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Abstract

By erecting a co-ordinate system tailored to the geometry of a cosmic string and examining
the properties of the near gravitational field, it is possible to distinguish two types of
gravitational waves supported by a general string metric. The first type, travelling waves, are
completely decoupled from the curvature of the world sheet, whereas the second type, which
I choose to call curvature waves, are generated in response to any non-trivial geometric
structure on the string.

1. Introduction

Cosmic strings are line vortices of Higgs field energy that may have played an impor-
tant role in the formation of structure in the early Universe (see [28] for a review of
the origins and early history of cosmic-string theory). Whether or not they are ever
shown to be an indispensable ingredient of cosmogonic theories, cosmic strings have
already provided many valuable insights into classical field theory, Einstein gravita-
tion and the nature of closed timelike curves. However, much more work needs to be
done before we can claim an understanding of cosmic strings that is even remotely
comparable to our current understanding of black holes, which are in many ways just
lower-dimensional analogues of strings.

In this paper, I draw attention to the fact that cosmic strings naturally support two
distinct types of gravitational waves: the "travelling waves" previously identified by
Vachaspati [26] and Garfinkle [7], and a second type that I will refer to as "curvature
waves". Travelling waves arise by superposing plane-fronted gravitational waves on
the near-field metric of a cosmic string, whereas curvature waves have a more general
structure and (unlike travelling waves) couple directly to the intrinsic curvature of
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the string's world sheet. In establishing this dichotomy, I will outline a method for
constructing co-ordinates in a neighbourhood of the world sheet that are tailored to
the geometry of the world sheet in a natural way. This co-ordinate system allows us,
among other things, to standardise and compare the near-field metrics of the plethora
of cosmic-string solutions that have been published over the last thirteen years.

The metric outside an infinite straight string was discovered, independently, by
Gott and Hiscock [10,12] in 1985 — although it should be noted that the weak-field
limit (which scarcely differs from the full solution) was published four years earlier
by Vilenkin [27]. It is arguably the simplest interesting solution of Einstein's field
equations. In cylindrical co-ordinates (t, r, z, <f>), the line element reads:

ds2 = dt2 - dz2 - dr2 - (1 - 4/x)2 r2 d(j>2, (1.1)

where \i is a constant lying in the range [0, 1/4). Geometrically, the line element
describes Minkowski spacetime with a wedge of angular extent A9 = 87T/U. removed
from along the z-axis.

By defining x = (ar)1/acos</> and v = (ar)l/a sin0, where a = 1 — 4/i, it
is possible to rewrite the line element (1) in what are often called "isotropic" co-
ordinates:

ds2 = dt2 - dz2 - P"8M (dx2 + dy2), (1.2)

where

p = (x2
 + y2)1'2. (1.3)

As was first shown by Sokolov and Starobinskii [20], the corresponding energy-
momentum tensor has the form:

Tab = p*»Tab = /zS(2)(x, y) (VarVfcr - VflZVaZ) (1.4)

and thus the constant \i is simply the mass per unit length of the line singularity
representing the string, which can also be seen to have a longitudinal tension of
strength /AC2.

Of course, to fully describe a realistic string it is necessary to supplement the line
element (1.1) or (1.2) with an appropriate interior solution (see, for example, [16]).
However, the thickness of a GUT string is likely to be of the order of 10~30 cm [28]
and so for all practical purposes the bare exterior solution is probably adequate.

A popular misconception that should at this point be refuted is that the energy-
momentum tensor of the bare straight string metric is not well defined as a distribution.
This misleading claim stems from the work of Geroch and Traschen [9], who in attempt
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to place the theory of singular 2-surfaces on a more rigorous basis introduced a class of
"regular metrics", which are characterised by the fact that gab and its inverse are locally
bounded, and the (generalised) first derivative of gab is locally square integrable. A
regular metric will always give rise to an energy-momentum tensor that is not worse
than distributional, but a metric need not to be regular for Tab to be well behaved.

