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1. Introduction. Let C denote Cayley's algebra defined over the field of rational numbers.
This paper contains a simple characterization of arithmetics of C in terms of a given basis
i0 = 1, iu i2 i7. We deduce that certain of the arithmetics of C are isomorphic. The result
that the maximal arithmetics are isomorphic is also contained in the work of van der Blij and
Springer [2].

7 7
A general element £ = £ xsis of C with rational components xs has norm N£ = ]£ xf.

Also if = - 1 (1 ^ s ^ 7) and, for each of seven proper associative triads (u, v, w) consisting of
three different basic units, we have MU = w = — vu and w(uv) = — 1 = (wu)v. Any other triad of
different basic units of C not containing 1 is non-associative. R(£) =x0 is called the real
part and £ = 2x0 — £ the conjugate of £,. Hence any element £, of C satisfies the rank equation

Let (M, J;, W) be any proper associative triad of basic units of C. Then there exists a basic
unit t of C, different from 1, u, v and w and called the unit assigned to («, v, w), such that ut,
vt and wt are basic units of C.
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For any elements £ and n of C we have £ = ZQ + ̂ it and r\ = »70+'/i'» where £r and n,
(r = 0, 1) are linear combinations of 1, u, v and w. An element such as £0 is called a quasi-
quaternion in («,«;, w). Hence, following Dickson [8], we have

C is a division algebra. To every non-zero element a of C there corresponds a unique

inverse a~! = (A'ix)"1^. Also for any elements a and /? of C

and (/Ja)a = (1.3)
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(1.3) shows that C is what Zorn [18] called an alternative ring. We can then deduce the im-
portant identity

(5aWS) = 6{(«m={*(*P))8 (1-4)
due to Moufang [17].

2. Automorphisms. A bijective mapping 6 of C onto itself is defined to be an automor-
phism if

0(Z±t,) = 0(Q±0(a) (2.1)

and 9(fy) = 0«j) . fl(ij) (2.2)

for any elements ^ and i\ of C. If we also demand that

0(«) = v, (2.3)

where u is any unit of C and i> a corresponding unit of C, it is well known that there are 168
automorphisms of C which give different permutations of the basic units. This set of 168
automorphisms written as a set of permutations on the suffixes of the basic units of C forms the
simple 168 group generated by the permutations (12)(47) and (2143576). Suitable sign changes
must of course be applied to the units when necessary [7].

Let ( be an arbitrary element of C. An element p of C is said to induce an automorphism
of C if

defines an automorphism of C satisfying (2.1) and (2.2).

THEOREM 2.1. A non-rational Cay ley number p induces an automorphism ofC if and only if

4R\p) = Np.

Proof. From (1.4) we have, for any non-zero elements p , £, and n of C,

and

Thus

and the theorem follows by (1.1), since p3 must be a scalar.

3. Non-maximal arithmetics in C. A set of elements of C is called an arithmetic of C if the
set has the following three properties:

(i) For any element of the set the coefficients of the rank equation (1.1) are rational
integers.

(ii) The set is closed under addition, subtraction and multiplication,
(iii) The set contains 1.

An arithmetic is called maximal if
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(iv) it is not contained in any larger arithmetic of C. This definition was stated by
Dickson [11].

Let Q be the quaternion subalgebra of C all of whose elements are linear combinations
of 1, ilt i2 and /3. The set of all elements of Q with rational integral components is denoted by
Ho. Clearly Ho is an arithmetic of Q. Hurwitz [13] defined an integral quaternion to be a
quaternion with components either all integers or all half odd integers. Denote the set of all
Hurwitz integral quaternions in Q by H. Then H is the unique maximal arithmetic of Q.

We define Jo to be the set of all elements of C with rational integral components. Then
Jo is an arithmetic of C. We find eight further non-maximal arithmetics of C containing Jo,
seven of which are shown to be isomorphic. Suppose that / is an arithmetic of C which
contains Jo. Let a be an element of / . By property (i) above, if any one component of a is
half an odd rational integer, then four or eight components of a are half odd rational integers.
Otherwise all the components of a are rational integers. Now the units of C are elements of
J, and / is closed under addition and subtraction. Thus we need only consider which elements
£ of the form

S = i I wr, (3.1)
r = l

where wlt w2, w3 and w4 are distinct basic units of C, belong to / and whether the element

1 = i I ', (3-2)
3=0

belongs to / .
Define, for any £ of the form (3.1), the characteristic unit %(!;) of <J to be

X(.0=\ w^wjw^ |,

where, for any basic unit u of C, \ ± u \ = u. Then x(£) is a basic unit of C. We note that for
any unit v of C

Further, if a is of the form ao + ^, where a0 is an element of /„ and ^ is of the form (3.1), we
define

X(«o) = 0

and Z(«o + 0 = Z(0-

The following lemmas are easily proved.

LEMMA 3.1. Any two different proper associative triads of basic units of C have precisely
one element in common.

