
6
Causal Variational Principles

The causal action principle as introduced in Section 5.6 has quite a rich structure
and is rather involved. Therefore, it is difficult to analyze it in full generality in
one step. It is preferable to begin with special cases and simplified situations and
to proceed from there step by step. In fact, doing so leads to a whole class of
variational principles, referred to as causal variational principles. These different
variational principles capture different features and aspects of the causal action
principle. Proceeding in this way also gives a better understanding of the physical
meaning of the different structures of a causal fermion system and of the inter-
action as described by the causal action principle. We now give an overview of
the different settings considered so far. This has the advantage that in the later
chapters of this book, we can always work in the setting that is most suitable for
the particular question in mind. Moreover, for pedagogical reasons, in this book,
we shall sometimes idealize the setting, for example, by assuming for technical
simplicity that the Lagrangian is smooth.

6.1 The Causal Variational Principle on the Sphere

Clearly, the trace constraint (5.38) and the boundedness constraint (5.39) com-
plicate the analysis. Therefore, it might be a good idea to consider a simplified
setting where these constraints are not needed. This can be accomplished most
easily by prescribing the eigenvalues of the operators in F. This method was first
proposed in [43, Section 2] in a slightly different formulation. We now explain
the method in a way that best fits to our setting. Given n ∈ N, we choose real
numbers ν1, . . . , ν2n with

ν1 ≤ · · · ≤ νn ≤ 0 ≤ νn+1 ≤ . . . ≤ ν2n . (6.1)

We let F be the set of all symmetric operators on H of rank 2n whose eigenvalues
(counted with multiplicities) coincide with ν1, . . . , ν2n. If H is finite-dimensional,
the set F is compact. This is the reason why it is sensible to minimize the causal
action (5.36) keeping only the volume constraint (5.37), which for simplicity we
implement by restricting attention to normalized measures,

ρ(F) = 1 . (6.2)

Note that, since F is compact and the Lagrangian L is continuous on F × F, also
the action S(ρ) is finite for any normalized measure ρ.
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136 6 Causal Variational Principles

The simplest interesting case is obtained by choosing the spin dimension n = 1
and the Hilbert space H = C

2. In this case, according to (6.1), we have one
nonnegative and one nonpositive eigenvalue. If these eigenvalues have the same
absolute value, all the operators have trace zero. This case is not of interest because
there are trivial minimizers (for details, see Example 12.4.1 in Section 12.4). With
this in mind, it suffices to consider the case that |ν1| �= |ν2|. Since scaling all the
eigenvalues in (6.1) by a real constant does not change the essence of the variational
principle, it is no loss of generality to assume that the two eigenvalues ν1, ν2 satisfy
the relation ν1 + ν2 = 2, making it possible to parametrize the eigenvalues by

ν1/2 = 1 ∓ τ with τ ≥ 1 . (6.3)

Then, F consists of all Hermitian 2×2-matrices F that have eigenvalues ν1 and ν2.
These matrices can be represented using the Pauli matrices by

F =
{

F = τ �x�σ + 1 with �x ∈ S2 ⊂ R
3} . (6.4)

Thus, the set F can be identified with the unit sphere S2.
The volume constraint (5.37) can be implemented most easily by restricting

attention to normalized regular Borel measures on F (i.e., measures with ρ(F) = 1).
Such a measure can be both continuous, discrete or a mixture. Examples of con-
tinuous measures are obtained by multiplying the Lebesgue measure on the sphere
by a nonnegative smooth function. By a discrete measure, on the other hand, we
here mean a weighted counting measure, that is, a measure obtained by inserting
weight factors into (5.22),

ρ =
L∑

i=1
ci δxi

with xi ∈ F , ci ≥ 0 and
L∑

i=1
ci = 1 . (6.5)

A straightforward computation yields for the Lagrangian (5.35) (see Exercise 6.1)

L(x, y) = max
(
0,D(x, y)

)
with

D(x, y) = 2τ2 (1 + 〈x, y〉)
(

2 − τ2 (1 − 〈x, y〉)
)

,
(6.6)

and 〈x, y〉 denotes the Euclidean scalar product of two unit vectors x, y ∈ S2 ⊂ R
3

(thus 〈x, y〉 = cos ϑ, where ϑ is the angle between x and y).
The resulting so-called causal variational principle on the sphere was introduced

in [43, Chapter 1] and analyzed in [74, Sections 2 and 5] and more recently in [10].
We now explain a few results from these papers.