In fact a straight-string metric in its isotropic form (1.2) is an example of a met-
ric which is not regular but nonetheless has an acceptable distributional energy-
momentum density (1.4). That is so follows immediately from the Gauss-Bonnet
theorem, which states that the angle deficit A9 is equal to the integral of the Gaus-
sian 2-curvature K over any surface of constant z and t. The density y/\g\K must
therefore be a distribution, and it is easily seen from the symmetries of the metric that
T,, = —Tzz = ~K/(8nG) and all other components of Tab are zero. The physical
components of the Ricci and Riemann tensors constructed from RXI, Ryy and Rxyxy are
also well-behaved distributions, and are the only non-zero curvature components. All
these features of the metric are implicit in the work of Sokolov and Starobinskii [20],
but have been rederived using more sophisticated methods by a number of authors,
including in particular Clarke, Vickers and Wilson [7].

A number of extensions of the basic straight-string metric have been published since
1985. These include metrics that describe a straight string with non-zero cosmological
constant [23], a string passing through a black hole [1], N straight parallel strings [15]
and two straight non-parallel moving strings [11], as well as a series of solutions that
use inverse scattering methods (among others) to model the interaction of cylindrical
gravitational waves with a single straight string [4,5,8,19,29,30]. There is also a trio
of solutions due to Stein-Schabes whose interpretation is uncertain [22].

Other modifications of the straight-string metric that I will not consider in this paper
include spinning strings [17], superconducting strings [18] and the so-called "cosmic
rings" [2], which are line singularities with a more general energy-momentum tensor
than (1.4).

One generalisation of the straight-string metric that does have important ramifica-
tions for cosmic-string theory is the "travelling wave" solution of Garfinkle [7], which
was prefigured by a weak-field result due to Vachaspati [26]. In its simplest form, the
line element reads:

ds2 = (1 + F) dt2 - (1 - F) dz2 - IF dt dz - P"8M (dx2 + dy2), (1.5)

where p is as given in (1.3) and

F = 2xA"(t - z) + 2yB"(t - z ) , (1.6)

with A and B arbitrary twice-differentiable functions of t — z. [Strictly speaking, these
equations describe only one of the two possible modes that can appear in travelling
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wave solutions. The second mode can be found by replacing t—z with t+z everywhere,
and reversing the sign of the dz dt cross-term.]

A physical interpretation of the travelling wave solutions is suggested by making
use of transformation

x=x-A, y = y-B, (1.7)

t = t - xA' - yB' + i / f A'2(u) + B'2(u)] du (1.8)
2 Jo L -I

and

z = z-xA' -yB' + )-i [A'2(u) + B'2(u)]du (1.9)

to rewrite the line element in the form:

ds2 = d?-dz2 + 2 (p"8" - 1) (A' dx + B' dy)(dt - dz)

- (p-8" - 1) (A'2 + fl'2) (dt - dz)2 - p~Sfl(di2 + dy2), (1.10)

where now p = [(x — A)2 + (y — Z?)2] . [Note that A and B are interchangeably
functions of t — z or t — z, as this is an invariant of the transformation.]

The functional form of p in (1.10) suggests that the travelling wave solution should
be interpreted as the metric of a wave of arbitrary shape x = A(i — z), y = B(J - z)
propagating up the string. This interpretation is reinforced by the fact that the solution
(1.5) is a special case of a more general family of solutions with the same line element,
but with

£;'(z-0<7,(*,y), (l.H)

where the C,s are arbitrary and the q{s are any harmonic functions [6]. Solutions
of this type describe plane-fronted (pp) waves superposed on the bare straight-string
metric (1.2) and bear a close resemblance to the standard pp waves generated by
Minkowski spacetime. The crucial difference, however, is that for Minkowski pp
waves the lowest-order (linear) harmonic is diffeomorphic to flat space (this can be
seen by letting /x -> 0 in (1.10)), whereas the string travelling wave solutions are not
flat. This leads Frolov and Garfinkle [6] to conclude that travelling waves are intrinsic
to the string itself: that in fact "the traveling-wave solution [is] the gravitational field
of the moving string"

