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Abstract

The perturbation of the eigenvalues of a regular Sturm-Liouville problem in
normal form which results from a small perturbation of the coefficient function
is known to be uniformly bounded. For numerical methods based on approxi-
mating the coefficients of the differential equation, this result is used to show
that a better bound on the error is obtained when the problem is in normal
form. A method having a uniform error bound is presented, and an extension
of this method for general Sturm-Liouville problems is proposed and examined.

1. Introduction

The basic second-order Sturm-Liouville eigenvalue problem has the form

(a) - (pit1)'+qu = Xru, x e (a, b),

(b) «u(a)+pu'(a)=0,
yu(b)+5u'(b)=0, { - '

(c) u,pu'eCla,b]

and this problem is said to be regular if a and b are finite, preC2[a,b'],qeC[_a,b'\
and pr > 0.

Problems of this form arise in many situations in mathematical physics and the
information required about the spectrum varies with the application. The moti-
vation for this paper lies in the need to determine the first n {n P 1) free oscillation
frequencies with a uniformly bounded error for various earth models (see, for
example, [1], [18]). For such situations the use of standard techniques, such as
finite difference and variational methods, does not guarantee the required type
of approximation.
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366 John Paine and Frank de Hoog [2]

The reasons for this are best illustrated by considering the use of these methods
for solving

— u"—hi, xe(0,j[),

u(0) = 0 = u(n),

which has eigenvalues kk = k2 and eigenfunctions uk = sin kx. Then, on a uniform
grid with step size h = njN, we have the following error bounds for the following
approximations Xk of Xk.

(A) Standard Central Differences
It is well known [8] that

4=2/r2(l-cosA:/0, k = \,2,...,N-\,
and hence

*=:-, k = l,2,...,N-l.

(B) Raleigh-Ritz Method with a Linear Hat Basis
In Schultz [16, p. 120] it is shown that

and hence

6(1 -cos k h)
V(2+cos kh)

12

(C) Rayleigh-Ritz Method with a Hermite Cubic Spline Basis
From [2', equation (31)] it follows that

1 5 -
h<ho(k),

where (here and below) C is a constant which is bounded independently of k and h.
From these bounds it is clear that these methods will, with little effort, provide

good approximations to the smaller eigenvalues. However, it is also clear that the
amount of effort required to obtain uniform approximations of the first n eigen-
values will be orders of magnitude larger than n. Thus, in the previously mentioned
geophysical situation where fifty or one hundred eigenvalues are required, the use
of standard methods will be inefficient because of the excessive computational
effort required.

The deterioration in the accuracy of lk with increasing k in these cases is a
direct consequence of the fact that the eigenfunctions become more oscillatory as
the eigenvalue Xk increases. As each method relies on either a fixed-order poly-
nomial or Taylor's series to approximate the eigenfunction, it is to be expected
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that the global accuracy of such approximations, and hence the eigenvalue
approximation also will deteriorate as k increases.

An alternative approach based on approximating the differential equation itself
has been suggested by a number of authors (see, for example, [3], [7], [9], [13], [14],
[15]). Specifically, we replace p, q and r in (1.1) by the approximations p, q and f
respectively. Then we calculate the approximations to the eigenvalues and eigen-
functions by solving

(a) -(pu')' + qu=Xru, xe(a,b),

(b) (a)0,
yu(b)+5u'(b)=0, ( '

(c) u, pu'eC[a,b].

Let us neglect, for the time being, the difficulties associated with solving (1.2) and
look at some of the features of such an approach.

Potentially, for a given approximation, we can obtain estimates of all the eigen-
values. It is not clear, however, whai effect these perturbations of the coefficients
will have on the eigenvalues, nor is it obvious that (1.2) will be any easier to solve
than the original problem.

In an extensive analysis of such methods, Pruess [14] has shown that for piecewise
Mth order polynomial interpolation of the coefficients on a grid with maximum
stepsize h,

\Xk-Xk\^ChM+l\lk\, h<h0. (1.3)

He also extends this basic result to show that for piecewise polynomial interpolation
at the Gaussian points

rk\, h<ho(k), (1.4)
where

For M > 0, we can see that the above bounds represent a considerable improve-
ment over the bounds obtained when finite difference and variational schemes are
employed. However, in order to solve (1.2) it is necessary to obtain the fundamental
solutions on each subinterval. If M > 0 however, there does not in general exist a
closed form for these fundamental solutions which is computationally convenient.
Of course, a series solution could be developed, but this means that we are approxi-
mating the fundamental solutions by means of a piecewise polynomial and this is
exactly the thing we are trying to avoid. It is only when M = 0 that computationally
tractable schemes can be constructed (see, for example, [3]). However, in this case
we have
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for a general approximation, or if midpoint interpolation is used,

and so it is not clear that this scheme will be superior to conventional schemes.
In some special situations, the above bounds have been improved. For instance,

when (1.1) is in Liouville normal form (that is, p = 1, r = 1) and q is approximated
on a uniform grid by midpoint interpolation, then Ixaru [10] has shown that

4
h<h0.