LEMMA 3.2. Any basic unit ofC other than 1 appears in three and only three proper associa-
tive triads of basic units of C.
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There are seventy elements £, of the form (3.1). Now consider

and £*u = ^u«.

where u is the unit assigned to the proper associative triad (uu u2, «3). There are seven
different elements <!;„ and seven corresponding different elements <!;* and each is of the form
(3.1). Also

Now let

and £„,» = *! -C,v,

where w is a basic unit other than 1, (vu v2, v3) the proper associative triad with assigned unit
v not containing w, and rj is of the form (3.2). Then

By Lemma 3.2, to each value of w there correspond four proper associative triads not contain-
ing w. Therefore there are 28 different elements of the form <!;*_ „ and 28 different elements of
the form <JW „, all of which are of the form (3.1). It is to be noted that all sums of the form
£«+& equal n, and that <JU occurs in an arithmetic of C if and only if <!;* occurs in that arithmetic.
The statement also applies to £Wi „ and <!;*_ „.

Let Js be the set of all elements a of C that can be written in the form

where s is an integer (1 g s g 7), a0 belongs to Jo and 5U 52 = 0 or 1. Then, from the definition
of the Hurwitz quaternion arithmetic and from (1.2) with t = is, we see that Js is closed under
multiplication and, in fact, forms an arithmetic of C. Clearly the existence of the auto-
morphism of C associated with the permutation (2143576) on the suffixes of the units of C
shows that the arithmetics Js are isomorphic.

Define the intersection of the seven arithmetics Js to be J*. It is easy to see that the inter-
section of any set of arithmetics is itself an arithmetic. Thus J* is a non-maximal arithmetic
ofC.

4. Maximal arithmetics in C. To find further arithmetics of C we first prove

LEMMA 4.1. Any sum £,u+£„ satisfies condition (i) for an element of an arithmetic of C and

Proof. By Lemma 3.1 we assume without loss of generality that «j = vt. Then

Thus
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LEMMA 4.2. Any product ££v satisfies condition (i)for an element of an arithmetic of C.
XiZuZv) equals the basic unit that triads (uu u2, u3) and (vu v2, v3) have in common.

Proof. Again suppose that ut = «,. Then, by straightforward multiplication,

£«$v = i ( " l + «2 + "3 + U2V3).

Hence x(Zu£v) is defined and equals uv The lemma is thus proved. We note that £„<!;„ = C , x»
where x is the basic unit assigned to the triad (u2, v3, u2v3), provided that | u2v31 = u2v3.

LEMMA 4.3. Two elements £WiV, £w-,v- of C cannot both be contained in the same arithmetic
J of C unless w = w'.

Proof. We have

I "I* I + I V2W I + I V3W |

and £w.tO. = i ( l + | »'lW' | + | v'2w' | + | v3w'

Again, without loss of generality, we let v3 = v'3. Then

I v3w | €w>, = | ( | v3w

and I »3w'I Cw.^ = i d

where <J0 and ^|, are elements of/0. Suppose that ^w> B and ŵ-_ 0. belong to / . Then | v3w |
and | v3w' | {w.§ „. also belong to / . Hence

a = | v3w\£WfU- \v3w'\Zw.iB.

must be an element of/. Now a must satisfy condition (i) for an element of an arithmetic of C.
But (uj, v2) and (v'lt v'2) have either two elements in common or no element in common.
Hence we must have | v3w \ = | v3w' \ ; therefore w = w'. Thus Lemma 4.3 has been estab-
lished.

Now any element of C for which a characteristic unit is denned has characteristic unit
equal to 0, 1 or w, where w is a basic unit of C other than 1. Hence we see at once from
Lemma 4.3 that the following lemma holds.

LEMMA 4.4. All elements of any given arithmetic ofC with characteristic units different from
0 or 1 have equal characteristic units.

We now prove

LEMMA 4.5. £u+£Wi „ satisfies the condition (i)for an element of an arithmetic J ofC if and
only ifw is an element of the triad (ult u2, u3) with assigned unit u. If this condition holds,

Proof. We have

Z 1 K I | + | V2W | + | V3W |
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Clearly (uu u2, u3) and (| v^ |, | v2w |, | v3w |) cannot have three elements in common. If
the triads have an even number of elements in common, N(£u+£Wt „) is not a rational integer
and ?;u+£w> „ is therefore not contained in / . Assume that <!;„+£„,_ „ is an element of / . Then
the triads must have precisely one element in common. Also, by Lemma 3.1, we may take
u3 = t>3. Then if | vtw | belongs to the triad (uu u2, w3), we have | vtw \ = us (s = 1, 2 or 3).
Now I UjW I = u3 imph'es that | v2w | = | v3vtw | = | M3K3 | = 1, which is not so.
I viw I = «a C5 = 1 or 2) implies that | v2w | = | v3vtw | = | u3us \ = ur (r = 1 or 2) and
then (uu u2, u3) and (| t^w |, | v2w |, | v3w |) have two elements in common; this cannot
hold. Similarly, we cannot have | v2w \ = us for s = 1, 2 or 3. Hence we must have
I v3w I = us for some s (1 ^ s1 ^ 3). But since | v3w | = 11^3^ |, we have w — | u3us |. Now
w^\ and therefore u3^us. Hence, since ut(u2u3) = — 1, we have w = ur for some r
(1 ^ r ^ 3); i.e. w belongs to the triad (wl5 u2, u3) with assigned unit u.