However, there are reasons for believing that Garfinkle's travelling wave solutions
describe a special type of gravitational wave phenomenon peculiar to cosmic strings
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(whether static or moving) rather than a generic gravitational response to the presence
of a moving string. In the first place, the line element (1.5) is stationary and non-
dissipative, in contrast to the well-grounded physical expectation that a moving string
should radiate gravitational energy [28]. (It is in any case clear that the travelling
wave metric cannot be used to describe an arbitrary string configuration, as the two
modes cannot be linearly superposed.)

At a more geometric level, it can be shown that the world sheet of any travelling
wave solution is intrinsically flat. In general, a moving string will be characterised by
a non-flat world sheet, a feature which leads to gravitational dissipation and even the
possibility of gravitational collapse. In order to demonstrate this, and also to place the
study of the near field of a generic cosmic string on a firm mathematical foundation,
it is necessary first of all to construct a co-ordinate system adapted to the geometry of
the string's world sheet.

2. A 3+1 split of the cosmic string metric

The trajectory of an idealised (that is, infinitesimally thin) cosmic string traces out
a 2-dimensional surface, or world sheet, in spacetime. Naively, the most natural way
to construct spacetime co-ordinates that reflect the geometry of the world sheet would
be to foliate spacetime with spacelike surfaces generated by geodesies that intersect
the world sheet orthogonally ("normal surfaces"), erect a system of Gaussian polar
co-ordinates on each normal surface and choose the two remaining co-ordinates to be
constant on the normal surfaces.

This procedure is described in some detail in [25], but it remains a purely formal
prescription unless supplemented by a much clearer definition of the concept of normal
surface. The problem, as can be seen from the bare straight-string metric (1.2), is
that the world sheet is a singular surface with no well-defined tangent space. It is
therefore meaningless to claim that a particular geodesic intersects the world sheet
"orthogonally".

Nonetheless, in the case of the straight-string metric (1.1) or (1.2) it is clear that the
desired normal surfaces are just surfaces of constant z and t. What distinguishes these
surfaces is the fact that the angle deficit AO assumes a critical value on each of them.
This is best appreciated by referring to the cylindrical form of the metric in (1.1). A
general spacelike geodesic radiating from a fixed point p = (to, Zo) on the world sheet
has the form

t = to + esinhx. z = zo+ £cosh x sin V̂ ,

r — e cosh x c o s V'. ^ = constant, (2.1)

where x S 5K and x]s e (—rr/2, n/2) are fixed parameters, and e is the proper distance
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from the world sheet. If T is a spacelike surface generated by a family of such
geodesies then x and f are typically functions of 4> on T.

The induced line element on the surface T is easily shown to be:

ds2 = -de2 - (a2 cosh2 x cos2 \jr + cosh2 x^2 - X2) £2 d<f>2, (2.2)

where an overdot denotes the derivative with respect to <t>. The corresponding angle
deficit is:

A6 = 2n-j y/a2 cosh2 x cos2 f + cosh2 xf2 - X2 d<j>. (2.3)
Jo

If x and xjr are constant, the angle deficit is

Ad = 2n(l-a cosh x cos VO (2.4)

and has the unique critical value 2JT(1 — a) = Sn/x when x = ty = 0 (that is when
T is a surface of constant t and z).