Clearly, this is an improvement over the above estimates, but we still have not
achieved the desired uniformity.

In this paper we use a standard perturbation argument to show that for problems
in Liouville normal form, the approximations generated by (1.2) (with p=\,
r = 1) satisfy

provided \\q — q ||2 < imin* | Xk + i—?.k |. It is then shown that this bound can be
further improved for a certain class of midpoint piecewise constant approxi-
mations, and a scheme is proposed which will give uniform O(h2) approximations
to all eigenvalues. Finally, we extend this method to include the uniform approxi-
mation of the eigenvalues of (1.1).

2. Approximation of differential equations in normal form

In this section we restrict attention to eigenvalue problems which are in
Liouville normal form

-U"+SU = )M, ueD, (2.1)

where s is a continuous function and

£> = {weL2([0,1]): u',u are absolutely continuous, U " E L 2 ( [ 0 , 1]), ocu(O) +

We further consider approximating problems of the form

- U " + S M = / U , ueD, (2.2)

where s is a piecewise continuous function.
L e t U*}r=o» {4}r=o b e t h e eigenvalues of (2.1) and (2.2) respectively, arranged

in ascending order, and {uk}™=0, {«*}"=<> °e the corresponding eigenfunctions,
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scaled so that

Il«*ll2 = l|fij2 = l
and

(uk,uk)^0.

Then we have the following results,

THEOREM 2.1. Let p =mink\Ak+1—Xk\ > 0 and s be such that \\s — s\\2 <\p-

Then,

(i) \Xk-Xk\^\\s-5h,k=O,l,2,...,

(») \\uk-uk\\2^Us-s\\2,k=0,\,2,....

PROOF, (i) The first assertion follows from a result of Kato [11, p. 291] which
states that if T is a self-adjoint operator and B a bounded symmetric operator both
acting in a Hilbert space H, then T+B is self-adjoint, and

where 2(7) , I.(T+B) are the spectra of the operators T and T+B respectively, and

dist QA", Y] = max {sup inf | x —v| , sup inf | x — y\}
xeX yeY ' yeY xeX

for any two sets X and Y contained in C.
Now if we define the operators L and L by

Lu=— u"+su, ueD,
Lu = —u"+su, ueD,

then it is clear that L=L — B where B is the bounded symmetric operator defined
by

Bu — {s—s)u.

From [17, Theorem 10.18], L is self-adjoint and since D c: L2([0,1]), the condi-
tions of Kato's theorem are satisfied and hence,

dist[Z(L),!(£)]< | |5y2.

The ordering of the spectra and the bound on || s—s\\2 then imply

I ^ - J * l < l l * - 5 | | 2 , * =0 ,1 ,2 , . . . .
(ii) Let

r t = { A e C : | A - A 4 | = p } , A: =0 ,1 ,2 , . . . .

As kk and lk are the only eigenvalues of L and L respectively on the disc bounded
by Tk, and both eigenvalues are interior points of Tk, the projection operators

Pk=——i) (L-kiy'dk (2.3)
2niJrk
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and

1 X -
2ni Jrk

are well defined and

Pkf=(MkJ)«k, (2-5)

Pj=(uk,f)uk (2.6)
for any/eL2([0,1]).

Furthermore, it is easily verified that for X e Tk,

and hence, from (2.6) with/=wt and (2.4),

(uk,uk)uk=Pkuk

= Pkuk+Rkuk,
where

if . _ , - ! ,

That is, using (2.5) in the above,

(uk, uk) uk = uk+Rk uk. (2.7)

From Kato [11, p. 291] and the bound on ||s—s||2, we find that

I l ^ i l 2 < - | | s - s | | 2 < l (2.8)
P

and, from (2.7)

But, also from (2.7),
"*-"* = 0 -("k,Uk))Ok+Rkuk

and so
\\uk-uk\\2^2\\Rk\\2

4

^ P

From these basic results it is also possible to derive a refined estimate of the
eigenvalue perturbation which will be useful for obtaining higher order con-
vergence results in the next section. This result is

THEOREM 2.2. Jf\\s — s\\2 <\p where p is as defined in Theorem 2.1, then

J o
K-\~ | {s~~s)u\dx

P
|
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PROOF. Let A: be a given integer. From (2.7) we have, since || Rk\\2 < 1 implies
that (uk, uk) # 0,

, "*) (2.9)

where uk and uk are the eigenfunctions of (2.1) and (2.2) respectively, corresponding
to the eigenvalues Xk and lk.

