Chapter 27

Big data and scalability

Networks get big. Really big. In this chapter, we discuss some of the challenges you
face and solutions you can try when scaling up to massive networks. These range from
implementation details to new algorithms and strategies to reduce the burden of such
big data.

27.1 Do you really have big data?

Before talking about how to scale the network analysis, the very first thing to remember
is that chances are your network is probably not that big to necessitate the following
practices and that you may really want to avoid using them unless it is absolutely
necessary or the big data infrastructure is already set up for you. Most methods and
practices that we will discuss here come with substantial overhead and extra cost, and
you want to avoid prematurely jumping into a fancy, complex technology.

The first questions you need to ask are: what kinds of data do we need to address our
question? Is our data really that big? Can we reduce the data enough so that we don’t
need “big data” technology? For instance, even if your network has many millions of
nodes, you may be able to answer your particular question by carefully sampling a small
fraction of nodes or by reducing the network with the methods explained in Ch. 10. You
may even be able to address your question simply by using a more efficient library or
more resource-aware programming language.

Remember: premature optimization is the root of all evil. Try to tackle your prob-
lems in the simplest ways possible. Only if that fails should you turn to some of the
technologies and methods described here.

27.2 'When networks become large
Computers are so powerful nowadays, with so much storage. We shouldn’t have to
worry about our data becoming too big to work with, right? Yes and no. Although many

networks are large, they are often still manageable with powerful computers and large

447

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

448 CHAPTER 27. BIG DATA AND SCALABILITY

disks. They are not so massive that we need to turn to specialized storage systems and
algorithms. On the other hand, there are areas where networks are absolutely massive,
forcing us to worry about more efficient storage systems, ways to interact with the
network efficiently, and using specialized algorithms for analysis.

In some sense, network data are simpler than other forms of data. Representing a
network (Ch. 8) will not be as data-intensive as, say, storing all the videos on YouTube,
or all the pictures shared on Instagram. However, if a network becomes dense, the set
of links will become quadratic, meaning M = O (N 2), as any node can in principle be
linked to any other node. Fortunately, we almost never encounter real, large networks
close to that level of density—sparsity saves us. But working with large networks
requires data structures that may encounter such density, even if only locally (a fully
connected subgraph for example). The storage of one YouTube video will never depend
on the contents of other videos.!

Examples of large networks. Three problem domains in particular stand out as
focusing on massive networks:

The web graph The network of web pages connected by directed hyperlinks. This
evolving network is the focus of web search engines from major companies like
Google that spend considerable resources to index and re-index, or crawl the web.
PageRank (Secs. 12.9 and 25.4) was introduced to tame the chaos of the web by
giving a centrality measure to rank important web pages. A 2014 analysis of a
Common Crawl? dataset found the web page graph contains 3.5 billion nodes
and 128 billion links [306]. The public web graph is highly dynamic, however,
with many pages coming and going, and estimating its size will depend on when
and for how long the crawl occurred. A recent data release of the Common Crawl
project, for instance, which crawled only from 26 January to 9 February 2023,
contained an estimated 3.15 billion web pages and 1.3 billion new URLSs, not
seen in previous crawls.

Online social networks Major online platforms deal with huge amounts of social con-
nections. For example, researchers at Facebook released a 2015 paper describing
a graph storage system capable of handling up to 1 trillion edges [103]. Of course,
such a graph will contain far more than a social network, since businesses and
other organizations exist on such platforms. Further, nodes in the graph represent
individual pieces of content such as posts, comments, and likes. Twitter, a less
popular social platform, probably still comprises a graph structure of 10% nodes
and 10° or more edges.

Knowledge graphs Some of the largest sources of network data are knowledge graphs.
These networks, or ontologies, contain huge numbers of semantic #riples meant
to represent factual statements as links. For example, “Leonardo da Vinci is a
painter” is the triple “Leonardo da Vinci” (subject), “IsA” (predicate), “painter”

! That said, there are lots of networks related to features on platforms like YouTube, such as the user
subscriber lists and comment threads.
2 https://commoncrawl.org

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://commoncrawl.org
https://doi.org/10.1017/9781009212601.032

27.2. WHEN NETWORKS BECOME LARGE 449

(object). The nodes are subjects and objects while the links can be categorized
or arranged into layers based on the predicates. Such representations are meant
to enable computational reasoning by enabling network algorithms to work with
facts and statements. These can perhaps one day imbue Al systems with com-
monsense reasoning. As you can imagine, the set of all possible triples is large
and very large knowledge graphs have been created. For example, DBpedia,3 an
open knowledge graph extracted from Wikimedia projects such as Wikipedia,
contains over 21 billion triples [215]. Meanwhile, proprietary knowledge graphs,
such as those created by Facebook or Google, are expected to be at least as
large; a 2020 post from Google [450] described their knowledge graph as having
“amassed over 500 billion facts about five billion entities” gathered from hundreds
of online sources. Working with knowledge graphs needs significant computing
infrastructure.

Problems and strategies

Big data can bring us back to the drawing board. We need scalable methods (see
below). Often the solutions we have used so far take details for granted that are no
longer applicable.