First of all, the causal variational principle on the sphere is well posed, meaning
that the minimum is attained in the class of all normalized regular Borel measures
(the proof of this statement will be given in Chapter 12 using measure-theoretic
methods to be developed later in this book). Minimizing numerically in the class of
weighted counting measures for increasing number L of points and different values
of the parameter τ , the resulting minimal value of the action has an interesting non-
smooth structure shown in Figure 6.1. In particular, one finds that the minimizing
measure is not unique; indeed, there are typically many minimizers. From the
mathematical perspective, this nonuniqueness can be understood from the fact
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6.1 The Causal Variational Principle on the Sphere 137

Figure 6.1 Numerical minima for the weighted counting measure on the sphere.
From [80]. Reproduced with permission from Springer Nature.

that the causal action principle is a non-convex variational principle where one
cannot expect uniqueness. To give a concrete example for the nonuniqueness, we
note that in the case τ = τc =

√
2, there is a minimizing measure that is supported

on an octahedron (for details, see [74, Section 2]). This minimizing measure is not
unique because every measure obtained from it by a rotation in SO(3) is again
a minimizer. But the nonuniqueness goes even further in the sense that there
are pairs of minimizing measures that cannot be obtained from each other by a
rotation or reflection. For example, again in the case τ =

√
2, the normalized

Lebesgue measure on the sphere is also a minimizer.
Moreover, the study in [74, Section 2] gives the following

numerical result: If τ >
√

2, every minimizing measure is a weighted counting mea-
sure (6.5).

Thus, although we minimize over all regular Borel measures (i.e., measures that
can have discrete and continuous components), a minimizing measure always
describes a discrete spacetime consisting of a finite number of spacetime points.
This result can be interpreted physically as an indication that the causal action
principle should give rise to discrete spacetime structures. More details on the
numerical findings and the physical interpretation can be found in the review [80,
Section 4]. A more advanced numerical study of the causal action principle in low
dimensions can be found in [83].

The above-mentioned numerical findings can be underpinned by analytic results.
We finally mention some of these results, although they will not be needed later
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138 6 Causal Variational Principles

on, and the methods of proof will not be covered in this book. First, it was proven
in [74, Section 5.1] that the support has an empty interior:

Theorem 6.1.1 If τ >
√

2, the support of any minimizing measure does not
contain an open subset of S2.

Intuitively speaking, this result shows that the spacetime points are a subset of
the sphere of dimension strictly smaller than two. More recently, it was shown
in [10] that the dimension of the support is even strictly smaller than one:

Theorem 6.1.2 In the case τ >
√

6, the support of any minimizing measure is
totally disconnected and has a Hausdorff dimension at most 6/7.

The proof of these theorems uses techniques that will not be covered in this book.
Therefore, we refer the reader interested in more details to the papers cited earlier.

6.2 Causal Variational Principles in the Compact
and Smooth Settings

Generalizing the causal variational principle on the sphere, one can replace F by
a smooth compact manifold of dimension m ≥ 1.

Definition 6.2.1 Let F be a smooth compact manifold of dimension m ≥ 1
and D ∈ C∞(F × F,R). Define the Lagrangian L ∈ C(F × F,R+

0 ) by

L(x, y) := max
(
0,D(x, y)

)
, (6.7)

and assume that L has the following properties:

(i) L is symmetric: L(x, y) = L(y, x) for all x, y ∈ F.
(ii) L is strictly positive on the diagonal: L(x, x) > 0 for all x ∈ F.