Applying L to uk and using (2.2) and (2.9) yields

Luk = Xk(uk+Rk uk)l(uk, uk);

but, since L=L — B, we also have

Luk = (Xk uk - Buk + LRk uk)l(uk, uk).
Hence

(4 - k) uk -Buk=-(L- lk I) Rk uk

and on taking the inner product of both sides with uk and noting that {uk, uk) = \,

Mk-2*)- (s-S)u2
kdx = -(«», (L-lkI)Rkuk).

J o

But, since (L - lk I) is self-adjoint,

| (uk, ( I - lk I)Rk uk)\=\ {lk - lk) (uk, Rk uk) + (Buk, Rk uk) \

Theorem 2.1 and the inequality (2.8) then yield the desired result.

3. Convergence results for problems in normal form

From the preceding results, it is a simple matter to obtain results analogous to
those of Pruess [14] when s is approximated by a piecewise polynomial. However,
due to the inherent difficulties in solving the approximate problem for the general
case, we shall restrict attention to the case of piecewise constant approximation.

Let
A = {Xi, i = 0 , 1 , . . . N\x0 = 0 , ^ = 1,

be a partition of [0,1],

h = m a x | x , + , - X i l ,

then the piecewise constant approximation s is defined by

where st is some constant.
Then, from Theorem 2.1,

https://doi.org/10.1017/S0334270000002459 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002459


372 John Paine and Frank de Hoog [8]

COROLLARY 3.1. Let seC^O, 1], A be a partition of[0,1] and Si interpolate s at
some point of[xh x,+ ii for each i. Then there is an h0 > 0 such that for each partition
A with h < h0

\*k-3*\< II*'II«A * =0 ,1 ,2 , . . . .

PROOF. If we define h0 =?pl\\s'\\x, then the result follows from Theorem 2.1

Similarly, if seC2[0, 1] and s is given by midpoint interpolation, then Ixauru's
[10] result follows from Theorem 2.2, by using any standard result on the error
of midpoint product integration. However, initial computational results indicated
that for midpoint interpolation on a uniform grid, this bound can be improved.
Before giving this improved bound, the following definitions and lemmas are
required:

LEMMA 3.1. Let {nk}™=0 and {wk}£L0 be the ordered eigenvalues and eigenfunctions
of the operator Lo, where Lo is defined by

Low = - w", WED,

and where the eigenfunctions are scaled so that

and

Then, there is a positive constant C,, bounded independently ofk, such that for each
integer k,

(•) i K - w J L ^
(ii) Hwi-wilL^

(iv) HwilL:

PROOF. All four inequalities follow directly from the asymptotic representation
of the normalized eigenfunctions and their derivatives given in Courant and
Hilbert [6, p. 336].

On a uniform partition A of [0,1], define s* to be the piecewise constant
approximation determined by the rule

s*(x)=s(xi+i), xe(xhxi+l),
where

xi+i=xt+\h, i = 0 , l , . . . , # - 1 .
Then we have
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LEMMA 3.2. Let seC2 [0,1], / e C1 [0,1] and A be a uniform partition of [0,1],

then

(s - s*)fdx

PROOF.

5-S*)/dx I
1 = 0

N - l

I
i = 0

s'(xi+

J x,

r*t+1

J X,

+ ,S
+ 1

i = O

Using the inequalities

I s(x)-s(xi+i)-s'(xi+i)(x-xi+i) I < ill s"I
and

it is easy to verify that

is — s) fax {ills'II. 11/'L+ill/"IL 11/11.}ft2-

If we now define {A*} and {u*} to be the eigenvalues and eigenfunctions of (2.2)
with s = s*, then we have

THEOREM 3.1. Let seC2 [0,1], then there is an h0 > 0 such that for each uniform
partition A with h < h0,

) h
max

sin py/(rjk) h
h2 + C2h

2,

k =0,1 ,2 , . . . ,

where Cl and C2 are constants bounded independently of k and h.

