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Abstract

We introduce the concept of strong property (B) with a constant for Banach algebras and, by applying a
certain analysis on the Fourier algebra of the unit circle, we show that all C*-algebras and group algebras
have the strong property (B) with a constant given by 288π(1 +

√
2). We then use this result to find a

concrete upper bound for the hyperreflexivity constant ofZn(A,X), the space of bounded n-cocycles from
A into X, where A is a C*-algebra or the group algebra of a group with an open subgroup of polynomial
growth and X is a Banach A-bimodule for which Hn+1(A, X) is a Banach space. As another application,
we show that for a locally compact amenable group G and 1 < p <∞, the space CVP(G) of convolution
operators on Lp(G) is hyperreflexive with a constant given by 384π2(1 +

√
2). This is the generalization of

a well-known result of Christensen [‘Extensions of derivations. II’, Math. Scand. 50(1) (1982), 111–122]
for p = 2.
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1. Introduction

The concept of hyperreflexivity is a strengthening of the well-known notion of
reflexivity. The latter notion that was first defined in [23] has attracted much attention
over the years. It has its origin in operator theory and at first was defined for the
subspaces of B(X). In [16], Larson generalized the concept of reflexivity to the
subspaces of B(X, Y), where X and Y are Banach spaces. One goal was to study the
local behavior of derivations from a Banach algebra A to a Banach A-bimodule X.

Let A be a Banach algebra and X a Banach A-bimodule. One interesting question
is under what conditions each local derivation from A into X is a derivation or,
equivalently, when Z1(A, X) is algebraically reflexive. One could also study the
continuous version of this question: when the space of bounded derivations from A
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into X, namely Z1(A, X), is reflexive. Johnson showed that Z1(A, X) is algebraically
reflexive when A is a C∗-algebra [14]. In [20], the first named author generalized
the concept of local derivations to the higher cohomologies and defined the local
n-cocycles. He showed that if A is a C∗-algebra and X a Banach A-bimodule, then
every bounded local n-cocycle from A(n) into X is an n-cocycle. In a subsequent paper,
he introduced the concept of reflexivity for bounded n-linear maps [21]. He showed
that if G is a locally compact group with an open subgroup of polynomial growth
and X a Banach L1(G)-bimodule, thenZn(L1(G), X), the space of bounded n-cocycles
from A into X, is reflexive. More results related to these questions can be found in
[5, 7, 9–13, 15–17, 19].

As was pointed out above, the concept of hyperreflexivity is a strengthening of
reflexivity. This concept was first introduced by Arveson in [4] and proved to be
powerful in operator theory. For instance, mainly due to the work of Christensen,
it was shown that injective von Neumann algebras are hyperreflexive [6]. It is not
known whether one can remove ‘injectivity’ from the preceding statement. In fact,
this is equivalent with several open problems in operator algebras including Kadison’s
similarity problem [18]. The first attempt in studying the hyperreflexivity for the space
of derivations was done by Shul’man in [24], where he showed that Z1(A, A)) is
hyperreflexive for a C∗-algebra A if H2(A, A) = 0. For group algebras, it was first
shown in [2] that Z1(L1(G), L1(G)) is hyperreflexive for each amenable group with
a small invariant neighborhood (SIN). In [21], the first named author extended the
preceding result and showed that Z1(L1(G), X∗) is hyperreflexive if G is an amenable
locally compact group with an open subgroup which is of polynomial growth and X is
an essential Banach L1(G)-bimodule. In particular,Z1(L1(G), L1(G)) is hyperreflexive
for such a group. In [3], the latter result was extended further, so that one could drop
the assumption of ‘amenability’.

In the preceding work [22], we considered the extension of the concept of
hyperreflexivity to the subspaces of bounded n-linear maps between Banach spaces,
taking into account their multilinear structure. We mostly focused on Zn(A, X), the
space of bounded n-cocycles from a Banach algebra A into a Banach A-bimodule
X, and found sufficient conditions under which Zn(A, X) becomes hyperreflexive.
We demonstrated that for a large class of Banach algebras, including nuclear
C∗-algebras and group algebras of groups with open subgroups of polynomial
growth, these sufficient conditions hold, which gave evidence that our conditions are
satisfactory. However, our approach in [22] did not give us any information about the
hyperreflexivity constant of these spaces.

Our goal in this article is to fill out this gap by focusing on finding an upper bound
for the hyperreflexivity constant. In this regard, we make use of the Fourier algebra of
the unit circle A(T) and give a characterization of bounded linear maps from A(T)
into its dual which almost preserve support (see Theorem 3.3). We then make an
appropriate modification of our approach in [22], such as introducing the concept of
the strong property (B) with a constant for Banach algebras (Definition 3.1), and show
that one could obtain hyperreflexivity of bounded n-cocycle spaces along with some
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information about the hyperreflexivity constant. We use our results to show that if A
is a C∗-algebra or the group algebra of a group with an open subgroup of polynomial
growth and if X is a Banach A-bimodule for which Hn+1(A, X) is a Banach space,
then the hyperreflexivity constant of Zn(A, X), the space of bounded n-cocycles from
A into X, is bounded by

C2n−1(M2384π2(1 +
√

2) + (M + 1)2)n+1,

where M is a bound for the local units of A and C is a constant satisfying

dist(T,Zn(A, X)) ≤ C‖δn(T )‖ (T ∈ Bn(Z, X)).

