based on 95%
confidence. Additionally, since width appears to drive the
likelihood of treating weeds over height (Table 5), scouting
practices prior to targeted herbicide applications should consider

weed width when providing recommendations on the selection of
sensitivity settings to achieve a desired result. However, this
information would be in addition to plant height, which is the
primary consideration for herbicide product labels.

When considering the combination of sensitivity setting, weed
size, and weed species, the herbicide being applied also requires
consideration. For example, field applications of glufosinate
formulations require a minimum of 7, 10, and 5 d between
sequential applications to corn, cotton, and soybean, respectively
(Anonymous 2023). In addition to the reapplication restriction, if
producers are applying a sequential postemergence herbicide, the
general recommendation is to apply 14 d later (Barber et al. 2025).
If weeds are missed while they are small, some could grow rapidly
between sequential applications, and weeds larger than 8 cmwould
likely be poorly controlled (Priess et al. 2022). Therefore, when
treating small weeds, operators should use a higher sensitivity
setting (lower decision threshold) to maximize herbicide coverage
and weed control, which provided 91.1% likelihood to treat
Amaranthaceae weeds that were 2.5 cm tall and wide between
soybean rows. The same scenario, but changed to a medium or
lowest sensitivity setting, treated Amaranthaceae weeds 73.3% and
53.2% of the time, respectively.

Previous research has indicated that high weed densities could
affect the ability of machine vision technologies to detect weeds
among crops (El Jgham et al. 2023; Franz et al. 1991). However,
based on the results from this analysis, density did not appear to
affect the likelihood of treating weeds (Table 5; Figure 4). Even if
some weeds were occluded, targeted, multinozzle applications
appeared to compensate by treating adjacent, detected weeds.
However, this experiment did not directly evaluate detection
performance or quantify spray coverage across the swath of
activated nozzles. Other research simulating nozzle density when
treating turfgrass demonstrated that a lower nozzle density (i.e.,
wider nozzle spacings) generated a higher number of false hits,
meaning areas where weeds were undetected were sprayed
(Petelewicz et al. 2024). In this research, targeted applications
occurred throughmultinozzle activation with≥100-degree nozzles

Table 6. Odds ratios of treating a weed given the categorical effects.a,b

Effects Level comparison (likelihood of being treated %) Odds ratio P > χ2

Aggregate species Convolvulaceae (98.0) vs Decumbent broadleaf (97.5) 1.233 0.3057
Convolvulaceae (98.0) vs Malvaceae (96.7) 1.646 0.0079
Convolvulaceae (98.0) vs Poaceae (95.7) 2.208 <0.0001
Convolvulaceae (98.0) vs Amaranthaceae (93.1) 3.582 <0.0001
Convolvulaceae (98.0) vs yellow nutsedge (85.1) 8.524 <0.0001

Decumbent broadleaf (97.5) vs Malvaceae (96.7) 1.335 0.2120
Decumbent broadleaf (97.5) vs Poaceae (95.7) 1.790 0.0095
Decumbent broadleaf (97.5) vs Amaranthaceae (93.1) 2.905 <0.0001
Decumbent broadleaf (97.5) vs yellow nutsedge (85.1) 6.913 <0.0001

Malvaceae (96.7) vs Poaceae (95.7) 1.341 0.1666
Malvaceae (96.7) vs Amaranthaceae (93.1) 2.176 <0.0001
Malvaceae (96.7) vs yellow nutsedge (85.1) 5.179 <0.0001
Poaceae (95.7) vs Amaranthaceae (93.1) 1.622 0.0037
Poaceae (95.7) vs yellow nutsedge (85.1) 3.861 <0.0001

Amaranthaceae (93.1) vs yellow nutsedge (85.1) 2.379 <0.0001
Weed position between-row (96.1) vs in-row (94.9) 1.339 0.0016
Crop cotton (96.0) vs corn (95.6) 1.096 0.5608

cotton (96.0) vs soybean (95.1) 1.236 0.0641
corn (95.6) vs soybean (95.1) 1.128 0.3415

aOdds ratios are calculated from the ratio of the two levels:
Pa

1�Pað Þ
Pb

1�Pb

� � where Pa is the proportion of the treated weeds for one group and Pb is the proportion of treated weeds for the comparison

group. As an example, if Pa = 0.9 and Pb= 0.8, the odds ratio would be
0:9

1�0:9ð Þ
0:8

1�0:8ð Þ ¼ 2:25. Likelihoods parenthetically presented represent the likelihood averaged over all other predictors.

bP > χ2 are Wald-based tests from the model estimates.
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(Gizotti de Moraes 2024), which likely inflated the likelihood of
treating weeds through so-called false hits. Weeds may have been
present and adjacent to detectable weeds, but they were not actually
detected by the machine vision algorithm. Narrower nozzle angles
or single nozzle–activating systems could increase the likelihood of
missing weeds, and further research is needed to evaluate these

concerns and quantify spray deposition at the edge of activated
tapered nozzles.