PROOF. Let h0 = pj\\ j 'H^.and A be a uniform partition with h < h0, then the
conditions of Theorem 2.2 are satisfied since

Using the identity

uk =w2+2(uk-wk)wk+(uk-wk)
2
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in Theorem 2.2, we find

[10]

{s-s*)wldx +2 (s-s*)(uk-wk)wkdx
Jo Jo

\\ (s — s*) (uk — wk)
2 dx+-llsTa,fc

2.

Estimating the last two integrals through the application of Lemma 3.2 together
with the bounds of Lemma 3.1, then yields

\
J

(s — s*)wldx + Ch2. (3.2)

If on each of the intervals (x,,xi+1) we replace (s—s*) by a Taylor's series
expanded about xi+i, we obtain

(s - s*) wl dx
N-l

i = 0 >J> +ih2\\s"\\oo | w*dx
o

and, since wk — Aksm(yJ(rik)x+<l>k), we can integrate the above to give

f
J c

(s-s*)wldx
2 1,2Alh ) h siriyj(r]k) h

N-l

s i n +ih2\\s"\\x. (3.3)

Now, on summing by parts,
N - l

But since

and

N - l

) £ SI
J = O

i - 1

). (3.4)

i - l

£ s sin

(3.2), (3.3) and (3.4) give the desired result.
The presence of the term

max
sin pyj(r)k) h
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in the above error bound makes it immediately obvious that this bound cannot
be uniformly O(h2). In spite of this negative result, we will now show that by
using the above approach to find the first [A^/2] eigenvalues and then switching
over to a simple asymptotic expansion, uniform O(h2) estimates of all eigenvalues
can be found.

In [12] it is shown that

r
sdx + Oik'2) (3.5)

and so it is clear that this expansion will provide uniform 0{h2) approximations
for Jk = [JV/2],[JV/2] + l,. . . . Thus, we only need to show that the bound in
Theorem (3.1) is uniform for A: = 0 , 1 , ...,[JV/2]. But, from [6], y/rik=
thus

and so

and

Therefore,

max

) h sinyW h
r,kh

2

sin py/(ijk)h

V (»/*)>>

'2y/{t,k)h

3), fc=0,l,...,[JV/2].

Consequently, the above approach does in fact yield uniform approximations to
all eigenvalues.

4. Numerical schemes for piecewise constant approximation

When I is chosen as a piecewise constant function, the solution of (2.2) for a
given value of X is

A0F0{x,X) B0G0{x,X), xe[xo,xj

where F^x, X) and G((x, A) are the fundamental solutions of

> = /.i>, xe(x, ,x ( + 1)
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which were chosen as

(cos QO. - Si) (x - x,)), A > s,,
F,(x,A) = j l , A=s, ,

Icosh (s/(s, - A) (x - x,)), ;. < sh

sin (N/(A - Sj) (x - Xi))/y/(/. - s(), A > sh

G,(x, /.) = (x — x,), /, ^ s-
sinh (^/(s, - A) (x - x,))/^(s,. - A), A < sf.

The constants {>!,•, B,}f=0' are determined up to an arbitrary multiple by the
additional requirement that vxeD.

The determination of the eigenvalues of (2.2) thus becomes that of finding the
values of A for which {A^JQ and {B^JQ are not identically zero. To do this, we
note that the requirement vxeD yields a system of equations involving the
unknowns Ah Bh vx(x,), D/(X;) and the known values F,(xI+1,A), and G;(xi+1,A).
We can then proceed in a number of ways, for example, Canosa [3] uses these
relations to eliminate the unknowns {vx(Xj), ^ (x , )}^ 1 and obtains a system of
equations in {At, B.jfLV- The eigenvalues are then simply the zeros of the deter-
minant of this system. However, if these relations are used to eliminate the
unknowns {Ah B;}f=V and { .̂'(x,)}^",,1 from the continuity conditions, we obtain
Gt+\(Xi + 2> V Vx(x,)-[Fi(xi+1,A)Gi+ i(xi + 2, A)+/"i+ !(xi + 2 , A)Gf(xi+ u A)] vx(xi+1)