For example, the network can become so large it no longer fits into memory. If we
have relied on, say, a Python dictionary to store a network as an adjacency set (Ch. 8),
we have to rethink our data store. We can move to a database that works on disk, but this
will make working with the network far slower. And we may need to be more efficient
with how we represent the network, even to the level of choosing node identifiers more
appropriately. We need methods to compress the graph.

Even if we can be space-efficient storing the graph, in principle it can get so big it
won’t fit on a single computer. We then need a distributed system where parts of the
graph can be stored on different computers and we can efficiently access those different
parts. Given how the network structure pulls together disparate regions of the network,
this can get tricky. If many nodes stored on one machine are connected to many nodes on
another machine, we are likely to require more data transmission between the machines
as we work with the network, leading to wasted bandwidth and even reliability issues
when synchronizing changes to the data.

Sometimes a network is so big relative to our compute resources that we have no
chance of storing and reanalyzing the data. Or perhaps we could store the network but
we don’t have time to reanalyze the data—we need to finish the calculation in real-time
for a customer-facing feature. (A practical example of a (nearly) real-time calculation
is verifying a credit card transaction as non-fraudulent using a large knowledge graph.)
Imagine a stream of data flying past, where we can only read it once. And maybe we
can’t even read it completely, only a subset of it. How can we implement algorithms on
a graph stream? Even generating a random sample of nodes can be challenging.

Lastly, many network algorithms have high complexity. If we want to compute the
diameter of a network, say, we need to run breadth-first search between every pair
of nodes. That’s O(N 2), which is no longer feasible when we have a billion or more

3 https://www.dbpedia.org

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://www.dbpedia.org
https://doi.org/10.1017/9781009212601.032

450 CHAPTER 27. BIG DATA AND SCALABILITY

nodes. This challenge demands approximations. Can we estimate the diameter from a
sample, lowering the cost but introducing a (hopefully acceptable) degree of error into
our estimate? Even simpler calculations than the diameter are challenging: how can
we efficiently estimate how many distinct nodes are present in a stream of dynamic
graph events so large we cannot store the stream in memory? Approximations and local
algorithms rule the day when it comes to massive networks.

27.3 What do we mean by ‘“‘scalability’?

What does it mean for a network analysis algorithm or technique to be scalable?
Scalability usually means it can handle large networks or “scale up” to that large scale.
But whether a network is large-scale or not depends on many factors; there is not a
clear dividing line between small-scale and large-scale. One of the major factors is the
computer hardware being used. A network of a million nodes is probably considered
as medium size today, but 20 or 30 years ago at the dawn of modern network science it
was large. Earlier in time, it would be considered absolutely massive.

To skip past the details of hardware means, just like with any algorithmic analysis,
we consider the computational complexity of the algorithm either in time (number of
calculations) or space (amount of memory or storage). For our purposes, a scalable
method must be cheaper than quadratic. An O(N?) or O(M?) algorithm will be inac-
cessible to us. Of course, this too depends on various other factors. An algorithm may
have good average complexity but poor worse-case complexity. Likewise, one algorithm
may have better scaling than another but worse constant factors, which may make a
difference in practice.

In other words, roughly speaking, a network analysis tool is scalable when its
complexity is sub-quadratic in the size of the network.*

Note that network size includes both nodes and links. An algorithm with complexity
O(N) or O(N log N) is usually scalable; algorithms with complexity O(N?) or O(M?)
or O(NM) are not.

Sometimes, an algorithm is scalable for some networks and not others. The most
common cause is density. An algorithm can be very efficient when the network is sparse
but slows down as it becomes dense. We can see this in the complexity because a dense
network is defined as one where most edges exist; there are N(N — 1)/2 ~ N? possible
edges, so if most exist then M = O (N 2). An algorithm that is scalable, for instance with
complexity O(N + M), will now be too costly: O(N + M) — O(N + N?) = O(N?).
Such a method will not scale to a large, dense network.

27.4 Compressing, distributing, and streaming graphs

Here we discuss problems and strategies for operating with very large amounts of graph
data. Keep in mind our earlier admonishment that hardware continues to advance and
some of these problems can be solved not by complex data engineering or involved
algorithms but just by brute-force hardware. A modern multi-core, shared-memory

4 Of course, anything worse than polynomial is completely out the window when it comes to scalability.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.4. COMPRESSING, DISTRIBUTING, AND STREAMING GRAPHS 451

machine can store graphs with billions of edges in memory. Compress, distribute,
stream when you need to, not before: premature optimization is the root of all evil.

27.4.1 Compressing graphs

We have already seen in Ch. 8 how data structures such as adjacency sets can save
space. We can store the network as an edgelist (i, j;), (i, j2), . . . but we are repeating
the node i for each of i’s edges. Instead, store i’s neighbors altogether: (i, ji, j2,.-.), - - .

We can take this further. If each neighbor j, is represented with an identifier, we
want to use as few bits as possible to store those identifiers. Compression algorithms
on text data, for instance, work by assigning smaller identifiers (fewer bits) to more
common words or letters. We can do something similar for networks, giving high-
degree nodes shorter identifiers. But networks give us more opportunities: we can
exploit the connectivity patterns of the network to save more space.