The causal variational principle in the compact setting is to minimize the
causal action

S =
ˆ
F

dρ(x)
ˆ
F

dρ(y) L(x, y), (6.8)

under variations of measures ρ in the class of all regular Borel measures on F that
are normalized, that is,

ρ(F) = 1 . (6.9)

This setting was introduced in [74, Section 1.2]. It is the preferable choice for
studying phenomena for which the detailed form of the Lagrangian as well as
the constraints of the causal action principle are irrelevant. Note also that in the
compact setting the action S(ρ) is finite for any normalized measure ρ because F

is compact and L is continuous.
Given a minimizing measure ρ, the Lagrangian induces on spacetime

M := supp ρ a causal structure. Namely, two spacetime points x, y ∈ M are said
to be timelike and spacelike separated if L(x, y) > 0 and L(x, y) = 0, respectively.
But, of course, compared to the causal action principle for causal fermion systems,
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6.2 Causal Variational Principles in the Compact and Smooth Settings 139

spin spaces and physical wave functions (as defined in Section 5.7) are missing in
this setting.

We point out that in (6.7), we merely assumed that the function D is
smooth. The Lagrangian, however, is only Lipschitz continuous. It is in gen-
eral non-differentiable on the boundary of the light cone as defined by the level
set D(x, y) = 0. In order to avoid differentiability issues, it is sometimes useful to
simplify the setting even further by assuming that the Lagrangian itself is smooth,

L ∈ C∞(F × F,R+
0 ) . (6.10)

This is the so-called smooth setting. We point out that the Lagrangian of the
causal action (5.35) is not smooth if some of the eigenvalues vanish or are degener-
ate (more precisely, the causal Lagrangian is only Hölder continuous, as is worked
out in detail in [67, Section 5]). Indeed, this non-smoothness yields interesting
effects like the results on the singular support in [74, 10]. In view of these results,
the smoothness assumption (6.10) is a mathematical simplification that, depend-
ing on the application in mind, may or may not be justified. In this book, we
choose the smooth setting mainly for pedagogical reasons, keeping in mind that
the generalizations to non-smooth Lagrangians are rather straightforward. The
reader who is interested in or needs these generalizations will find the details in
the research papers.

Before going on, we point out that the assumptions that F is a smooth mani-
fold and that the function D in (6.7) is smooth are convenient and avoid certain
technicalities. But these assumptions are much more than what is needed for the
analysis. More generally, one can choose L as a nonnegative continuous function,

L ∈ C0(F × F,R+
0 ) . (6.11)

Going one step further, one may relax the continuity of the Lagrangian by the
condition that L should be lower semicontinuous, that is, for all sequences xn → x

and yn′ → y,
L(x, y) ≤ lim inf

n,n′→∞
L(xn, yn′) . (6.12)

Since the Lagrangian of the causal action (5.35) is continuous, lower semi-
continuity is an unphysical generalization. Nevertheless, this setting is useful for
two reasons: First, from the point of view of the calculus of variations, it is a
natural generalization to which most methods still apply. And second, lower semi-
continuous Lagrangians are convenient for formulating explicit examples (like the
lattice model in [62, Section 5]).

We finally note also that the assumption of F being a smooth manifold can be
relaxed. From the point of view of the calculus of the variations, the right setting
is to assume that F is a compact topological Hausdorff space.

In this book, for pedagogical reasons, we do not aim for the highest generality
and minimal smoothness and regularity assumptions. An introduction to a more
general and more abstract setting can be found in [66, Section 3].
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140 6 Causal Variational Principles

6.3 Causal Variational Principles in the Non-compact Setting

In the compact setting, spacetime M is a compact subset of F. This is not suitable
for describing situations when spacetime has an asymptotic future or past or when
spacetime has singularities (like at the big bang or inside a black hole). For study-
ing such situations, it is preferable to work in the so-called non-compact setting
introduced in [62, Section 2.1], where F is chosen to be a non-compact manifold.