+ Gi(xi+Ul)vx(xi+2)=O, i = 0,l,...,N-2.
These relations, together with the equations

xu A)-«C0(x1, A)] v1ix0)-Pvx(xl)=0
and

-Svx(xN_1) + [_yGN_1(xN, X)+dFN_ ,(xN, A)] vx(xN) = 0

which are obtained in a similar fashion from the boundary conditions, yield a
system of equations of the form

where

vT = (vx(x0), vx{,x,),..., vx(xN))

and D{1) is a tridiagonal matrix.
This approach provides a simpler procedure for finding the eigenvalues of (2.2)

and also yields a simple direct method for evaluating the eigenfunction at the knots
of the partition. Unfortunately, there is the difficulty that not all zeros of the
determinant are necessarily eigenvalues. To illustrate this, consider the problem

-V" =AV,

the exact eigenvalues of which are A* = {k+\)2, k=0,\,2
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Now for the partition {0, \n, n)

377

cos - 1

•sin
2
—sin

2

0

cos- —r-sin •
^ 2

and so,
det(ZXA)) = - — sin 2^M? cos J(A) jr.

N/A 2

Therefore det(D(A)) is zero whenever A is an eigenvalue, but it is also zero when
A = 4p2, p = 1,2,..., which are not eigenvalues.

Although there does not appear to be any simple analytical means for removing
these extraneous zeros, it should be noted that they are an artefact introduced by
the elimination of the values {v'x(xi)}fjo

l and that they only arise non-trivially
when G((xl+1, A) and G( + 1(xi + 2 , A) both vanish for some value of A. This can only
occur when A ^ n2jh2 — \\ s \\K. Thus, for most problems this difficulty either will
not occur or will occur in a range for which the asymptotic expansion rather than
the approximation method will be used.

5. Approximation of differential equations not in normal form

Although the technique of approximating the coefficients of the differential
equation by piecewise constant functions provides a uniform approximation to the
eigenvalues when the problem is in normal form, it can be shown that when this
technique is applied to (1.1), Pruess' estimates (1.3) and (1.4) are sharp.

This suggests that when the problem is not in normal form, we should use the
Liouville transformation to transform (1.1) into normal form. Thus if

p,q,reC\_a,b\ pr^O and preC\a,b\

then the Liouville transformation

= T"X \\rlpfdx, T = P(rlp)*dx,

u=wz, w=
transforms (1.1) to

where

and

-z+sz=vz, te(0,1),

s(t) = T2(qlr)(t)-(wM(0+2(wlw)2(t)

v=T2L

(5.1)

(5.2)

(5.3)

(5.4)
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Similarly the boundary conditions become

«*z(O)+j8z(O)=O,

y*z(l)+<5i(l)=0, (5.5)
where

«*=
and

We can then use the previously outlined method to obtain uniform approxi-
mations to the eigenvalues of this transformed problem and hence of the original
problem. In some cases, however, it may not be possible to carry out this trans-
formation explicitly. Thus, to obtain uniform approximations, it becomes necessary
to introduce a further approximation.

From the form of the exactly transformed problem, it can be seen that the
transformation parameter T, the function 5 and the boundary condition coefficients
a* and y* all need to be approximated. Let us therefore consider how we should
perform these approximations:

From Theorem 2.1 it is clear that an O(e) perturbation of s will produce, at most,
an 0(e) perturbation of the eigenvalues. Thus if s(t) cannot be evaluated exactly,
it is a relatively simple matter to approximate the desired quantities with sufficient
accuracy so that the order of approximation of the eigenvalues is not affected.

The approximation of the parameter T, however, poses a more severe problem,
since it is clear from (5.4) that a perturbation of T will produce a perturbation in
the eigenvalues which is proportional to the size of the eigenvalue. In practice,
however, T may be evaluated with sufficient accuracy so that any non-uniformity
will not be apparent in the range of eigenvalues which are of interest.

The final problem is the effect of perturbations in a* and y*. If these values
cannot be found exactly, the conditions of Kato's theorem are no longer satisfied.
We overcome this problem with

THEOREM 5.1. Let {Xk(o, r\)}^=0 be the ordered eigenvalues and {uk(u,a,t])}^0 be
the corresponding normalized eigenfunctions of

-U" + SU=)M, xe(0,1),

(Tu(0)-u'(0)=0.

where seC[0,1]. Then

where M is independent ofk.

do dr,
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PROOF. It is clearly sufficient to show that the derivatives of lk{a, ri) with respect
to a and 77 exist and are continuous. To do this we note that At(a, r]) is a continuous
function of a and rj [6, p. 419] and also that uk(x, a, rf) depends continuously on
a and r] [4, p. 58].