Consider this subset of a directed adjacency set, written as a table (node 17 has
degree 0) [62]:

15: 13,15,16,17, 18,19, 23, 24, 203, 315, 1034
16: 15,16, 17,22, 23,24, 315, 316, 317, 3041
17:

18: 13,15,16,17,50

Notice how often we have a consecutive run n,n + 1, ... of IDs? We can encode this
information more efficiently by using gaps (also called deltas):

15: 3,1,0,0,0,0,3,0,178, 111,718
16: 1,0,0,4,0,0,290,0,0,2723
17:

18: 9,1,0,0,32

Here an entry of zero in a neighbor list indicates that the node is one more than the
preceding node. If S(x) = (s, ... sx) are the neighbors (successors) of node x, the gap
representation stores’ them as (s; —x,s0 — sy — 1,53 —so — 1,...,5k —sx—1 — 1). In
practice, of course, the benefit of gaps will depend on how nodes are identified, and
often a reordering of the nodes needs to be computed.

Gaps exploits consecutivity. We can also exploit similarity. Two nodes i and j may
have nearly identical adjacency lists, if their neighborhoods strongly overlap. We can

5 All these gaps will be positive except possibly the first one (s; — x). If we are dealing with enough data
that we care about this, we probably do not want to allocate space for storing the sign of an ID so we want
to avoid negative entries. The solution is to encode the first element y = s; — x using the map v(y) =2y if
y > 0,2]y| — 1 otherwise.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

452 CHAPTER 27. BIG DATA AND SCALABILITY

exploit this by storing S(i) and then, instead of S(j), store a reference from j to i along
with a list of differences between S(j) and S(7). It will require computation to find the
differences, but the space savings can be substantial.

Many algorithmic questions still need to be addressed to combine these strategies
together into a workable, large scale system. See our remarks for references with more
details. For brevity, we discuss one more common compression strategy: virtual nodes.

Some network motifs (Sec. 12.6) are highly dense and regular. If they occur fre-
quently, it is not worth storing every instance. Instead, we can remove all the links
within the motif and replace it with a node that represents the entire motif, then link
the nodes within the motif to this new virtual node. The savings can be substantial for
completely dense subgraphs:

For a clique of n nodes, we go from n nodes and n(n — 1)/2 edges to n + 1 nodes and
n edges. An efficient algorithm called virtual node mining was introduced by Buehrer
and Chellapilla [81] to find those nodes.

Virtual nodes are one example of a grouping compression (and summarization)
technique [278]. In general, these compression strategies, like all data compression
algorithms, have a tradeoff: more space can be saved but at the expense of more
computation. For very large networks, it can become costly to find all the redundancy
possible, so we often settle for “good enough” compression.

Random data generally compress poorly and the same holds for graphs. Some graphs
are inherently more compressible than others. The web graph in particular compresses
surprisingly well. In part, this is because of redundancy in how links are set up. Many
links on a web page repeat, for example, a navigation bar on every page within a site
will lead to a highly redundant set of links. Social networks also show compressibility
but generally less so [64].

27.4.2 Distributing and streaming graphs

For exceptionally large networks, it becomes untenable to store them in memory (even
on disk) on a single machine. The network needs to be distributed to multiple machines.
Computations on the network also need to be distributed. While we have techniques
and standards for distributed computation, such as the MapReduce framework [124],
they may not be suitable for graph-structured data.

For example, suppose we wish to compute shortest paths on a weighted graph. We
can run Dijkstra’s method but, because not all of the graph is on a single machine or
single disk, the algorithm must be distributed across all the data machines. If we have
distributed the graph poorly, such that many edges exist between nodes on different
machines, we may find poor performance: the distributed computation will need to pass

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.4. COMPRESSING, DISTRIBUTING, AND STREAMING GRAPHS 453

many messages between those different machines as the shortest paths are computed,
and inter-machine communication is far slower than intra-machine communication.

Minimizing cross-talk between data machines is another motivation for graph par-
titioning (Sec. 25.5). We can use (scalable) methods to distribute subgraphs between
our data machines such that few edges exist between machines. Many graph databases
have algorithms for this sharding or horizontal distribution problem, but it remains a
difficult feat of data engineering. Often, careful choices of schema for a graph database
are needed to ensure queries of the data can run efficiently. One technique for improving
efficiency is by incorporating overlap: allow the “boundary” of groups to exist on multi-
ple machines. If chosen with care, this can lower significantly the need for inter-machine
messaging, at the expense of more storage. Consistency is also an issue here (as it is
always a concern with distributed data): if the data shards are changing after they have
been distributed, we may run into scenarios where the boundaries duplicated across
machines are no longer isomorphic. Errors may creep in.

Distributed computation engines A problem closely associated with distributing the
graph is distributing computations on the graph. Frameworks such as MapReduce
[124] and its successor implementations (Apache Spark, Beam, etc.) have served
this purpose well for traditional relational data stores. But graphs bring distinct
challenges as their connectivity patterns demand more from parallel calculations.
(It is difficult to apply a divide-and-conquer parallelism strategy to a small-
world network, for instance.) Graph-specific distributed computational models
have been proposed, including Pregel [289, 103], GraphLab [280, 185, 281], and
GraphX [496].