Overall, if an operator treats a field of weeds that are small or
difficult to detect, spray sensitivities should be higher to maximize
detection and targeted application success. Currently, the user
interface displays a scale from lowest to highest spray sensitivity

Figure 2. The effect of weed height (in centimeters) on the likelihood of treating a weed with targeted applications, at a 0.7 decision threshold (medium sensitivity) and the
categorical combination of between soybean rows. Average unit odds ratio for width = 1.065. Solid lines represent the predicted likelihood to treat a weed, while the dotted lines
represent the 95% confidence interval. Both lines were generated using the save columns function within the fit report of JMP Pro software (v. 18.0; SAS Institute, Cary, NC), with a
smooth spline curve λ= 0.05.

Figure 3. The effect of weed width (in centimeters) on the likelihood of treating each weed class at a medium sensitivity setting (decision threshold 0.7) and the categorical
combination of between soybean rows. Unit odds ratio for width = 1.150. Solid lines represent the predicted likelihood to treat a weed, while the dotted lines represent the 95%
confidence interval. Both lineswere generated using the save columns functionwithin the fit report of JMP Pro software (v. 18.0; SAS Institute, Cary, NC), with a smooth spline curve
λ= 0.05.
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and does not provide any metric on the likelihood or actual weed
size or the decision threshold (Anonymous 2024). An alternative
solution could be to use data from these experiments and allow the
operator to select a weed size (height or width), allowing the
threshold to change to a setting that achieves >0.90 probability of
treating a specific weed class. However, one limitation of this
analysis is the inability to assess specific crop and weed

interactions. Future research should explore the effects of certain
weed species within individual crops. Another consideration is
that model updates are and will be continuous in the future,
which means performance results may vary among model
releases. Lastly, this research investigating targeted applications
was conducted with a specific technology. Other systems that
utilize individually activated, even-fan nozzles may perform

Figure 4. Effect of weed density (plants per square meter) on the likelihood of treating yellow nutsedge between soybean rows. The figure also uses the medium sensitivity
setting (decision threshold 0.7) and the median yellow nutsedge height and width at 7.6 cm and 8.3 cm, respectively. The unit odds ratio for weed density= 0.989 and was
insignificant. The solid lines represent the predicted likelihood to treat a weed, while the dotted lines represent the 95% confidence interval. Both lines were generated using the
save columns function within the fit report of JMP Pro software (v. 18.0; SAS Institute, Cary, NC), with a smooth spline curve λ= 0.05.

Figure 5. The observed likelihood of treating each aggregate group of weeds given the weed height (in centimeters) and decision thresholds across observations. Decision
thresholds of 0.4, 0.7, and 0.9 correspond to the highest, medium, and lowest spray sensitivities settings in 2022, respectively. Broadcast applications are represented by 0. The
figure was generated using the graph builder platform with JMP Pro software (v. 18.0; SAS Institute, Cary, NC) with a smooth spline line with λ= 8.5.
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differently than the technology evaluated here due to differing
machine vision algorithms, sprayer speeds, nozzle orienta-
tions, etc.

Practical Implications

The research described here highlights the ability of targeted
applications of herbicides to treat problematic weed species. Small
weeds will always be difficult to detect and treat regardless of the
detection system since successful targeted applications depend on
both the ability to detect and apply herbicides. Even broadcast
applications of herbicides to eliminate small weeds can provide
inadequate droplet coverage with some combinations of nozzle tips
and carrier volumes (Hassen et al. 2013). Regardless, continued
advancements and improvements in targeted spray technology,
such as camera resolution, boom stability, and detection
algorithms, should improve the ability to manage small weeds.
Our results also indicate that weed position (between or in-row)
and the subsequent occlusion of weeds did influence the ability to
spray weeds with targeted applications. These data highlight which
aggregate species are problematic and allow targeted collection
efforts to improve the training data set used to develop the
detection algorithm (Figure 5). Additionally, the John Deere
company has made updates to the system since 2022, and these
results may underestimate current system performance.

Currently, producers or herbicide equipment operators do not
know the decision threshold that corresponds to the spray
sensitivity level options in the sprayer display. The corresponding
decision thresholds are also subject to change based on
performance or savings from internal testing in each year. More
transparency is needed to allow operators to make an informed
decision when selecting the sensitivity level for a targeted herbicide
application. Otherwise, failures could occur more frequently, or
additional applications may be needed to adequately control
problematic weed species. However, the data we collected across all
experimental sites could be used to optimize the applicator
settings.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/wet.2025.36
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