Let u(x) — uk(x, ff, tj) and u(x) = uk(x, <x,fj), then

— u" + su =Xk(<r,t])u
and

— u" + su = Xk(d,r\)u.
Therefore

\_Xk{a, rj) -Afc(a,fj)] w« = - u"u + uu" (5.6)

and, on noting that

*i

J o
(-u"u + uu")dx = [-u'

we find on integrating (5.6),

fl). (5.7)7,i)-Ak(d,f\)']
J 00

Now, since uk depends continuously on a and rj, there is a <5 = ^(/c) such that

J o
uu dx > 0

whenever (<7,fj)sA (̂o-,>7) = {(x,y): (x — a)2+(y — rj)2 < <52}. Hence, from (5.7),

whenever (i?,f|) e ^(tx, >/).

On taking the relevant limits and noting that

P= lim uudx = |
d=a,ij-*rjJo

lim uudx= lim uudx = \\ uk | | | = 1,
a-* a, fj~t} J 0 d =tr, ij—>^J 0

we find that the derivatives of Xk with respect to a and ^ exist, and

and

Thus the derivatives are continuous and bounded by [| ŵ  H .̂ The result then
follows from the eigenfunction bounds in Lemma 3.1.
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Using these bounds in a standard mean value theorem shows that the per-
turbation of the eigenvalues is of the same order as the perturbations in a* and
y*. Thus, if a* and y* are approximated sufficiently well, the desired properties of
the eigenvalue approximations will not be lost.

6. Numerical examples

To provide numerical confirmation of the preceding results, the method based
on the three-term recurrence relation and outlined in Section 4 was implemented
in a computer program. The determinant of the matrix was evaluated using
Gaussian elimination with partial pivoting. The zeros were found using a modified
secant method, the initial values for which were found by a fixed step search based
on an initial prediction provided by an asymptotic expansion for the eigenvalues.

The first problem considered was

?M, te(0,1),

M(0)=0=ii(l).

The approximating problem was chosen to be that given by approximating s using
a midpoint approximation rule on a uniform partition with N intervals.

The first forty eigenvalues of this approximating problem for TV =16 were
found, and an estimate of the error was obtained by comparing these results with
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Fig. 1. Eigenvalue error for problem I.

https://doi.org/10.1017/S0334270000002459 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002459


117] Uniform estimation of eigenvalues 381

those obtained for N = 256. The errors thus obtained are plotted in Fig. 1, and it
should be noted that they appear to be in close agreement with the bound given
in Theorem 3.1.

At this stage it is worthwhile pointing out that for this example, the O(h) peaks
are in apparent disagreement with the asymptotic formula equation (42) of [14]
which predicts that the error in this example should decrease like O(k~2). How-
ever, the observation that this asymptotic formula requires s and s to be con-
tinuously differentiate resolves this contradiction since this condition is clearly
not satisfied by piecewise constant approximations.

From the above figure and comments it is clear this method will not directly
yield the desired uniform approximations and so the strategy of switching to the
asymptotic expansion (3.5) will have to be used. The error in the approximations
obtained in this manner for the above example (again with N =\6)is presented in
Fig. 2 and clearly shows that this is a viable strategy for obtaining uniform
approximations.
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Fig. 2. Eigenvalue error using approximation of differential equation and asymptotic expansion

for problem I.

The next problem considered was

x x
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which was obtained from the first problem via the transformation x = e1. This
was solved using the approximate transformation technique outlined in the
previous section.

The method used was firstly to partition the x-interval, and then use Simpson's
rule to approximate the transformation (5.1). This yields a partition of the /-
interval and an approximation of the parameter T, which in this case was evaluated
to an accuracy of 1.0 x 10~6. The next step was to approximate the boundary
conditions. This was. achieved by using finite differences to approximate the
required derivatives, the mesh being refined until a specified accuracy (in this case
1.0 x 10~4) was achieved. The final step was to approximate s by the use of centred
finite difference approximations on the previously obtained partition of the t-
interval. The method outlined previously for problems in normal form was then
used to obtain the eigenvalues of this approximating problem.

This procedure was carried out for two partitions of the x-interval. The first was
a uniform partition, and the results obtained, which are plotted in Fig. 3, show
that accurate approximations are obtained, although there appears to be no clear
structure in the error.
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Fig. 3. Eigenvalue error for problem II.

The second partition used was one which, when exactly transformed, yielded a
uniform partition of the /-interval. The results obtained for this approximation did
not differ significantly from those obtained from the exactly transformed problem,
that is, the first test problem.
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