In the final section, we look at the space of convolution operators on Lp(G) for
a locally compact group G and 1 < p < ∞. For p = 2, CV2(G) is nothing but the
group von Neumann algebra of G generated by its left regular representation. It is
well known that CV2(G) is an injective von Neumann algebra if G is an amenable
group and so it is hyperreflexive by [6]. We extend this result to CVp(G) for all
1 < p <∞. For p , 2, CVp(G) is no longer a von Neumann algebra, so that we cannot
use Christensen’s result. However, we show that the methodology we developed to
study the hyperreflexivity of n-cocycle spaces compensates the lack of the theory of
von Neumann algebras in this situation. We apply successfully our method and show
that for an amenable group G and 1 < p <∞, CVp(G) is hyperreflexive with a concrete
upper bound estimate on the hyperreflexivity constant.

2. Preliminaries

Let X and Y be Banach spaces. For n ∈ N, let X(n) be the Cartesian product of n
copies of X and Bn(X,Y) be the spaces of bounded n-linear maps from X(n) into Y . Let
S be a closed subspace of Bn(X,Y). For every T ∈ Bn(X,Y), we define

dist(T,S) = inf
S∈S
‖T − S ‖

and
distr(T,S) = sup

‖xi‖≤1
inf
S∈S
‖T (x1, . . . , xn) − S (x1, . . . , xn)‖.

It is clear that for all T ∈ Bn(X,Y),

distr(T,S) ≤ dist(T,S).

We define S to be reflexive if for every T ∈ Bn(X, Y), distr(T,S) = 0 implies that
dist(T,S) = 0. We define S to be hyperreflexive if there exists some C > 0 such that
for all T ∈ Bn(X,Y),

dist(T,S) ≤ C distr(T,S).

It is straightforward to verify that distr defines a seminorm on the quotient space
Bn(X,Y)/S given by

‖T +S‖r = distr(T,S).
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It follows easily from the definition that S is reflexive if and only if ‖ · ‖r is a norm on
Bn(X, Y)/S. On the other hand, S is hyperreflexive if and only if ‖ · ‖r is equivalent to
the dist norm on Bn(X,Y)/S, which is nothing but the quotient norm on Bn(X,Y)/S.

Let A be a Banach algebra and let X be a Banach A-bimodule. A bounded operator
D ∈ L(A, X) is a derivation if for all a, b ∈ A, D(ab) = aD(b) + D(a)b. For each x ∈ X,
the operator adx ∈ B(A, X) defined by adx(a) = ax − xa is a bounded derivation, called
an inner derivation. Let Z1(A, X) be the linear spaces of bounded derivations from A
into X. For n ∈ N and T ∈ Bn(A, X), define

δnT : (a1, . . . , an+1) 7→ a1T (a2, . . . , an)

+

n∑
j=1

(−1) jT (a1, . . . , a ja j+1, . . . , an+1)

+ (−1)n+1T (a1, . . . , an)an+1.

It is clear that δn is a linear map from Bn(A, X) into Bn+1(A, X); these maps are the
bounded connecting maps. The elements of ker δn are the bounded n-cocycles; we
denote this linear space by Zn(A, X). It is easy to check that Z1(A, X) coincides with
our previous definition of this notation.

Let A be a Banach algebra and let X be a Banach A-bimodule. By [8, Section 2.8],
for n ∈ N, the Banach space Bn(A, X) turns into a Banach A-bimodule by the actions
defined by

(a ? T )(a1, . . . , an) = aT (a1, . . . , an),
(T ? a)(a1, . . . , an) = T (aa1, . . . , an)

+

n∑
j=1

(−1) jT (a, a1, . . . , a ja j+1, . . . , an)

+ (−1)n+1T (a, a1, . . . , an−1)an.

In particular, when n = 1, B(A, X) becomes a Banach A-bimodule with respect to the
products

(a ? T )(b) = aT (b), (T ? a)(b) = T (ab) − T (a)b.

Let Λn : Bn+1(A, X)→ Bn(A, B(A, X)) be the identification given by

(Λn(T )(a1, . . . , an))(an+1) = T (a1, . . . , an+1).

Then Λn is an A-bimodule isometric isomorphism. If we denote the connecting maps
for the complex Bn(A, (B(A, X), ?)) by ∆n, then it is shown in [8] that

Λn+1 ◦ δ
n+1 = ∆n ◦ Λn.

3. A constant for the strong property (B)

The concept of the strong property (B) first appeared in [1] for C∗-algebras and
group algebras, where it was shown that they all possess this property. However, it was
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formally formulated and introduced in [22] for general Banach algebras and was used
to obtain hyperreflexivity of bounded n-cocyle spaces from various Banach algebras.
Since we are looking for further information such as a bound for the hyperreflexivity
constant, we require a more refined version of the strong property (B), that is, when its
associated function is a line as described below.

Definition 3.1. We say that a Banach algebra A has the strong property (B) with a
constant R > 0 if for each Banach space X and every bounded bilinear map ϕ : A × A→
X with the property that

a, b ∈ A, ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖ ‖b‖,

we can infer that

‖ϕ(ab, c) − ϕ(a, bc)‖ ≤ Rα‖a‖ ‖b‖ ‖c‖ (∀a, b, c ∈ A).

In other words,

‖ϕ(ab, c) − ϕ(a, bc)‖ ≤ Rα(ϕ)‖a‖ ‖b‖ ‖c‖ (∀a, b, c ∈ A),

where
α(ϕ) = sup{‖ϕ(a, b)‖ : a, b ∈ A, ‖a‖, ‖b‖ ≤ 1, ab = 0}.