In the non-compact setting, it is not sensible to restrict attention to normalized
measures. Instead, the total volume ρ(F) is typically infinite. In this situation, the
causal action (6.8) could also be infinite. Therefore, we need to define in which
sense a measure is a minimizer of the action.

Definition 6.3.1 (Causal variational principles in the non-compact
setting) Let F be a non-compact smooth manifold of dimension m ≥ 1, and
let D ∈ C∞(F × F,R) be such that the Lagrangian L ∈ C0(F × F;R+

0 ) defined
by (6.7) has the properties (i) and (ii) in Definition 6.2.1. Given a regular Borel
measure ρ on F, another regular Borel measure ρ̃ on F is a variation of ρ of
finite volume if it satisfies the conditions

∣
∣ρ̃ − ρ

∣
∣(F) < ∞ and

(
ρ̃ − ρ

)
(F) = 0 , (6.13)

where |ρ̃ − ρ| is the total variation measure (see Definition 2.3.5 in Section 2.3).
For such a variation of finite volume, we consider the (formal) difference of the
actions defined by

(
S(ρ̃) − S(ρ)

)
:=

ˆ
F

d(ρ̃ − ρ)(x)
ˆ
F

dρ(y) L(x, y)

+
ˆ
F

dρ(x)
ˆ
F

d(ρ̃ − ρ)(y) L(x, y)

+
ˆ
F

d(ρ̃ − ρ)(x)
ˆ
F

d(ρ̃ − ρ)(y) L(x, y) . (6.14)

The measure ρ is said to be a minimizer of the causal action with respect to vari-
ations of finite volume if this difference is nonnegative for all ρ̃ satisfying (6.13),

(
S(ρ̃) − S(ρ)

) ≥ 0 . (6.15)

We note for clarity that integrals with respect to ρ̃ − ρ are defined by
ˆ
F

f(x) d(ρ̃ − ρ)(x) :=
ˆ
F

f dμ+ −
ˆ
F

f dμ− (6.16)

with the finite measures μ± as given in Definition 2.3.5. In particular, (ρ̃−ρ)(F) :=
μ+(F) − μ−(F).

Exactly as mentioned at the end of the previous section, the assumption that F
is a smooth manifold could be weakened. From the point of view of calculus of
variations, the right setting is to assume that F is a σ-locally compact topological
Hausdorff space (for details, see again [66, Section 3]).
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6.4 The Local Trace Is Constant 141

6.4 The Local Trace Is Constant

Causal variational principles as introduced in the previous sections are of interest
in their own right as a novel class of nonlinear variational principles. Nevertheless,
since we are primarily interested in causal fermion systems, it is important to get
a concise mathematical connection to the causal action principle. In preparation,
we now analyze the trace constraint and derive a first general result on minimizing
measures of the causal action principle. We present this result at such an early
stage of this book because this result can be used to simplify the setup of causal
fermion systems, getting the desired connection to causal variational principles
(see Section 6.5). The following result was first obtained in [13] (albeit with a
different method); see also [45, Proposition 1.4.1]. For technical simplicity, we
restrict attention to the finite-dimensional setting (in the infinite-dimensional case,
this problem has not yet been studied). Then, the total volume of spacetime as
well as the minimal action are finite.

Proposition 6.4.1 Consider the causal action principle in the finite-dimensio-
nal setting dimH < ∞. Let ρ be a minimizer of finite total volume, ρ(F) < ∞.
Then, there is a real constant c such that

tr(x) = c for all x ∈ M := supp ρ . (6.17)

We often refer to tr(x) as the local trace at the point x.