Beyond distributing graph data to multiple machines, we can consider the problem
of streaming graphs. A data stream is a read-once sequence of data and we generally
have no control over the order we see items from the sequence. The idea being that the
data come by in such a high volume or velocity that computationally we are not able to
store the data, or at best we only have memory capacity that is sublinear in the length
of the data stream. Often we do not even know how long the stream will be.

We can imagine a graph data stream where each item in the stream is an edge in the
graph, or perhaps a subgraph of some kind. What calculations can we perform when
we are forced to interact with the graph in such a piecemeal manner [300]?

27.4.3 Sampling large streams

Reservoir sampling [476] is an interesting algorithm for sampling uniformly from a
large stream of data, so large that you cannot store it in memory and you don’t even
know how big the stream is. Without knowing the number of observations » it becomes
difficult to define the uniform sample probability 1/n.

We wish to sample k items uniformly at random from a stream of items we observe
one at a time. The length of the stream is unknown. We want to guarantee at any given
sampling step, if the stream ends, the probability for each item to be sampled is the
same. The reservoir sampling algorithm is quite simple:

1. Store the first k elements of the stream in a buffer (the reservoir).

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

454 CHAPTER 27. BIG DATA AND SCALABILITY

2. Every time we look at an elementi > k, we decide to keep it with probability & /i.
If kept, select an item from within the buffer uniformly at random and replace it
with the ith item.

Does this really work? We need to show that this sampling strategy leads to a
uniform sample of the stream. Specifically, because we sampled k items, we need the
probability that element i is sampled to be & /n for all i. We study two cases, i < k and
i>k:

* Fori < k: i has already been selected. What is the probability it is not replaced?
The probability that element j > k does not replace i is 1 minus the probability
Jj is selected and i is chosen as the replacement location in the reservoir, or

k1 j-1

Pr(j > k does not replace i) = 1 — Fiiairat (27.1)
J J

From this, the probability that every k < j < n does not replace i is given by

k k+1 n-1 k
=, 27.2
k+1k+2 n n (272)

e Fori > k: now we ask, what is the probability i is selected and then not subse-
quently replaced? Element i is selected with probability k /i. The probability it is
not replaced later is, like before, 1+L1 :—; e "T_l = i/n. Put together, the probability
that 7 is selected and not replaced is k/n.
Both cases show the correct probability, and therefore we know reservoir sampling
generates a uniform sample of the data stream. All while not knowing the value of n.
Amazing!

One immediate application for our purposes is computing statistics like the assor-
tativity of a graph stream. Use reservoir sampling to generate a sample of k edges,
then compute the correlation between the attributes or degrees (assuming we can ef-
ficiently compute or estimate the degrees) of their constituent nodes. Note, of course,
that sampling edges uniformly at random is not the same as sampling nodes uniformly
at random (Chs. 12 and 21). And with further effort, reservoir sampling-like streaming
algorithms can be introduced for sampling triangles and other motifs [231, 301]. Indeed,
many algorithms have been proposed for graph streams beyond subgraph enumeration,
including finding minimum spanning trees, checking for bipartiteness, thinning and
sparse cuts, and more [300].

27.5 Approximations and local methods

Graph streaming brings us more broadly to problems and solutions that work either
locally or by making approximations. Approximations trade off computational com-
plexity for accuracy, allowing breathtakingly efficient solutions if we are willing for
answers to have some (known) degree of error. We first discuss probabilistic counting,
a general technique that we will then use for network-specific data structures.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.5. APPROXIMATIONS AND LOCAL METHODS 455

27.5.1 Probabilistic counting

Suppose we are faced with a huge data stream, far too large for our memory, and we
want to count the unique items in the stream. For example, how many unique edges are
present in a large graph stream of edges. This is called cardinality estimation and it is
often encountered in big data applications. Of course, we can store all the edges we’ve
seen before in a data structure, but this will consume considerable space and even time.
Can we estimate cardinality without using a large in-memory hashing data structure
such as a Python dict or resorting to slow out-of-memory storage like a disk? Yes, if we
are willing to have some errors in the count.

We discuss HyperLoglog (HLL) [161], one of the best solutions to large-scale
cardinality estimation. HyperLogLog (and its ancestors [160, 137]) begin from the
following intuition. Suppose each item x in our stream can be mapped to a string of bits
using a hash function h(x) such that (approximately) all bit strings are equally likely;
each bit in the string is equal to zero with probability 1/2. If this is the case and you
observe in your stream a bit string that begins with p — 1 zeros before the first 1, then
it stands to reason the cardinality n of the stream is at least 2°. As we encounter items
in our stream, we can simply track the largest value of p we observe, using very little
memory.

Unfortunately, as you can imagine, this solution alone will be extremely error-prone
(it also turns out to be biased). We may get unlucky in a small stream and by chance
encounter a large p, wildly affecting our estimate. To solve this, HLL takes two courses
of action. One, it splits the stream into substreams that are averaged over, helping with
noise. Two, it uses a harmonic mean which is less susceptible to outliers. The authors
of HLL also identify biases and corrective factors in their analysis of the algorithm.

Algorithm 27.1 describes the HyperLogLog algorithm. Each hashed item is placed
into a substream based on its first few bits, while cardinality is estimated using the re-
maining bits. The storage requirements for HLL are extremely modest: when estimating
cardinalities < N, only a collection of “registers,” each of which using O (log, log, N)
bits, are needed.