In the more general case where x and \j/ vary with <j>, the question of which surfaces
give a critical value of A6 reduces to a standard variational problem with Lagrangian

L = £ y/a2 cosh2 x cos2 f + cosh2 xf2 - X2 d<t> (2.5)
Jo

2n

0

provided that x and \\r are differentiate functions of <f>. The corresponding Euler-
Lagrange equations have two immediate first integrals: the energy functional

O Lt • V Lt 7 1 ? 7

E = x 1- if—=—L = —a L~ cosh YCOS ilr (2.6)
dX dip-

and a second functional which can be found by rearranging and integrating the equation
for*:

C = L~2 cosh2 XX + cosh2 x- (2.7)

Solving for x and rfr gives:

X2 = (C - cosh2 * ) £ ~ V cosh2 x cos4 rjr (2.8)

and

f2 = CE~2a4 cos2 ^(cos2 \j/ - cos2 ^o), (2.9)
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where cos ̂ o = \E\/{\fCa). If i]/ is not constant, it must oscillate from — TJ/0 to ^o
and back a total of n times (where n is some natural number) as 0 varies around the
surface T. Hence from equation (2.9),

C2" f^° cosi/r
2n= d<p = Ana-' / /° — - df =

Jo Jo cos xf/(cos2 V - cos2 î o)
(2.10)

Since a < 1 this equation can never be satisfied, and so ^ must be constant [and in
fact must be either i / r - O o r — yjr0, as the other potential root of (2.9), cos ̂  = 0,
collapses T into a line on the world sheet] on any surface with critical angle deficit.

If x is not constant on such a surface, and cosh xo = C, then x must oscillate from
—Xo to xo and back again a total of n times, and equation (2.8) integrates to give:

In = Ana-1 sect̂ o f . . °°f1*0 rr—dx = 2nna-1 sec Vo- (2.11)
Jo h ( l lr )

. . ° ° f 1 * 0 r r
cosh x (coslr x - coslr

Again, this equation can never be satisfied, x must also be a constant, and the problem
reduces to finding the critical values of equation (2.4). Hence, the only surfaces T on
which A6 assumes a critical value are the surfaces of constant z and t, as claimed.

This result suggests the following prescription for constructing a suitable set of
co-ordinates in some neighbourhood of the world sheet of a non-straight string. Any
2-surface T generated by spacelike geodesies radiating from a single point p on the
world sheet S has a conical singularity at p. The strength of the singularity is measured
by its angle deficit A0, which is defined as follows. Let {y(e)} be any family of closed
spacelike curves on T that enclose p with winding number 1 and have the property
that lime_,.o y (e) = p. Then, by virtue of the Gauss-Bonnet theorem,

A0 = 2n - lim / Kgds, (2.12)
e-*°JyM

where Kg is the geodesic curvature of y(e), and s measures proper distance along
y (e). The normal surface Np is defined to be the unique conical 2-surface T generated
by spacelike geodesies radiating from p whose angle deficit A0 has the critical value
8;r£i. The existence of a normal surface through each point on the world sheet will be
regarded as a defining feature of a (non-spinning) string metric.

To choose a set of co-ordinates tailored to the geometry of the normal surfaces, it is
necessary first of all to select a pair of co-ordinates £A = (f °, £') on the world sheet
S. The choice of %A is for the moment arbitrary, but will later be restricted by certain
gauge conditions. If the co-ordinate r\ is chosen to be any parameter running from 0 to
2n that smoothly parameterises the geodesies generating Np for each p on S, and the
co-ordinate r is chosen to be the proper distance from p along each of the geodesies,
then it is possible to assign the unique co-ordinates x" = (£*(p), r, rj) to every point
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on Np in some neighbourhood of S. In fact, these co-ordinates are well-defined out to
the local radius of curvature of the world sheet, where neighbouring normal surfaces
first begin to cross.

Since lines of constant Z;A and r, are spacelike geodesies, and r measures their
proper length, the metric components in the tailored co-ordinates satisfy

grr=~l and garr=O. (2.13)

Furthermore, since each normal surface is by assumption spacelike, the discriminant
A = grrgm — (grn)2 is positive everywhere except possibly on the world sheet. If each
point p on the world sheet has the exterior geometry of a point rather than a ring (so
that the circumference of any circle r = e goes to zero as £ —>• 0) the lim^n gnn = 0.
It therefore follows that, since grrgnn tends to zero as r goes to zero, grn also tends to
zero at the world sheet, in view of (2.13) this means that grn = 0 everywhere.