We note that by a simple application of the Hahn–Banach theorem, it suffices to check
the preceding property for the case when X = C. We will use this alternative definition
when it is more convenient.

We will see later in Section 4 that existence of a constant for the strong property
(B) is fundamental in finding an upper bound for the hyperreflexivity constant of the
bounded n-cocycle spaces.

3.1. Fourier algebra of the unit circle. As was mentioned above, in order to
achieve our goal in finding an upper bound for the hyperreflexivity constant of the
bounded n-cocycle spaces of C∗-algebras and group algebras, we need to find a
constant for the strong property (B) for such Banach algebras. In the present section we
aim to find such a constant for the Fourier algebra of the unit circle. Interestingly, we
only need to study this case to find a constant for the strong property (B) of C∗-algebras
and group algebras (see Theorem 3.4).

Let T denote the unit circle in C, that is,

T = {z ∈ C : |z| = 1}.

Here we identify T with R/Z � [−π, π]. In this case s = t if s ≡ t(mod 2πZ). For every
f ∈ L1(T), the Fourier transform on f , denoted by f̂ , is defined by

f̂ (n) =
1

2π

∫ π

−π

f (t)e−int dt (n ∈ Z).
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The Fourier algebra of the unit circle is defined as follows:

A(T) =

{
f ∈ L1(T) : ‖ f ‖A(T) =

∑
n∈Z

| f̂ (n)| <∞
}
.

It is well known that A(T) ⊆ C(T), the space of continuous functions on T. Also, A(T)
with pointwise addition and multiplication and the norm ‖ · ‖A(T) is a Banach algebra.

The following lemma is essential for us to get our result.

Lemma 3.2. Let X be a Banach space and F : A(T)→ X a linear map with ‖F‖ ≤ 1.
Suppose that 0 ≤ α ≤ 1 is such that for each ϕ, ψ ∈ A(T) with suppϕ ∩ suppψ = ∅,

‖F(ϕ ∗ ψ̌)‖ ≤ α‖ϕ‖ ‖ψ‖,

where ψ̌(x) = ψ(x−1). Let f ∈ A(T) be given by f (s) = eis − 1. Then

‖F( f )‖ ≤ 8π
√

3(1 +
√

2)
√
α.

Proof. Let 0 < ε < 3. Define

Wε = {x ∈ T : ‖ f − Rx f ‖A(T) < ε},

where (Rx f )(s) = f (s + x). Note that for s ∈ T,

( f − Rx f )(s) = eis(1 − eix).

Hence, if we define e1(s) = eis, then

‖ f − Rx f ‖A(T) = ‖e1‖ |1 − eix| = |1 − eix|.

So
Wε = {x ∈ T : |1 − eix| < ε}.

We show that for each 0 < δ < ε, [−(ε − δ), (ε − δ)] ⊆Wε . Let 0 < x < π. Applying the
vector-valued mean value theorem to the function f |[0,x], we find 0 < c < x with

| f (x)| = | f (x) − f (0)| ≤ | f ′(c)| |x| ≤ |x|.

If −π < x < 0, we use the same argument on the interval [x,0]. For x = 0, the inequality
trivially holds. So, for each 0 < δ < ε and for all x ∈ [−(ε − δ), (ε − δ)],

|eix − 1| = | f (x)| ≤ |x| < ε.

It means that [−(ε − δ), (ε − δ)] ⊆ Wε . Define

Vε,δ =

[
−(ε − δ)

3
,

(ε − δ)
3

]
, Uε,δ =

[
−(ε − δ)

6
,

(ε − δ)
6

]
.

Then Vε,δ + Vε,δ + Vε,δ ⊆ Wε and Uε,δ + Uε,δ = Vε,δ. Now put

u =
1

λ(Uε,δ)2 1Uε,δ
∗ 1Uε,δ
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and
v = f

( 1
λ(Vε,δ)

1Vε,δ+Vε,δ ∗ 1Vε,δ

)
. (3.1)

Obviously, 1Uε,δ
∈ L2(T). Since A(T) = L2(T) ∗ L2(T), we have u ∈ A(T) ⊆ C(T) ⊆

L2(T) ⊆ L1(T). It is easy to check that ‖1Uε,δ
‖2 =

√
λ(Uε,δ). By definition of the Fourier

norm,

‖u‖A(T) ≤
1

λ(Uε,δ)2 ‖1Uε,δ
‖2‖1Uε,δ

‖2

=
1

λ(Uε,δ)
=

6π
ε − δ

. (3.2)

Since 1Uε,δ
∈ L2(T) ⊆ L1(T) and L2(T) is an L1(T)-module with respect to the

convolution,

‖u‖2 ≤
1

λ(Uε,δ)2 ‖1Uε,δ
‖1‖1Uε,δ

‖2. (3.3)

It is easy to check that ‖1Uε,δ
‖1 = λ(Uε,δ). So, by (3.3),

‖u‖2 ≤
λ(Uε,δ)3/2

λ(Uε,δ)2 =
1

λ(Uε,δ)1/2 =

√
6π
ε − δ

. (3.4)

We show that supp u ⊆ Uε,δ + Uε,δ. Let x ∈ [−π, π]. Then

(1Uε,δ
∗ 1Uε,δ

)(x) =
1

2π

∫ π

−π

1Uε,δ
(y)1Uε,δ

(x − y) dy

=
1

2π

∫
Uε,δ

1Uε,δ
(x − y) dy.