How does this method work? If n is the unknown cardinality, each substream should
have cardinality approximately n/m, where m is the number of registers. Then the
maximum p stored in the register for that substream should be approximately log, (n/m)
and the harmonic mean (times m) of 2™ should be of the order n/m. Therefore m2Z
should be of the order n and we have our cardinality estimate. The term «,, corrects a
multiplicative bias in m?Z that was shown from the analysis by Flajolet et al. [161]. The
authors also prove that the relative standard error between the estimated cardinality E
and n is < 1.04/+/m.

To illustrate the power of HLL, the authors describe that “using m = 2048, hashing
on 32 bits, and short bytes of 5 bit length each: cardinalities till values over N = 10° can
be estimated with a typical accuracy of 2% using 1.5 kB (kilobyte) of storage” [161].

With a tool like HLL,® we can solve otherwise intractable enumeration questions.
Because the counters are so small, we can have very many of them, and we can now,
for example, enumerate motifs or shortest paths in a very large network.

6 Other probabilistic data structures can be used for similar problems, including Bloom filters [58] and
MinHashes [76].

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

456 CHAPTER 27. BIG DATA AND SCALABILITY

Algorithm 27.1 HyperLogLog cardinality estimation [161].

1: Input: Data stream (multiset) S, hash function /#, m = 20 with b € Z*

2: Initialize m registers M[1],..., M[m] « —oco

3: forv e Sdo

4: x «— h(v)

5 Je—1+{xx-xp)n > the binary address determined by the first b bits of x
6 re— p(Xps1Xpsa) > p(s) is the position of the leftmost 1 in s
7

M{[j] & max(M[j],r)
m X -l
8 7 — Z 2—M[j] > Harmonic mean
=1

9: Return: E «— a,,m*Z, where
0 2+u)\\" -l
m = 1 d 27.3
o= [floes (55) @3

27.5.2 Approximate Neighborhood Functions

The neighborhood function (NF) counts how many pairs of nodes 7, j in a graph
are reachable within ¢ hops (i.e., the shortest path distance £;; <) as a function
of t. This function contains a wealth of information about the graph topology (see
also: network portraits, Secs. 13.3 and 14.2.2; graph distances and connectedness,
Sec. 12.10). From the NF, we can compute quantities like the typical distance between
nodes, and the diameter. But computing the NF requires global breadth-first search
(usually) calculations, which are expensive and memory-intensive.

A highly space-efficient algorithm [355, 63] to approximate the NF can be con-
structed by recognizing that the NF can be determined by taking set unions and that
probabilistic counting registers (Sec. 27.5.1) can estimate the cardinality of a set union.
Specifically, let B(i, r) be the set of all nodes within distance r from node i. This “ball”
satisfies B(i,0) = {i} and

B(i,r) = U B(j,r-1). (27.4)

JEN;

We can compute the NF (and generalizations) from these sets. Given two sets A and B,
the cardinality of A U B can be estimated from HyperLoglLog counters for A and B by
maximizing register-by register (assuming the counters have the same bit length), i.e.,
Maupli] = max(Mali], Mp[i]).”

These two ingredients combine to make the approximate NF (ANF) method. The
sets B(i,r) are never stored as they will become massive for large enough networks.
Probabilistic counters are used instead to track the cardinalities of their unions, saving

7 In principle, we could also use this to estimate the set intersection from |[A N B| = |A| + |B| — |A U B|
as we have counters for all three. In practice, the errors scale poorly for this strategy and more sophisticated
methods are employed [460].

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.5. APPROXIMATIONS AND LOCAL METHODS 457

considerable space. The ANFs are built by scanning over the adjacency set of the
network, applying HLL counters to the unions (Eq. (27.4)). When finished, meaning
when the HLL counters have converged (and they must be run to convergence for the
estimates to be accurate), we have the information necessary to approximate the NF.
The basic HyperANF algorithm is given in Alg. 27.2.

Algorithm 27.2 HyperANF without optimizations [63].

1: Input: Network G as adjacency sets {i : N;}

2: procedure UnioN(M, N)
3: for each i < m do

4: M[i] « max(M[i], N[i])

5: Initialize c[—], an array of N HLL counters

6: forv e G do

7: Add v to c[v]

8: t«—0

9: while ¢[—] has not converged do

10: NF(t) « 3, size(c[v]) > The neighborhood function
11: for v e G do

12: m, < c[v]

13: for w € N, do

14: m,, < UNi1oN(c[w], m,) > Estimator from Eq. (27.4)
15: Store (v, m,)

16: Recall {(v,m,) | v € G} and update array c[-]

17: te—1t+1

Several further optimizations make the HyperANF method highly efficient (and
these are what really distinguish it from the earlier ANF method [355]). For one, the
outer loop over G can be parallelized. Second, the HLL union, which is performed
many times, can be parallelized using clever bitwise operations [63]. Third, we can
track which c¢’s have not changed and avoid maximizing them. This last improvement
can be taken even further by allowing nodes to “signal” backwards to predecessors
when their counter changes, and we can later skip over nodes whose successors have
unmodified counters.