Combining this with the equation for the angle deficit on Np gives:

2

S7T(x = 27T-limj -fL(-gnn)
l/2 dr, (2.14)

and so the metric component gnn has the near-field expansion

Z ~ A ( f \ i ) ) r , (2.15)

where h is some function with the property that

f-27T

/
Jo

(2.16)

If r, is now replaced with a new co-ordinate <t>(£A, r,) defined through the equation

— = (1 -4(i)~ih(l;A,r)) with 0(f*,O) = O, (2.17)

then <j> runs from 0 to 2n on each normal surface, and for small values of r,

g* (1-4/z)2/-2. (2.18)

Also, the metric component gr<j> (like grr)) is everywhere zero.

2It should be noted that this construction does not apply in the case of a bare spinning string [17]. There,
the world sheet is characterised by a ring singularity rather than a simple conical singularity, a fact
intimately related to the fact that bare spinning strings support closed timelike curves and are unlikely to
be physical [21].
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The first variation of the angle deficit in the neighbourhood of each normal surface
Np can be calculated by examining spacelike surfaces with the parametric represen-
tation {r = s, £4 = evA(<p)}, where the vA are arbitrary differentiable functions with
period 2n. To linear order in vA the line element induced on such a perturbation
surface is:

ds2 = ( -1 + 2gArv
A)de2 + 2(egArv

At + gHvA)de d<}> + (g» + 2eg^v%) d<f>2

(2.19)

and so in view of (2.12) the corresponding angle deficit is:

A0 = 2n(l - «) - lim / ( c T 1 ^ . * + agAr)v
A d<$> (2.20)

r-*°Jo
Hence, the requirement that A6 be critical on each normal surface is equivalent to the
co-ordinate condition:

r->0
+ (1 - 4n?gAr] = 0. (2.21)

Furthermore, if the metric components gAB are assumed to have well-defined limits
on the world sheet, then for small values of r the Ricci components RAB have the
leading order form

R " ^ i JigBr-t ~ gBfr)- (2.22)

For a cosmic string in vacuum, therefore,

, , . , - g A , . r ) = 0. (2.23)

Recall from (2.13) that the metric component gAr is independent of r. If it is assumed
that gA4, is sufficiently well-behaved that the limit and the derivative with respect to
<$> can be interchanged in (2.21), then (2.21) and (2.23) can be combined to give the
second-order equation:

gAr'» + (1 - ^fgAr - 0, (2.24)

which needs to be solved subject to the periodicity condition gAr = gAr. It is clear
by inspection that unless /x = 0 (2.24) has no non-trivial periodic solution, and so
gAr = 0.

In summary, the line element of a generic cosmic string in vacuum in some neigh-
bourhood of the world sheets can always be written in what I will henceforth refer to
as the canonical form:

ds2 = gAB d$A di;B + 2gAlpd$A d(f> + gH d<p2 - dr2, (2.25)
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with g^ ~ — a2r2 for small values of r, and from (2.23)

, = 0. . (2.26)
r->0

It has been assumed in deriving (2.23), that the metric components gAB have well-
defined limits on 5, and so

yAB=limgAB (2.27)

is a function of the world-sheet co-ordinates i;A alone.3

The canonical form (2.25) of the near-field metric is of course not unique, as there
is considerable freedom in the choice of the co-ordinates £A. However, it is always
possible to choose these co-ordinates so that the induced 2-metric is conformally flat:

YAB = Kr)AB, (2.28)

where r)AB = diag(l, —1) and K some function of £A. In terms of K, the intrinsic
curvature R(2) of the world sheet is

p(2) v~lr\AB Hn is\ tO 0Q\

A less obvious source of gauge freedom in (2.25) is the fact that the zero point of
the angular co-ordinate <j> on each of the normal surfaces Np is arbitrary, and so the
general form of the line element is preserved under point rotations of the form:

</> -*• <l>' — <p + if ( f A ) . (2.30)

3. Travelling waves versus curvature waves

A series solution for the generic cosmic-string metric can be generated by substi-
tuting the canonical line element (2.25) into the vacuum Einstein equations. This will
be done shortly, but it is instructive to first cast two of the known exact solutions into
canonical form.