So, for x to be in supp u, there should exist y ∈ supp 1Uε,δ
= Uε,δ such that x − y ∈

supp 1Uε,δ
= Uε,δ. So, x ∈ Uε,δ + Uε,δ.

We also have

‖u‖1 =
1

2π

∫ π

−π

u(x) dx =
1

λ(Uε,δ)2 ‖1Uε,δ
‖1‖1Uε,δ

‖1 = 1. (3.5)

Next we prove some properties related to v defined in (3.1).
First of all, note that 1Vε,δ+Vε,δ ,1Vε,δ ∈ L2(T). So, 1Vε,δ+Vε,δ ∗ 1Vε,δ ∈ A(T), which implies

that v ∈ A(T). Also,

‖v‖A(T) ≤ ‖ f ‖A(T)

∥∥∥∥∥ 1
λ(Vε,δ)

1Vε,δ+Vε,δ ∗ 1Vε,δ

∥∥∥∥∥
A(T)

≤
1

λ(Vε,δ)
‖ f ‖A(T)‖1Vε,δ+Vε,δ‖2‖1Vε,δ‖2.

Obviously, ‖1Vε,δ+Vε,δ‖2 =
√
λ(Vε,δ + Vε,δ) and ‖1Vε,δ‖2 =

√
λ(Vε,δ). So,

‖v‖A(T) ≤ ‖ f ‖A(T)

(λ(Vε,δ + Vε,δ)
λ(Vε,δ)

)1/2

= 2
( 4(ε−δ)

6π
2(ε−δ)

6π

)1/2
= 2
√

2. (3.6)
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Using (3.6), we can write

‖ f − v‖A(T) ≤ ‖ f ‖A(T) + ‖v‖A(T)

≤ 2(1 +
√

2). (3.7)

Similar to what we proved for u,

supp v ⊆ supp (1Vε,δ+Vε,δ ∗ 1Vε,δ) ⊆ Vε,δ + Vε,δ + Vε,δ ⊆ Wε .

We now show that for each x ∈ Vε,δ, f (x) = v(x). To see this, take x ∈ Vε,δ. Then

(1Vε,δ+Vε,δ ∗ 1Vε,δ)(x) =
1

2π

∫ π

−π

1Vε,δ+Vε,δ(x − w)1Vε,δ(w) dw

=
1

2π

∫
Vε,δ

1Vε,δ+Vε,δ(x − w) dw

= λ(Vε,δ).

Hence, f (x) = v(x). This implies that

supp ( f − v) ⊆ Vc
ε,δ. (3.8)

We show that ‖v‖2 ≤ 2ε
√

(ε − δ)/6π. Let x ∈ Wε . Then

| f (x)| = | f (0) − Rx f (0)|
≤ ‖ f − Rx f ‖∞
≤ ‖ f − Rx f ‖A(T)

< ε.

Since supp v ⊆ Wε ,

‖v‖22 =
1

2π

∫
Wε

| f (t)|2
∣∣∣∣∣ 1
λ(Vε,δ)

1Vε,δ+Vε,δ ∗ 1Vε,δ(t)
∣∣∣∣∣2 dt

≤ ε2 1
λ(Vε,δ)2 ‖1Vε,δ+Vε,δ ∗ 1Vε,δ‖

2
2

≤ ε2 1
λ(Vε,δ)2 ‖1Vε,δ+Vε,δ‖

2
2‖1Vε,δ‖

2
1

= ε2 1
λ(Vε,δ)2 λ(Vε + Vε)λ(Vε,δ)2

= ε2 4(ε − δ)
6π

.

This implies that

‖v‖2 ≤ 2ε

√
ε − δ

6π
. (3.9)

We now show that ‖ f − f ∗ ǔ‖A(T) ≤ ε. We can write f ∗ ǔ as a Bochner integral

f ∗ ǔ =
1

2π

∫ π

−π

u(x)Rx f dx.
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By (3.5), (1/2π)
∫ π

−π
u(x) dx = 1. Therefore,

‖ f − f ∗ ǔ‖A(T) =
1

2π

∥∥∥∥∥ ∫ π

−π

( f − Rx f )u(x) dx
∥∥∥∥∥

A(T)

≤
1

2π

∫
Uε,δ+Uε,δ

‖( f − Rx f )‖A(T)|u(x)| dx,

< ε,

where the last inequality follows from the fact that Uε,δ + Uε,δ ⊆ Wε and ‖u‖1 = 1. On
the other hand, using (3.4) and (3.9),

‖v ∗ ǔ‖A(T) ≤ ‖u‖2‖v‖2

≤

√
6π
ε − δ

2ε

√
ε − δ

6π
= 2ε.

So, if we put a = ( f − v) ∗ ǔ, then

‖ f − a‖A(T) ≤ ‖ f − f ∗ ǔ‖A(T) + ‖v ∗ ǔ‖A(T)

< ε + 2ε = 3ε. (3.10)

Now we can write

‖F( f )‖ = ‖F( f − a + a)‖
≤ ‖F( f − a)‖ + ‖F(a)‖.

Since a = ( f − v) ∗ ǔ and by (3.8), supp ( f − v) ∩ supp ǔ ⊆ Vc
ε,δ ∩ Vε,δ = ∅, we have (by

hypothesis)
‖F(a)‖ ≤ α‖ f − v‖A(T)‖u‖A(T).

Hence,
‖F( f )‖ ≤ ‖ f − a‖A(T) + α‖ f − v‖A(T)‖u‖A(T).