With ANFs we can derive a variety of useful network statistics [355, 63], the
most prominent being the “effective” diameter. Computing the cumulative distance
distribution Hg (1) := NF(t)/max; NF(t), the effective diameter is the distance ¢ such
that H (1) < a (usually, @ = 0.9). By modifying Alg. 27.2, we can also devise other
statistics related to cut numbers (Sec. 25.5) and similar quantities by tracking subsets of
the NF, such as NF;(¢) for individual nodes i or even sets of nodes [355]. Thus we have
a way to measure how big the network is, and other properties, even when interacting
with it is challenging due to its scale.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

458 CHAPTER 27. BIG DATA AND SCALABILITY

27.5.3 Application: The small world of Facebook

As an application of these technologies, we briefly describe a 2012 study by Backstrom
et al. [20] to estimate social distance (small world; Sec. 22.5) in the Facebook social
network. They used both graph compression (Sec. 27.4.1) and approximate neighbor
functions (Sec. 27.5.2) with HyperLogLog counters (Sec. 27.5.1) and other optimization
to make the calculation feasible. With this infrastructure in place, they analyze social
networks for individual countries and the entire platform, at the time consisting of
over 700 million active users and nearly 70 billion friendship edges. They found the
average distance (number of hops) between individuals was 4.74 or 3.74 “degrees of
separation,” lower than the famous six degrees of separation and lower than the 4.4—
5.7 degrees famously found by Milgram [309]. Regional networks showed consistently
smaller distances still, which are more directly comparable to Milgram’s work which
was itself restricted to a single country. Perhaps with richer data to analyze, or perhaps
with more venues for communication, our small world is smaller still.

27.5.4 Community detection at scale
Fast community detection with label propagation

Community detection (Secs. 12.7, 23.2, and 25.6) on large networks is challenging.
Here we discuss an efficient algorithm using label propagation (LP), proposed by
Raghavan et al. [384]. Nearly all the previous community methods we’ve studied, from
modularity maximization to inference of the stochastic block model, are too costly
for very large networks. The LP method works by transforming the global community
detection problem into a local updating rule, akin to an eigenvector centrality update
but without the need for matrix operations.

The LP algorithm is beautifully simple. Suppose each node is given a label denoting
which community it belongs to. The labels propagate by a majority rule: each node i
looks at every neighbor j € N; and adopts the most common label among the neighbors.
Initially, every node has a unique label, corresponding to N communities all of size
1. As labels propagate, dense groups will reach consensus on a label, which crowds
out uncommon labels and spreads until colliding with the labels of other dense groups,
until propagation stops. Updating stops naturally at consensus, when every node has the
same label as the majority of its neighbors.

This spreading process can be implemented with synchronous updating steps, where
all nodes update their labels at the same time, or with asynchronous updating, where
one node updates its label, then another, etc. and later updates can be affected by earlier
updates. Raghavan et al. [384] show that asynchronous updating has an advantage be-
cause, with synchronous updates, certain network structures (bipartite subgraphs) can
cause “blinking” where labels oscillate back and forth instead of converging. Asyn-
chronous updating avoids this, and cycling through nodes in a random order for each
update helps speed up mixing.

The LP algorithm is as follows. Let C;(¢) be the label of node i at step 7.

1. Initialize the labels, giving each node a unique label: C;(0) =i.
2. Sett=1.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.6. UPDATING SCHEMES FOR NETWORK STATISTICS 459

3. Arrange the nodes in a random order L.
4. For eachi € L, chosen in the order of L, let

Ci(ty=f (Cil (,..., Ciu (1), Ciu+l (t=1),..., C,‘k (t- 1)) s (27.5)
where iy, ...,i, € N; are neighbors of i who have already updated (preceded i’s
position in L) and i1, .. .,ix € N; are neighbors who have not, and f(-) returns

its most frequent argument, breaking ties at random.
5. If every node has the label that is most common among its neighbors, terminate
the algorithm and return the {C;}. Otherwise, set t = ¢ + 1 and continue from 3.

There is one wrinkle after the algorithm converges. While usually rare, it is possible
for disjoint groups to independently converge on the same label. This occurs when two or
more neighbors of a node adopt its label and then pass that label in different directions,
which eventually leads to separated communities adopting that same label. The fix to
distinguish different groups with the same label is to find the connected components of
the subgraph induced by each label, which can be found by one breadth-first search per
component in O(N + M) time.

During each iteration, finding C; (¢) for each node requires looking at the k neighbors
of i, at a cost of O(k;). For all the nodes, this gives a total cost of }; k; = O(M)—each
iteration is linear in the number of edges. The algorithm tends to converge very quickly,
even when there is no community structure (Raghavan et al. [384] report that typically
95% of nodes reach consensus after five iterations), although the number of iterations
needed is not known theoretically. This fast convergence in practice famously gives the
algorithm a near-linear complexity.

Local community methods

Another problem of interest in big data is finding a local community only, and not
worrying about partitioning the full network. Local methods can do this, finding a
single community belonging to a starting node by spreading outward from that node.
We discussed local community methods in Sec. 12.7.