The generalised travelling-wave solutions described by (1.5) and (1.10) are char-
acterised in canonical co-ordinates by the following metric components:

f F —F~\
= 0 and gAB = *)AB+\ j? r \ , (3.1)

3It is evident from (2.25) that the cosmic-string metrics, as defined here, form a subclass of the class of
"line singularities" introduced by Israel in 1977 [13]. In particular, the normal surfaces are generated by
spacelike geodesies that extremise the proper distance from the world sheet. However, the cosmic-string
metrics do not in general belong to Israel's class of "simple line sources", as they fail to satisfy the
condition Israel calls "parity invariance", which is equivalent to requiring the world sheet to be
twist-free (see below).
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where

oo

F = 2 J^ rn/a [cos(»0)A:a - z) + sin(n0)fl;(r ~ z)] (3.2)

for any choice of functions An and Bn. The most important features of the solutions
to note are that the deviation from the bare straight-string metric (1.1) proceeds as
a power series in ri/a (where I /a > 1), and that K = 1 and so the world sheet is
intrinsically flat.

By way of contrast, the simplest known solution containing curvature waves is the
Aryal-Ford-Vilenkin metric [1], which describes a cosmic string passing through a
black hole. The line element is:

rf*2 = ( l - — ) rf'2 - C1 - — ) dp2 - p2dx
2-a2P2 sin2

 Xd<t>2 (3.3)

and can be constructed by removing a wedge of angular extent AO = 2n(l —a)
from along any axis of the Schwarzschild metric. The metric (3.3) can be rewritten
in canonical form by replacing p and x with t w o n e w co-ordinates r and z denned
implicitly by the equations:

noT)(5)r*
and

*-*»jr[(-T)o-s)r^
where the positive branch applies outside the event horizon (p > 2m) and the neg-
ative branch inside the event horizon (p < 2m). The canonical line element is too
complicated to be reproduced in full, but for small values of r it has the form:

, / 2m\ / m , \ , / 2m\ds ~ v - T ) (l+?r)dt - v - T) r)dz

(36)
In fact, the asymptotic form of the line element can be made even more compact
by transforming to Kruskal-Szekeres co-ordinates, in terms of which the 2-metric
induced on the world sheet is conformally flat:

ds2 ~ 1 6 m W z / 2 m (l + ^ r 2 ) {dx2 - da2)

(3.7)
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where z should now be regarded simply as a parameter which is given by the world
sheet co-ordinates r and a through the relation:

r2 - a2 = (2m - z)el/2m. (3.8)

Two features of the Aryal-Ford-Vilenkin metric highlighted by the canonical line
element (3.7) are the fact that the near-field expansion proceeds in powers of r2 rather
than powers of rl/a, and the fact that the world sheet is not intrinsically flat, as the
conformal factor

K = I6m2z~le-z/2m (3.9)

generates a curvature invariant of the form:

Ri2) = % (3.10)
z3

The canonical form (2.25) is thus able to distinguish between two fundamentally
different types of gravitational field in the neighbourhood of a generic cosmic string.
Moreover, it is clear by comparison of (3.7) and (3.10) that the extrinsic curvature Rm

effectively determines the scale of the second-order expansion terms in gAB and g^.
As will be seen in Section 4, the existence of an intimate relationship between the
world-sheet curvature and the near-field expansion is a general feature of all metrics
containing curvature waves.