Proof of Proposition 6.4.1. We will prove the theorem by contradiction and there-
fore assume that the local trace is not constant. The idea is to use this assumption
to construct a suitable variation

(ρτ )τ∈(−δ,δ) with ρ0 = ρ, (6.18)

which satisfies the constraints, but makes the action smaller, in contradiction to ρ

being a minimizer.
For the construction of the variation, we combine two different general meth-

ods. One method is to multiply the measure ρ by a positive measurable function
fτ : M → R

+,
ρτ = fτ ρ, (6.19)

(alternatively, one can also write this relation as dρτ (x) = fτ (x) dρ(x)). Clearly,
such a variation does not change the support of the measure. In order to change
the support, our second method is to consider a measurable function Fτ : M → F

and take the push-forward measure,

ρτ = (Fτ )∗ρ . (6.20)

Combining these two methods, we are led to considering variations of the form

ρτ = (Fτ )∗
(
fτ ρ

)
. (6.21)

The condition ρ0 = ρ gives rise to the conditions

f0 ≡ 1 and F0 ≡ 1 . (6.22)
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142 6 Causal Variational Principles

Finally, we assume that the functions fτ and Fτ are smooth in τ . The ansatz (6.21)
is particularly convenient for computations. Namely, by definition of the push-
forward measure,

ˆ
F

L(x, y) dρτ (y) =
ˆ

M

L
(
x, Fτ (y)

)
fτ (y) dρ(y) , (6.23)

and similarly for all other integrals.
Next, for arbitrarily given fτ , we want to choose Fτ in such a way that the last

integral becomes independent of τ . To this end, we choose

Fτ (x) := x
√

fτ (x)
. (6.24)

Using that the causal Lagrangian L(x, y) is homogeneous of degree two in y (as
is obvious from (5.35) and the fact that the eigenvalues λxy

i are homogeneous of
degree one in y), it follows that

ˆ
M

L
(
x, Fτ (y)

)
fτ (y) dρ(y) =

ˆ
M

L
(

x,
y

√
fτ (y)

)
fτ (y) dρ(y) (6.25)

=
ˆ

M

L(x, y) 1
fτ (y) fτ (y) dρ(y) =

ˆ
M

L(x, y) dρ(y) . (6.26)

Arguing similarly in the variable x, one sees that our variation does not change
the action. Using that the integrand |λxy

j |2 of the boundedness constraint (5.39)
is again homogeneous of degree two in x and y, the above-mentioned argument
applies similarly to the functional T , showing that the boundedness constraint is
respected by our variations.

Let us analyze the volume and trace constraints. In order to satisfy the volume
constraint, we make the ansatz

fτ = 1 + τg , (6.27)

where g is a bounded function with zero mean,
ˆ

M

g(x) dρ(x) = 0 . (6.28)

This ensures that the volume constraint is satisfied. We finally consider the
variation of the trace constraint,

ˆ
F

tr(x) dρτ (x) −
ˆ
F

tr(x) dρ(x)

=
ˆ

M

tr
(
Fτ (x)

)
fτ (x) dρ(x) −

ˆ
M

tr(x) dρ(x)

=
ˆ

M

tr
( x
√

fτ (x)

)
fτ (x) dρ(x) −

ˆ
M

tr(x) dρ(x)

=
ˆ

M

tr(x)
(√

fτ (x) − 1
)

dρ(x) . (6.29)
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6.5 How the Causal Action Principle Fits into the Non-compact Setting 143

Employing again the ansatz (6.27) and differentiating with respect to τ , we obtain
for the first variation

d
dτ

ˆ
F

tr(x) dρτ

∣
∣
∣
∣
τ=0

= 1
2

ˆ
M

tr(x) g(x) dρ(x), (6.30)

(here we may differentiate the integrand using Lebesgue’s dominated convergence
theorem). Now we use of our assumption that the local trace is not constant
on M , making it possible to choose x1, x2 ∈ M with tr(x1) > tr(x2). Moreover,
we choose a function g that supported in a small neighborhood of x1 and x2, has
zero mean (6.28) and is positive at x1 and negative at x2. In this way, we can
arrange that the right-hand side of (6.30) is strictly positive. Hence, using (6.28),
it follows that

d
dτ

ˆ
F

tr(x) d
(
ρτ − ρ

)
(x)

∣
∣
∣
∣
τ=0

> 0 . (6.31)

To summarize, we have found a variation that respects the boundedness and the
volume constraint and preserves the causal action but increases the integral of the
trace (6.31).