27.6 Updating schemes for network statistics

Dynamic updating refers to tracking the evolution of a network summary statistic s as the
data are changing [452]. Suppose, for instance, we wish to know the degree assortativity
of our very large network. Stopping to compute this will be intractable, it is a global
calculation. Instead, we can design our data system to track the necessary components
of the statistic, updating them efficiently on any changes to the network (node insertion,
edge insertion, node deletion, edge deletion). Then, when needed, we can perform the
final calculation to derive s. While there can be a space tradeoff depending on s, often
it is minor compared to the time complexity of the global calculation.

We now develop dynamic updating schemes for several important network statis-
tics. Some are trivially straightforward, such as updating the degree. Others require
more bookkeeping. We focus on node degree, clustering coefficient, assortativity, and
modularity.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

460 CHAPTER 27. BIG DATA AND SCALABILITY

Recall the clustering coefficient (Eq. (12.8)):

2A; . .
¢ =B Thi=2 (27.6)
0 otherwise,

where A; is the number of triangles that contain i. Then the average clustering coeffi-
cient® of the whole network is simply the average of all C;’s:

1
C=v Z G 27.7)

Meanwhile, we now write the assortativity coefficient (Eq. (12.10)) as,

2
8M X1 jyer kikj = [Zi e (ki +k;)]

ri=
2
AM 3 j)eE (k,2 + k?) —[Ziyer (ki+kj)]
8Mu — v?
=— 27.8
AMw —v? ()
where
u = Z k[kj,
(i,j)€E
vim), (kitky), (27.9)
(i,j)€E
(i,j)€E
and modularity (Egs. (12.15) and (12.16)) as
1 k[kj 1 1
- Aji— —216(gi,8:)=— [Sa——Sp|, 27.10
0 ZMZ() ZM) (81-8) ZM[A o p] (27.10)

i.J
where 6(g;,g;) = 1 if nodes i and j are in the same group and zero otherwise, and
Sat=) Aio(gig)), Spi=) kikio(2i.g;). (27.11)
i.J i.J
27.6.1 Updating schemes
Connecting a new node

First, consider connecting a new node. We can decompose this into two successive
operations, adding a new isolated node to the network, then adding an edge from that
new node to an existing node. (Multiple connections can then be handled using the
updating scheme for connecting edges between existing nodes; see below.) We use ~ to
denote updated statistics.

8 Remember that transitivity is a better global measure; Ch. 12 and Ex. 27.5.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.6. UPDATING SCHEMES FOR NETWORK STATISTICS 461

With a new node and no new edges, we have the following update relations:

N=N+1, M=M, E=E, (27.12)
and®
~ Aj; ifi#N+landj#N+1,
Ay =4 BrE AT AGy (27.13)
0 otherwise.
The other statistics follow likewise:
ki=ki, i N+1; kny=0: (27.14)
and
Ci=Ci,i#N+1; Cpys1 =0. (27.15)

Similarly, 7 = r since u = u, v =v,and w = w; andé = O since §A =54, andgp =Sp.
Deleting a degree-zero node follows likewise.

Adding a new edge between existing nodes

Suppose nodes p and g are not connected (A, = 0). Here we derive how adding edge
P, q changes our statistics. First, since we inserted an edge we have

E=EU{(p.9).(q.p)}: (27.16)
M=M+A"M=M+1, (27.17)

and
Avij=Aij+A+Aij=A[j+6[1,5jq +6iq6jpa (2718)

where we use the “update delta” A* to denote the change in statistic after adding an edge
to the existing network. Using these expressions, we can now derive efficient updating
schemes for network statistics.

Degree The degree update is simple, as only p and ¢ are affected:
ki =ki+A ki = ki +6ip + 6ig. (27.19)
If we wish to study the network’s degree distribution, we can use this update to track how

many nodes currently have a given degree by, after an update k — k + 1, decrementing
the number of nodes with degree k and incrementing the number with k + 1.

9 We use A for presenting calculations, but it will serve as a placeholder for how the network data system
is actually implemented, which is unlikely to be with an adjacency matrix, even if the network is very sparse.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

462 CHAPTER 27. BIG DATA AND SCALABILITY

Clustering coefficient To compute the new clustering coefficient of each node, and
thus the whole network, we need the updated number of triangles at node i:

A iti ¢ {p,q} UNp,,
Ap=q0;+1 ifi € Npg, (27.20)
A,-+|Npq| ifi € {p,q},
where N;; := N; N N; is the shared neighborhood of nodes i and j. Combining this
with Eq. (27.19) and A; = 3C;k;(k; — 1), from Eq. (27.6), we have
C; ifi ¢ {p,qt UN,q,
Ci=1Ci+ ifi € Npg, (27.21)

-1 2Npg| .p
k+1C + ey Hie{p.q}

(Whenever the denominator of a fraction is zero, we define the fraction to be zero,
in Eq. (27.21) and throughout. This ensures C; = 0 if k; < 2.) Finally, the average
clustering coefficient C becomes

[Npdl G
C=C+A'C=C pal =, 722
* N ; k(k {Z (k(k+1) a1l 722
where
2 1 [N pa C;)
AYC = 2 4 (. (27.23)
N iG;pq k[(k[- 1) ie%q} k[(k[+ 1) k,‘ +1

Notice that updating the average clustering coefficient requires keeping C; for each i, at
O(N) space complexity.