4. A general near-field expansion of the metric

A series solution to the vacuum Einstein equations for the canonical line element
(2.25) can be developed by expanding the metric components in undetermined powers
of the geodesic distance r:

" (4.1)

_ (4.2)

and

™ (4.3)
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where the sequences of exponents {jn}, [kn] and {/„} are positive and ascending, but
for the moment otherwise unrestricted (save that ki is strictly greater than 1 as required
by (2.26)). To leading order in r, the corresponding components of the Ricci tensor
are:

R AB

- \«~2 *?
(4.4)

r", (4.5)

"i-K-'K-cPi1^ r""1 (4.6)

(/, + 1)/3(1V\ (4.7)

i ' _ - 2 -1 CD /^(l) /^(l) 2ti—3 (A o\
H Q! K X] {J(~ \£D'& ^ w-O/

and

^- 1 r , C D e<! ) ^ ) ^ 1 - 4 , (4.9)

where the subscripted brackets in (4.4) denote symmetrisation.
For a cosmic string isolated in vacuum, all components of the Ricci tensor should

of course be set to zero. From (4.5), this is possible only if £1 > 2; while from (4.4)
it is either the case that j t > 2 or that

PAB-66 + «2J1PAB=0, (4.10)
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which yields a non-trivial solution only if _/1 = n/a for some integer n. Very broadly,
these two possibilities correspond to the existence of lowest-order travelling waves
(/i = I/a) and the existence of curvature waves in the absence of lowest-order
travelling waves (Ji = 2). In what follows I will assume that I/a < 2 (which
corresponds to /J, < 1/8).

In the case j i = I/a, (4.10) can be solved to give:

PAB = LABcos<p + MAB sirup, (4.11)

where the coefficient matrices LAB and MAB are functions of the world-sheet co-
ordinates alone. In view of (4.8), the coefficient matrices are traceless:

nCDLCD = r)CDMcD=0, (4.12)

while (4.7) or (4.9) requires that /] > j \ . [In fact, a higher-order expansion of the
Ricci components indicates that /i > 2.] The only other non-trivial constraint at this
order stems from (4.6), which requires that either k\ > j i + 2 > 3 or

QA\ = 0. (4.13)

Of course, the lowest-order travelling wave solutions of the form (3.1) satisfy all
these constraints, as well as other restrictions generated by higher-order terms in the
Einstein equations. There is no obstruction to curvature waves (with j 2 = k\ = l\ = 2)
appearing on top of the lowest-order travelling waves, but one of the salient features of
the lowest-order travelling waves is that they are independent of the conformal factor
K and thus of the intrinsic curvature of the world-sheet.

In the case jx = 2 , assuming the minimum possibilities kx = 2 and l\ = 2,
(4.6) leads directly to (4.13), while (4.4) and (4.7^.9) can be combined to give the
constraints:

and P ^ + a - V - ^ e ^ V ' ^ . (4.14)
4

What is interesting to note about (4.13) and (4.14) is that the leading-order curvature-
wave expansion terms are independent of the angular variable <p, but depend critically
on the intrinsic curvature Rm. In fact if the world sheet is flat then the only possible
source of second-order contributions is a non-zero metric function QA

l) which, as will
be seen shortly, is closely connected with the nature of the embedding of the string in
the spacetime. Furthermore, the Aryal-Ford-Vilenkin metric (3.6) gives a surprisingly
general example of the near-field expansion of a curvature-wave solution. The only
restrictive feature of (3.6) is that QA

l) = 0, as the string involved is geometrically
straight; otherwise the relationship between the first-order expansion terms and the
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world sheet curvature in the general case (4.13) and (4.14) can effectively be read off
from (3.7) and (3.10).