The final step is to modify the variation in such a way that the trace and volume
constraints are respected, whereas the action and the boundedness constraints
become smaller. To this end, we transform the measures according to

ρτ → (Gτ )∗(ρτ ) (6.32)

with

Gτ (x) = x

(ˆ
M

tr(x) dρ

)/( ˆ
M

tr(x) dρt

)
. (6.33)

A short computation shows that the trace constraint is respected and so is the
volume constraint. Moreover, in view of (6.31), for small positive τ , the scaling
factor in (6.33) is strictly smaller than one, implying that the first variations of the
action and of the boundedness constraint are both strictly negative (here we use
again the homogeneity of the Lagrangian and of the integrand of the boundedness
constraint). This is a contradiction to the fact that ρ is a minimizer (here we make
essential use of the fact that the boundedness constraint (5.39) is an inequality
constraint, so that decreasing T in the variation is allowed). We conclude that the
local trace must be constant.

6.5 How the Causal Action Principle Fits into the
Non-compact Setting

Under mild technical assumptions on the minimizing measure, the causal action
principle for causal fermion systems is a special case of the causal variational
principle in the non-compact setting, as we now explain.

Since for minimizers of the causal action principle, all operators in M have
the same trace (see Proposition 6.4.1), we can simplify the setting by restricting
attention to linear operators in F that all have the same trace. Then, the trace
constraint can be disregarded, as it follows from the volume constraint. We now
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144 6 Causal Variational Principles

implement this simplification by modifying our setting. At the same time, we
implement the boundedness constraint by a Lagrange multiplier term. Here, we
apply this method naively by modifying the Lagrangian to

Lκ(x, y) := 1
4n

2n∑

i,j=1

(∣
∣λxy

i

∣
∣− ∣

∣λxy
j

∣
∣
)2

+ κ

( 2n∑

i=1

∣
∣λxy

i

∣
∣
)2

, (6.34)

where κ > 0 is the Lagrange multiplier. We refer to Lκ as the κ-Lagrangian. The
justification for this procedure as given in [13] is a bit subtle and, for brevity,
we shall not enter these constructions here. It is important to note that, in con-
trast to the usual Lagrange multiplier, where a minimizer under constraints in
general merely is a critical point of the Lagrangian including the Lagrange multi-
pliers, here we obtain again a minimizer of the effective action (for details, see [13,
Theorem 3.13]).

Finally, we make a mild technical simplification. A spacetime point x ∈ M is
said to be regular if x has the maximal possible rank 2n. Otherwise, the space-
time point is singular. In typical physical applications, all spacetime points are
regular, except maybe at singularities like the center of black holes. For example,
the construction of a causal fermion system in Minkowski space from Dirac wave
functions in Section 5.5 gives regular spacetime points if H is chosen sufficiently
large (in particular for all negative-frequency solutions). More generally, the inter-
acting systems considered in [45, Chapters 3–5] all have regular spacetime points.
The same is true for the similar construction in globally hyperbolic spacetimes
(for details, see [47]). With this in mind, in this book, we usually assume that the
causal fermion system is regular in the sense that all spacetime points are regular.
This assumption has the advantage that the set of all regular points of F is a
smooth manifold (see Proposition 3.1.3 in Section 3.1). We remark that, in the
case that H is infinite-dimensional, the set of regular points of F can be endowed
with the structure of a Banach manifold (for details, see [67, Section 3]). These
considerations lead us to the following setting:

Definition 6.5.1 Let H be a complex Hilbert space. Moreover, suppose we are
given parameters n ∈ N (the spin dimension), c > 0 (the constraint for the local
trace) and κ > 0 (the Lagrange multiplier of the boundedness constraint). We then
let Freg ⊂ L(H) be the set of all symmetric operators F on H with the following
properties:

(a) F has finite rank and (counting multiplicities) has exactly n positive and n

negative eigenvalues.