Using (3.2), (3.7) and (3.10),

‖F( f )‖ ≤ 3ε + α2(1 +
√

2)
6π
ε − δ

(0 < ε < 3 , 0 < δ < ε).

Letting δ→ 0, A = 4π and B = 12π(1 +
√

2),

‖F( f )‖ ≤ inf
{
Aε +

αB
ε
, 0 < ε < 3

}
. (3.11)

Define k : (0, 3)→ R+ by k(ε) = Aε + αB/ε. Then

k′(ε) = A −
αB
ε2 = 0⇒ ε =

√
αB
A
.

Note that for each 0 ≤ α ≤ 1, we have
√
αB/A ≤

√
3(1 +

√
2) < 3. So, by (3.11), we

can write

‖F( f )‖ ≤ k
(√

αB
A

)
= 2
√

ABα = 8π
√

3(1 +
√

2)
√
α. �
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We are now ready to prove the first main result of this section, which, in part, implies
that A(T) has the strong property (B) with the constant 288π(1 +

√
2). The method of

our proof was partly inspired by [1, Lemma 3.1] and its proof but it goes further to
provide a concrete constant for the strong property (B).

Theorem 3.3. Let φ : A(T) × A(T)→ C be a continuous bilinear map satisfying the
property

f , g ∈ A(T), supp f ∩ supp g = ∅ ⇒ |φ( f , g)| ≤ α‖ f ‖ ‖g‖ (3.12)

for some α ≥ 0. Then

|φ( f g, h) − φ( f , gh)| ≤ 288π(1 +
√

2)α‖ f ‖ ‖g‖ ‖h‖

for all f , g, h ∈ A(T).

Proof. First assume that 0 ≤ α < 1 and ‖φ‖ ≤ 1. The map φ gives rise to a continuous
linear operator Φ on the projective tensor product A(T) ⊗̂ A(T)(= A(T × T)) defined
through

Φ( f ⊗ g) = φ( f , g) ( f , g ∈ A(T)).

We define N : A(T)→ A(T × T) with

Nk(s, t) = k(s − t) (k ∈ A(T), s, t ∈ T).

Pick f , h ∈ A(T) with ‖ f ‖, ‖h‖ ≤ 1 and define N f ,h : A(T)→ A(T × T) with

N f ,hk = Nk( f ⊗ e1h),

where e1 ∈ A(T) is given by e1(s) = eis. Then it is easy to check that

N f ,h(e1 − 1) = f e1 ⊗ h − f ⊗ e1h. (3.13)

Note that for ψ, ϕ ∈ A(T), we have the Bochner integral equality

N(ϕ ∗ ψ̌) =

∫
T

Rxϕ ⊗ Rxψ dx.

Hence,

N f ,h(ϕ ∗ ψ̌) =

∫
T

(Rxϕ) f ⊗ (Rxψ)e1h dx. (3.14)

If suppϕ ∩ suppψ = ∅, then

supp ((Rxϕ) f ) ∩ supp ((Rxψ)e1h) = ∅.

Hence, using (3.14),

|Φ ◦ N f ,h(ϕ ∗ ψ̌)| ≤
∫
T

‖Φ((Rxϕ) f ⊗ (Rxψ)e1h)‖ dx

≤

∫
T

‖φ((Rxϕ) f , (Rxψ)e1h)‖ dx (by (3.12))

≤

∫
T

α‖φ(Rxϕ) f ‖ ‖(Rxψ)e1‖ dx

≤ α‖ϕ‖ ‖ψ‖.
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Hence, by Lemma 3.2,

|(Φ ◦ N f ,h)(e1 − 1)| ≤ 8π
√

3(1 +
√

2)
√
α,

which, by (3.13), implies that

|ϕ( f e1, h) − ϕ( f , e1h)| = |Φ( f e1 ⊗ h − f ⊗ e1h)|

≤ 8π
√

3(1 +
√

2)
√
α. (3.15)

Now we show that

|φ( f en, h) − φ( f , enh)| ≤ 8π
√

3(1 +
√

2)
√
α‖ f ‖ ‖h‖ (3.16)

for all f , h ∈ A(T), where en denotes the function in A(T) defined by

en(s) = eins (s ∈ R, n ∈ Z).

For a ∈ A(T), let an ∈ A(T) be the function defined by

an(x) = a(nx).

Note that en = (e1)n. Define τ : A(T) × A(T)→ C by

τ(a, b) = φ( f an, hbn) (a, b ∈ A(T)).

Note that if a ∈ A(T), then a(s) =
∑+∞

k=−∞ â(k)eiks; hence, a(ns) =
∑+∞

k=−∞ â(k)eikns and
so an ∈ A(T) with

‖an‖ ≤

+∞∑
k=−∞

|â(k)| = ‖a‖.

Moreover, if a, b ∈ A(T) are such that supp a ∩ supp b = ∅, then it is easily seen that
supp f an ∩ supp hbn = ∅. So,

|τ(a, b)| ≤ ‖φ( f an, hbn)‖
≤ α‖ f an‖ ‖hbn‖

≤ α‖a‖ ‖b‖.