The geometric significance of a non-zero metric function QA
l) can be illustrated by

rewriting the Minkowski metric in terms of a set of co-ordinates (f", r, (f>) tailored to
the geometry of a family of surfaces passing orthogonally through a fictious timelike
surface S' = {xa = Xa(£°, f')} in the same way that the canonical metric (2.25) is
tailored to the geometry of the normal surfaces. In these co-ordinates the Minkowski
line element becomes:

ds2 = {YAB + 2xiK(0AB + x'xJ yCDKWACK(j)BD - r2coAcoB) d$A dt;B

+ 2r2coAd!;Adct>-dr2-r2d<p2, (4.15)

where yAB is the 2-metric induced on S', x' = [rcos</>, rsin</>] and Kii)AB and coA

are the extrinsic curvature tensor and twist vector of the surface S', respectively. If
ta

A = Xa,A are vectors tangent to S' and n"{i) are orthogonal unit normals on S' in the
directions of dxa/dxi then

K(i)AB = HA • "(ire) and coA = nm • nO).A. (4.16)

Comparison of the line element (4.15) with the near-field expansions (4.1) and (4.2)
indicates that the metric function QA

n plays the same role as the twist vector coA. In
particular, if QA

X) is a pure gradient it can always be transformed away by redefining
<\>, just as coA can.

The interpretation of the metric function PAl is more complicated, however. If T
is any surface of constant r and <j> in the canonical cosmic-string metric (2.25), then
to leading order in r and <j> components of the extrinsic curvature tensor on T are

KAB ~ - y * PAB r*1-1 (4.17)

and

r 1 T

-5«~i^y*'j'i~i. (4-i8)

where subscripted brackets again denote symmetrisation. In the case of pure curvature
waves, the </> component of the extrinsic curvature tensor tends to zero linearly in r,
and to leading order is a linear functional of the metric function QA\ In the case of
the lowest-order travelling waves (/'i = I/a), on the other hand, both the r and 0
components of the extrinsic curvature tensor tend to zero as r'/a~', a fact that was first
established in [25]. Thus the extrinsic curvature of the world sheet itself is strictly
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zero, but the extrinsic curvature of neighbouring surfaces of constant r and 0 are (to
leading order in r) linear functional of Pfj.

A similar small-distance expansion of the Riemann tensor gives only three terms
whose physical components diverge near the world sheet:

" ' ( " 1 \ y P l l a - \ (4.19)

RAW ~ x(«"' - l^PAB^r1'"-1 (4.20)
2

and

RAW ~ ^(« " D*^«r 1 / a . (4.21)

In fact, the physical components of all three of these terms diverge as

(a"1 - l)rl/a-2 ~ /xr4"-1 (4.22)

(for small fj,), which is again in agreement with the analysis performed by Unruh et
al. [25]. As can be seen, the divergence in the Riemann tensor is due solely to the
contribution of the travelling waves; and the "characteristic global length" a discussed
by Unruh et al. [25] in connection with the divergence of the Riemann tensor is
contained implicitly in the harmonic coefficients LAB and MAB appearing in P^g.

In physical components, the remaining components of Rabcd all tend to zero as
r' / a~\ except for Rr4>r4> and RABCD, which tend to finite, non-zero limits on the world
sheet. In addition, The Riemann component Rr<i>r<t> contains a singular distributional
term, which is identical in structure to the singularity in Rr$r$ in the bare string metric
(1.1). This last result is again a consequence of the Gauss-Bonnet theorem when
applied to each of the normal surfaces.

5. Conclusions

In this paper I have developed a canonical line element that makes it possible
to standardise and compare the near-field metrics of cosmic strings in vacuum. To
leading order in the geodesic distance r from the string's world sheet, the canonical
metric supports terms of order rl/a, which can be identified with the travelling waves
first discovered by Garfinkle [7], and terms of order r2, which appear in a large number
of previously-published string solutions but have not so far been distinguished as a
specific gravitational feature of cosmic strings. I have decided to call them curvature
waves.
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Apart from their analytic structure, travelling waves and curvature waves differ in
that the former are completely decoupled from the intrinsic curvature of the world
sheet, whereas the latter couple directly to the curvature. In fact, the second-order
terms in the expansion of a curvature-wave metric depend linearly on the scalar
curvature of the world sheet, and there is a possibility that strings will experience
some form of gravitational collapse whenever they develop a cusp (an isolated point
on the world sheet where the motion of the string is luminal and the curvature is
infinite [14,24]).
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