(b) The local trace is equal to c, that is,

tr(F ) = c . (6.35)

On Freg, we again consider the topology induced by the sup-norm on L(H). The
reduced causal action principle for regular systems is to minimize the
reduced causal action
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6.5 How the Causal Action Principle Fits into the Non-compact Setting 145

Sκ(ρ) =
¨

F×F

Lκ(x, y) dρ(x) dρ(y), (6.36)

over all regular Borel measures under variations that preserve the total volume.

In this way, the causal action principle fits into the framework of causal vari-
ational principles in the non-compact setting as introduced in Section 6.3. In
agreement with (6.11), the causal Lagrangian is continuous (in fact, it is even
locally Hölder continuous; for details, see [67, Section 5.1]). Moreover, it has the
desired properties (i) and (ii) in Definition 6.2.1 (it is strictly positive because
the Lagrangian can be estimated from below in terms of the local trace; see
Exercise 5.4).

In order to avoid misunderstandings, we point out that the above-mentioned
description of causal fermion systems by measures on Freg is not a suitable set-
ting for the existence theory (as will be developed in Chapter 12). The reason is
that Freg is not closed in F because the boundary points in F are missing (in a
converging sequence, some of the eigenvalues could tend to zero in the limit). As
a consequence, considering a minimizing sequence (ρn)n∈N of measures in Freg,
the limiting measure might well be supported also on F \ Freg. For this reason,
there is no existence theory for measures on Freg. But if a minimizing measure
is given, it seems sensible to assume that the resulting causal fermion system is
regular. Under this assumption, the analysis of the causal fermion system can be
carried out exclusively in Freg, whereas F is no longer needed. For a convenient and
compact notation, in such situations, we shall even omit the superscript “reg,” so
that F denotes the set of all symmetric operators on H with the above-mentioned
properties (a) and (b). Moreover, we shall omit the subscript κ. Thus, with a
slight abuse of notation, we shall denote the Lagrangian including the Lagrange
multiplier term (6.34) again by L.

In this way, assuming that the causal fermion systems under consideration
are regular, we have recovered the causal action principle as a specific causal
variational principle. The connection is summarized schematically as follows:

causal action principle for causal fermion systems
⏐
⏐
)

implement boundedness constraint
by a Lagrange multiplier

reduced causal action principle

⏐
⏐
)

build in trace constraint,
restrict attention to regular

causal fermion systems
reduced causal action principle for regular systems

↪→ generalize

causal variational principles
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146 6 Causal Variational Principles

Whenever the specific form of the causal Lagrangian (6.34) is not needed, we will
work in the more general setting of causal variational principles. Apart from the
sake of greater generality, this has the advantage that it becomes clearer which
structures are needed for which results. Moreover, it is often more convenient
not to specify the form of the Lagrangian. Generally speaking, we can work with
causal variational principles unless the physical wave functions and their induced
geometric and analytic structures are invoked.

6.6 Exercises

Exercise 6.1 (Derivation of the causal variational principle on the sphere) We
consider the causal fermion systems in the case n = 1 and f = 2. For a given
parameter τ > 1, we introduce the mapping F : S2 ⊂ R

3 → F by

F (�x) = τ �x�σ + 1 . (6.37)

(a) Compute the eigenvalues of the matrix F (�x) and verify that it has one positive
and one negative eigenvalue.