From (3.15),

|τ(e1, 1) − τ(1, e1)| ≤ 8π
√

3(1 +
√

2)
√
α. (3.17)

On the other hand,

τ(e1, 1) = φ( f en, h), τ(1, e1) = φ( f , enh),

which, together with (3.17), gives (3.16).
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Now let g ∈ A(T). Since g =
∑+∞

k=−∞ ĝ(k)ek, by applying (3.16),

|φ( f g, h) − φ( f , gh)| =
∣∣∣∣∣φ( +∞∑

k=−∞

ĝ(k) f ek, h
)
− φ

(
f ,

+∞∑
k=−∞

ĝ(k)ekh
)∣∣∣∣∣

≤

+∞∑
−∞

|ĝ(k)| |φ( f ek, h) − φ( f , ekh)|

≤

+∞∑
−∞

|ĝ(k)|8π
√

3(1 +
√

2)
√
α

= 8π
√

3(1 +
√

2)
√
α‖g‖.

Therefore, if f , h ∈ A(T) are arbitrary elements,

|φ( f g, h) − φ( f , gh)| ≤ 8π
√

3(1 +
√

2)
√
α‖ f ‖ ‖g‖ ‖h‖. (3.18)

Next, let m : A(T × T)→ A(T) be the multiplication map which maps every elementary
tensor f ⊗ g ∈ A(T × T) to f g ∈ A(T). It follows from (3.18) that for u =

∑∞
i=1 fi ⊗ gi ∈

A(T × T), we can write

|Φ(u) − φ(1,m(u))| =
∣∣∣∣∣Φ( ∞∑

i=1

fi ⊗ gi −

∞∑
i=1

1 ⊗ figi

)∣∣∣∣∣
≤ 8π

√
3(1 +

√
2)
√
α

∞∑
i=1

‖ fi‖ ‖gi‖.

In particular, for every u ∈ I := ker m,

|Φ(u)| ≤ 8π
√

3(1 +
√

2)
√
α‖u‖,

implying that

‖Φ|I‖ ≤ 8π
√

3(1 +
√

2)
√
α. (3.19)

Now consider the general case. Let φ : A(T) × A(T)→ C be a continuous bilinear
map satisfying (3.12) for some α > 0. Without loss of generality, we can assume
that Φ|I , 0. Let Φ0 ∈ I∗ with Φ0 = Φ|I/‖Φ|I‖. Then ‖Φ0‖ = 1. By the Hahn–Banach
theorem, Φ0 can be extended to Ψ ∈ A(T × T)∗ with ‖Ψ‖ = 1. For f , g ∈ A(T) with
supp f ∩ supp g = ∅,

|Ψ( f ⊗ g)| = |Φ0( f ⊗ g)|

=
1
‖Φ|I‖

|Φ( f ⊗ g)|

≤
α

‖Φ|I‖
‖ f ‖ ‖g‖.
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Put α0 = α/‖Φ|I‖. Then ‖Ψ‖ = 1 and 0 ≤ α0 ≤ 1 (we can assume that α ≤ ‖Φ|I‖,
otherwise the statement is trivial). By the first part and (3.19),

1 = ‖Φ0‖ = ‖Ψ|I‖

≤ 8π
√

3(1 +
√

2)
√
α0

= 8π
√

3(1 +
√

2)
√

α

‖Φ|I‖
.

This implies that
‖Φ|I‖ ≤ 192π2(1 +

√
2)α.

In particular, for every u ∈ I,

|Φ(u)| ≤ 192π2(1 +
√

2)α‖u‖.

Finally, for f , g, h ∈ A(T), it is clear that f g ⊗ h − f ⊗ gh ∈ I. So, we can write

|φ( f g, h) − φ( f , gh)| = |Φ( f g ⊗ h − f ⊗ gh)|

≤ 192π2(1 +
√

2)α‖ f g ⊗ h − f ⊗ gh‖

≤ 384π2(1 +
√

2)α‖ f ‖ ‖g‖ ‖h‖. �

One important application of Theorem 3.3 is to obtain a constant for the strong
property (B) of C∗-algebras and group algebras. The approach we need to use is
the same as that provided in [1] with a slight modification using our result from the
preceding subsection. Hence, we do not give a proof to the following theorem and we
just refer to [1, Theorems 3.4 and 3.5] (see also [1, Lemma 3.2]). We highlight that
the approach in [1] does not give a constant for the strong property (B), whereas our
modification does, as the following theorem shows.

Theorem 3.4. Let A be a C∗-algebra or a group algebra. Then A has the strong
property (B) with a constant given by 384π2(1 +

√
2).

4. A bound for the hyperreflexivity constant

In this section, we show how the existence of a constant for the strong property (B)
can help us to find an upper bound for the hyperreflexivity constant of the bounded
n-cocycle spaces. We then apply our result to C∗-algebras and group algebras. We
achieve our goal by modifying the approach in [22] and its main result. We start by
stating without proof the following theorem, which is a straightforward modification
of [22, Theorem 3.6], taking into account our concept of the strong property (B) with
a constant.

Theorem 4.1. Let A be a unital Banach algebra with unit 1 having the strong property
(B) with a constant R. Suppose that X is a unital Banach A-bimodule, n ∈ N, T ∈
Bn(A, X) and let γ ≥ 0 satisfying

a0a1 = a1a2 = · · · = anan+1 = 0⇒ ‖a0T (a1, . . . , an)an+1‖ ≤ γ‖a0‖ · · · ‖an+1‖.
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Also, T (a1, . . . , an) = 0 if for some 1 ≤ i ≤ n, ai = 1. Then

‖δn(T )‖ ≤ 2n−1Rn+1γ.