To complete the proof we suppose without loss of generality that w = u2. Then, since
v3 = u3, we can write

Thus
X(Zu + Zw,«) = I U2U3VlU2V2U2 I = I M1t)3 I = W.

This completes the proof of the lemma.
For products of the form ZWt v^w.t „. it follows from Lemma 4.4 that we need only consider

the case when w = w'. It is easy to prove by direct multiplication that the following lemma
holds.

LEMMA 4.6. The product of two elements <̂w „ and ^w v. ofC satisfies the condition (i)for an
element of an arithmetic of C, and x(£w, e£w,»') equals w.

In the same way the following lemma can be simplified for the present argument.

LEMMA 4.7. The product of two elements £a and ^w „ belongs to an arithmetic ofCifw is
an element of the triad (u^ u2, u3).

In fact to complete our argument we see from Lemma 4.5 that we need only consider
products £uZWi 0 for which w = us for some s (1 ^ s g 3). The details of the proof involving
straightforward multiplication of a quasiquaternion and i*w „ are omitted. For such products
£u£w, 0 = £*+ao> where x is the unit assigned to a triad containing w and <x0 is in / 0 .

Suppose that J is an arithmetic of C containing the quasiquaternions <!;„, £v. Let the proper
associative triads with assigned units u, v (u ̂  v) have unit w in common. Then, by Lemma
4.2, / contains an element with characteristic unit w. Also, from the result and proof of
Lemma 4.1, it follows that / contains the third quasiquaternion of the form (3.1) with corre-
sponding associative triad containing w.

Now suppose that J contains a quasiquaternion

of the form (3.1) for which u's^ w (1 ^ s ^ 3); i.e. (u[, u'2, «'3) is one of the four proper
associative triads of basic units not containing w. Then from Lemma 4.2 it follows that
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j{(£„<!;„.) is equal to a basic unit of C other than 1 or w. Therefore, by Lemma 4.4, t,£u. cannot
be an element of/. Hence J cannot contain £„.. For each basic unit w of C other than 1 we
define Jw to be the set of all elements a(w) of C of the form

<*(».) = ao + <5i£(H.) + <52'7> (4.1)

where a0 is contained in Jo, 8lt d2 = 0 or 1, and £M = £,u where w = us for some s (1 ^ s ^ 3)

or £(„,) = £Wi „ and t] = i £ is. We have proved in the above lemmas that, for w any basic unit
s = 0

of C other than 1, Jw is a maximal arithmetic of C.
It follows from Lemma 3.2 that each maximal arithmetic Jw of C contains three distinct

non-maximal arithmetics Jr, Js, J, (1 ^ r,s, t ^ 7). The basic units ir, i,, i, are those assigned to
the proper associative triads of basic units containing w.

The permutation (2143576), as explained in § 2, when applied to the suffixes of the basic
units of C, gives an automorphism of C for suitable sign changes on the units. Thus the seven
maximal arithmetics are isomorphic. The permutation (123) (567) was in effect used by Dickson
[12] in rinding three of the maximal arithmetics of C, namely Jtl, Jh and Jh.

In order to treat the same subject Kirmse [15] defined a module in Cayley's algebra to be a
set of Cayley numbers with rational coefficients closed under subtraction and containing eight
linearly independent members. A module is called an integral domain if it is closed under
multiplication. For example, the module Jo consisting of all Cayley numbers with rational
integral coefficients is an integral domain. Kirmse then defined a maximal integral domain
to be an extension of Jo which cannot be further extended without ceasing to be an integral
domain. Kirmse's maximal integral domains, if correctly derived, are the same as the seven
maximal arithmetics obtained.

Given any element a of C which satisfies condition (i) for an element of an arithmetic of
C, we can immediately see to which of the maximal arithmetics Jw it belongs. Any such
element a can be written in the form (4.1) for some basic unit w. Clearly, if 8U 52 are both
zero, then a belongs to Jo, while if <5X = 0 and 52 ¥= 0, a is contained in J*. If <5, ^ 0, then a is
an element of one or three of the maximal arithmetics Jw. For example, if

we have ^(w) = £i4, since X(£(HO) = 1- Thus a is an element of / , , , Jh and Jh. However, if

then x(̂ (w>) = U- Thus we see that a is only contained in Ju.
It is now easy to write down the set of 240 elements of norm 1 of any maximal arithmetic

Jw of C. There are 16 units of C, 48 quasiquaternions involving linear combinations of the
proper associative triads containing ±w and the 48 elements obtained from the quasi-
quaternions by multiplying by the corresponding assigned units. Also there are 64 elements of
the form
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± «iw ± u2w ± u3w)

and 64 elements of the form
w±u1±u2± u3)

where (ult u2, u3) is a proper associative triad of basic units of C not involving w.

I wish to thank Professor R. A. Rankin who supervised me in a course of research at
Glasgow University.
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