(b) Use the identities between Pauli matrices

σiσj = δij + iεijk σk , (6.38)

in order to compute the matrix product,

F (�x) F (�y) =
(
1 + τ2 �x�y

)
1 + τ (�x + �y)�σ + iτ2 (�x ∧ �y)�σ. (6.39)

(c) Compute the eigenvalues of this matrix product to obtain

λ1/2 = 1 + τ2 cos ϑ ± τ
√

1 + cos ϑ
√

2 − τ2 (1 − cos ϑ) , (6.40)

where ϑ denotes the angle ϑ between �x and �y.
(d) Verify that if ϑ ≤ ϑmax with

ϑmax := arccos
(

1 − 2
τ2

)
, (6.41)

then the eigenvalues λ1/2 are both real. Conversely, if ϑ > ϑmax, then the
eigenvalues form a complex conjugate pair.

(e) Use the formula

λ1λ2 = det(F (�x)F (�y))
= det(F (�x)) det(F (�y)) = (1 + τ)2(1 − τ)2 > 0,

(6.42)

to conclude that if the eigenvalues λ1/2 are both real, then they have the same
sign.

(f) Combine the findings of (a)–(e) to conclude that the causal Lagrangian
in (5.35) can be simplified to (6.6).

Exercise 6.2 (The action and boundedness constraint of the Lebesgue measure
on the sphere) We consider the causal variational principle on the sphere as
introduced in Section 6.1. We let dμ be the surface area measure, normalized such
that μ(S2) = 1.
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6.6 Exercises 147

(a) Use the formula for the causal Lagrangian on the sphere (6.6) to compute the
causal action (5.36). Verify that

S[F ] = 1
2

ˆ ϑmax

0
L(cos ϑ) sin ϑ dϑ = 4 − 4

3τ2 . (6.43)

(b) Show that the functional T is given by

T [F ] = 4τ2(τ2 − 2) + 12 − 8
3τ2 . (6.44)

Hence, the causal action (6.43) is bounded uniformly in τ , although the function F ,
(6.37), and the functional T , (6.44), diverge as τ → ∞.

Exercise 6.3 (A minimizer with singular support) We again consider the causal
variational principle on the sphere as introduced in Section 6.1. Verify by direct
computation that in the case τ =

√
2, the causal action of than the normalized

counting measure supported on the octahedron is smaller than the action of μ.
Hint: For τ =

√
2, the opening angle of the light cone is given by ϑ = 90◦, so that

all distinct spacetime points are spacelike separated. Moreover, the causal action
of the normalized Lebesgue measure is given in Exercise 6.2(a).

It turns out that the normalized counting measure supported on the octahedron
is indeed a minimizer of the causal action. More details and related considerations
can be found in [43, 74, 80].

Exercise 6.4 (A causal variational principle on R) We let F = R and consider
the Lagrangians

L2(x, y) = (1 + x2)(1 + y2) and L4(x, y) = (1 + x4)(1 + y4) . (6.45)

We minimize the corresponding causal actions (6.8) within the class of all nor-
malized regular Borel measures on R. Show with a direct estimate that the
Dirac measure δ supported at the origin is the unique minimizer of these causal
variational principles.

Exercise 6.5 (A causal variational principle on S1) We let F = S1 be the unit
circle parametrized as eiϕ with ϕ ∈ R mod 2π and consider the Lagrangian

L(ϕ, ϕ′) = 1 + sin2 (ϕ − ϕ′ mod 2π
)

. (6.46)

We minimize the corresponding causal action (6.8) within the class of all normal-
ized regular Borel measures on S1. Show by direct computation and estimates that
every minimizer is of the form

ρ = τ δ
(
ϕ − ϕ′ − ϕ0 mod 2π

)
+ (1 − τ) δ

(
ϕ − ϕ′ − ϕ0 + π mod 2π

)
(6.47)

for suitable values of the parameters τ ∈ [0, 1] and ϕ0 ∈ R mod 2π.
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