The following theorem presents the platform for our approach toward computing a
bound for the hyperreflexivity constant of bounded n-cocycle spaces. This is, again,
the modification as well as an improvement of [22, Theorem 3.8] since it allows us to
have a concrete bound for the hyperreflexivity constant. But, first, we need to recall
the concept of bounded local unit for a Banach algebra defined in [22, Definition 5.1].

We say that a Banach algebra A has bounded local units or in brief b.l.u. if there are
dense subsets Al and Ar of A and M > 0 such that for every a ∈ Al (respectively b ∈ Ar),
there is c ∈ A (respectively d ∈ A) with ‖c‖ ≤ M (respectively ‖d‖ ≤ M) satisfying

ca = a, bd = b.

Remark 4.2. Suppose that A is a Banach algebra with b.l.u. It follows easily that
A has a bounded approximate identity. On the other hand, if {ei}i∈I is any bounded
approximate identity for A, then it follows from the proof of [22, Proposition 5.4]
that the bounded local units of A can be chosen such that they are bounded by
supi∈I{‖ei‖} + ε, where ε > 0 is arbitrary.

Theorem 4.3. Let A be a Banach algebra having b.l.u. and the strong property (B)
with a constant R. Let M be the least upper bound for a bounded approximate identity
of A. Let n ∈ N and suppose that X is a Banach A-bimodule such thatHn+1(A, X) is a
Banach space. Then, for each T ∈ Bn(A, X),

dist(T,Zn(A, X)) ≤ C2n−1(M2R + (M + 1)2)n+1 distr(T,Zn(A, X)),

where C is a constant satisfying

dist(T,Zn(A, X)) ≤ C‖δn(T )‖ (T ∈ Bn(Z, X)). (4.1)

Proof. Let T ∈ Bn(A, X). By [22, Lemma 3.7], for every ai ∈ A], i = 0, . . . , n + 1, with
a0a1 = · · · = anan+1 = 0,

‖a0σ(T )(a1, . . . , an)an+1‖ ≤ distr(T,Zn(A, X))‖a1‖ · · · ‖an+1‖,

where σ(T ) : A] → X is defined by

σ(T )(b1 + λ1, . . . , bn + λn) = T (b1, . . . , bn) (bi ∈ A, λi ∈ C).

Moreover, if for some 1 ≤ i ≤ n, ai = 1, then

σ(T )(a1, . . . , an) = 0.

On the other hand, applying Remark 4.2 together with a close examination of [22,
Theorem 5.3] and its proof shows that A] has the strong property (B) with a constant
given by

(M + ε)2R + (M + ε + 1)2,
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where ε > 0 is arbitrary. Hence, we can use Theorem 4.1 to write

‖δ]n(σ(T ))‖ ≤ 2n−1((M + ε)2R + (M + ε + 1)2)n+1 distr(T,Zn(A, X)). (4.2)

Now, since Hn+1(A, X) is a Banach space, Imδn is closed. Hence, by the open
mapping theorem, there is a constant C > 0 such that for each T ∈ Bn(A, X),

dist(T,Zn(A, X)) ≤ C‖δn(T )‖. (4.3)

It is straightforward to check that

‖δn(T )‖ ≤ ‖δ]n(σ(T ))‖. (4.4)

Hence, putting (4.2), (4.3) and (4.4) together,

dist(T,Zn(A, X)) ≤ C2n−1((M + ε)2R + (M + ε + 1)2)n+1 distr(T,Zn(A, X)).

By letting ε → 0, we get what we desired. �

We showed in Section 3.1 that every C∗-algebra and group algebra has the strong
property (B) with the constant 384π2(1 +

√
2). On account of Theorem 4.3, this

enables us to obtain an upper bound for the hyperreflexivity constant of the bounded
n-cocycle spaces of certain C∗-algebras and group algebras.

Theorem 4.4. Suppose that A is a C∗-algebra or the group algebra of a group with an
open subgroup of polynomial growth. Let n ∈ N and let X be a Banach A-bimodule
such that Hn+1(A, X) is a Banach space. Then Zn(A, X) is hyperreflexive with a
constant bounded by

C2n−1(384π2(1 +
√

2) + 4)n+1, (4.5)

where C is the constant given in (4.1).

Proof. It is well known that C∗-algebras and group algebras have contractive
approximate identities. Hence, the statement of the theorem follows if we combine
[22, Proposition 6.1], [22, Theorem 6.3(1)], Theorems 3.4 and 4.3. �

Remark 4.5. The preceding theorem can be applied to a large class of examples some
of which we point out below. We refer the reader to [22, Section 6] for details:

(i) A is a nuclear C∗-algebra and X is a dual Banach A-bimodule;
(ii) A is a von Neumann algebra of types I, II∞ or III and X = A or X = B(H) ⊇ A

for a Hilbert spaceH ;
(iii) A is an injective von Neumann algebra and X = A or X = B(H) ⊇ A for a Hilbert

spaceH ;
(iv) A = L1(G) for G being an amenable locally compact group with open subgroup

of polynomial growth and G being an amenable locally compact group with open
subgroup of polynomial growth and X is a dual Banach A-bimodule;

(v) A = L1(G) for G being a locally compact group with open subgroup of
polynomial growth and X = L1(G)(k) for k = 0 and for each odd k ∈ N, where
L1(G)(k) stands for the kth dual space of L1(G).

Moreover, for all cases in (i), (iii) and (iv), we can assume that the constant C
in (4.5) is 1.
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5. Convolution operators

For a locally compact group G and 1 < p < ∞, we recall that an operator
T ∈ B(Lp(G)) is a convolution operator if for every t ∈ G and f ∈ Lp(G), T (δt ∗ f ) =

δt ∗ T ( f ). The space of all convolution operators on Lp(G) is denoted by CVp(G).
It is straightforward to check that CVp(G) is a w∗-closed subalgebra of B(Lp(G)) �
(Lp(G) ⊗̂ Lq(G))∗, where q is the conjugate of p.

In this section, we discuss reflexivity and hyperreflexivity of CVp(G). For the latter
case, our method once again relies on the concept of the strong property (B) with a
constant applied to group algebras. But, first, we need the following theorem, which is
the generalization of a classical result of Christensen in [6] for C∗-algebras. We recall
that for a Banach algebra A, a Banach A-bimodule X and x ∈ X, the inner derivation
δx : A→ X is defined by δx(a) = a · x − x · a.

Theorem 5.1. Let A be a Banach algebra with an approximate identity bounded by
K and having the strong property (B) with a constant R, X a Banach space and
π : A→ B(X) a continuous nondegenerate representation. IfH1(A, B(X)) is a Banach
space, then π(A)′, the commutant of π(A), is hyperreflexive and its hyperreflexivity
constant is bounded by RCK2‖π‖2, where C is a constant satisfying

dist(L, π(A)′) ≤ C‖δL‖, L ∈ B(X).

Proof. Let T ∈ B(X) and α = distr(T, π(A)′). Fix x ∈ X and define

ϕT,x : A × A→ X, (a, b) 7→ (π(a) ◦ T ◦ π(b))(x).

If a, b ∈ A with ab = 0, then, for S ∈ π(A)′,

‖ϕT,x(a, b)‖ = ‖π(a)T (π(b)(x)) − π(a)S (π(b)(x))‖

= ‖π(a)(T − S )(π(b)(x))‖

≤ ‖π(a)‖ ‖(T − S )(π(b)(x))‖.

Therefore,

‖ϕT,x(a, b)‖ ≤ ‖π(a)‖ inf
S∈A′
‖(T − S )(π(b)(x))‖

≤ ‖π(a)‖α‖π(b)(x)‖

≤ α‖π‖2‖x‖ ‖a‖ ‖b‖.

Since A has the strong property (B) with a constant R, we have that for every a,b, c ∈ A,

‖ϕT,x(ab, c) − ϕT,x(a, bc)‖ ≤ Rα‖π‖2‖x‖ ‖a‖ ‖b‖ ‖c‖. (5.1)

However, if {ei}i∈I is an approximate identity in A bounded by K, then it follows from
the nondegeneracy of π that limi→∞ π(ei) = idX , where the convergence happens in the
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strong operator topology of B(X). Hence, if we put a = c = ei in (5.1) and let i→∞,

‖δT (b)(x)‖ = ‖(T · b − b · T )(x)‖
= ‖T (π(b)(x)) − π(b)T (x)‖
= lim

i→∞
‖π(eib)T (π(ei)(x)) − π(ei)T (π(bei)(x))‖

= lim
i→∞
‖ϕT,x(eib, ei) − ϕT,x(ei, bei)‖

≤ RK2α‖π‖2‖x‖ ‖b‖.

Since x ∈ X was arbitrary, we can conclude that for every b ∈ A,

‖δT (b)‖ ≤ Rα‖π‖2K2‖b‖. (5.2)

Now we define
φ : B(X)→Z1(A, B(X)), L 7→ δL.

Using (5.2),
‖δT ‖ ≤ Rα‖π‖2K2. (5.3)

ButH1(A,B(X)) =Z1(A, B(X))/N1(A, B(X)) is a Banach space, so thatN1(A,B(X)) =

Im φ is closed. Hence, applying the open mapping theorem to the map i : B(X)/ ker φ
→N1(A, B(X)), we find C > 0 such that for all L ∈ B(X),

dist(L, ker φ) ≤ C‖δL‖,

which, together with (5.3), gives

dist(T, ker φ) ≤ RCK2‖π‖2α = RCK2‖π‖2 distr(T, π(A)′).

The final result follows since ker φ = π(A)′. �

It is well known that all von Neumann algebras are reflexive and injective von
Neumann algebras are hyperreflexive. The former is a direct and simple application
of the double commutate theorem, whereas the latter is due to the beautiful work of
Christensen [6]. In particular, for a locally compact group G, CV2(G), its group von
Neumann algebra, is reflexive and, when G is amenable , it is hyperreflexive. In the
following theorem, we extend this to all convolution operators on Lp(G) for every
1 < p <∞.

Theorem 5.2. Let G be a locally compact group and let 1 < p < ∞. Then CVp(G) ⊆
B(Lp(G)) is reflexive. If, in addition, G is amenable, then CVp(G) is hyperreflexive and
its hyperreflexivity constant is bounded by 384π2(1 +

√
2).

Proof. The reflexivity of CVp(G) follows from [19, Theorems 2.2 and 8.1]. Now,
if G is amenable, then by the well-known result of Johnson, L1(G) is an amenable
Banach algebra. Hence, if we let A = L1(G), X = Lp(G) and π = ρ, the right regular
representation of G on Lp(G), then all the assumptions of Theorem 5.1 are satisfied
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with C = K = ‖π‖ = 1 (see Remark 4.5) and R = 384π2(1 +
√

2) by Theorem 3.4.
Therefore, CVp(G) = π(L1(G))′ is hyperreflexive and its hyperreflexivity constant is
bounded by 384π2(1 +

√
2). �
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