Degree assortativity To compute 7, we need u, v, and w. The update for u is

i = Z kik; = Z ik +2(kp + 1) (kg + 1)

(i,j)eE (i,j)eE
Z kikj+2 Z ki(kp+1) +2 Z ki(ky +1)
(l’,]’)EE iENp l'ENq

+2(kp + 1) (kg +1)

=u+2 Z ki + Z ki |+2(kp +1) (kg +1)

ieN, i€Ng
=u+Atu. (27.24)
Here E = E \ {(p,q), (¢, p)} is the edge set that contains all edges in E but (p, ¢) and
(¢,p) and
Z ki + Z ki |+2(kp +1)(kg +1). (27.25)
ieEN, iENg

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.6. UPDATING SCHEMES FOR NETWORK STATISTICS 463

Similarly, the update formula for v and w are

T= Y (Rt k) = v At = vk, + g + 1), (27.26)
(i.j)eE
and o
= Y (G+k) =w+Aw, (27.27)
(i.j)€E
where
Atw=6kp(kp+1)+kg(kg+1)] +4. (27.28)

Finally, the new assortativity coefficient can be updated using

8Mu —72 8(M+1) (u+Au) - (v+Ay)?
AMW =72 4(M+1) (w+A*w) — (v+A+H)?

(27.29)

Modularity For modularity, we assume that after connecting the nodes p and ¢, the
partitions g; do not change for any node i.1® Then the new modularity measure will be

g- L [§A _ L5l (27.30)
oM oM

We already have M = M + 1, we now derive updating formulas for S5 and Sp. By
Eq. (27.11), we have

Sa=Ss+A"Sy = Zaijé(gi,gj)
i,j
= Z (aij +06ipdjq +6iq6jp) (5(81‘,8;‘)
i.J
=S4a+26(8p,8q) (27.31)

and
S‘; =Sp+A*Sp = Zﬁ-%ﬁ(gi,gj)
i.J

= > (ki + i+ 8ig) (kj+ 6 +6q) 5(2i-85)
i

=Sp+2) ki[8(gi8p) + 6(8i,89)] +2[6(2p, 89) + 1] (27.32)

However, computing the sum in Eq. (27.32) after every update is expensive. To avoid
this, we introduce the following auxiliary statistics:

Kg =) kio(gi.g) (2733)

10 We actually already encountered the updating scheme for a partition change in Sec. 25.6.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

464 CHAPTER 27. BIG DATA AND SCALABILITY

with updating scheme
Ky =Ky + A Ky =Ko +6(gp,8) +6(84,8), (27.34)
giving
Sp=Sp+A'Sp=Sp +2(Kq, + Ky,) +2[6(2p,29) + 1], (27.35)

where A*Sp = 2 (Kq, + Ky,) +2[8(3,. 84) + 1]. Finally, combining Eq. (27.31) and
Eq. (27.35) with Eq. (27.30) gives the updating scheme for Q:

_ . 1
0=0+A Q=m[SA+26(gp,gq)

1
oM+ 1)(SP+2[Kgp+Kgq]+2[5(gp,gq)+1])]. (27.36)

From Eq. (27.36) we can predict whether Q increases or decreases given the existing
partition and the edge to be added. For example, if there is a preexisting partition of the
network into two groups, then if a new edge is added in between the groups, A*Q < 0.
On the other hand, if a new edge connects nodes in the same group, then the modularity
is sure to increase only if the edge is added to the group with smaller total degree.
Perhaps surprisingly, adding an edge within the group does not necessarily increase Q
if the edge is added into the group with larger total degree.

Removing an existing edge

Now we focus on updates when an existing edge is deleted. These updates can also be
used for the removal of a node, since removing a node requires deleting its edges then
deleting the now-disconnected node.

Suppose p # g and p, q are connected, and we delete this edge, (p, ¢)U (¢, p), from
our edge set E. We’ll use ~ to represent the updated statistics. First, we immediately

have
E=E\{(p.9).(q.)} (27.37)
M=M-1, (27.38)
Aij = Aij+ A" Aij = Aij = 516 g = 6igbjp, (27.39)

where A~ will be used to denote change for statistics upon deleting an existing edge.

Degree The change in degree for node i is simply

ki=ki+ A ki=ki—6ip—big. (27.40)

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.6. UPDATING SCHEMES FOR NETWORK STATISTICS 465

Clustering coefficient For the new clustering coefficient, as before, we start with the
updating scheme for the number of triangles containing node i:

A ifi¢{p,qtUN,g,
Ar=40;—1 ifi € Npg, (27.41)
Ai_|Npq| ifl'e{l%él]\
Then we obtain the scheme for updating C;:
C; ifi¢ {p,qtUN,q,
C =1C - te= ifi € Npg. (27.42)
. 2|Npg .y
25C- nttly ifi e {pg).

The average clustering coefficient C is updated by

- ~ 1 -
C=C+A C‘NZC"

2 1 |Npq| Ci
Y g Z—+ Z (- . (27.43)
N &, ki(ki —1) i) (ki=1D(ki=2) ki—=2
Degree assortativity The updating formulas for u, v, w are

T=u+Au =u-2 Z ki + Z ki |=2(kp = 1) (kg = 1),
ieN(p) ieN(q)

V=v+ATv =v—4(k,+kyg—1), (27.44)
W=w+A"w=w=06k,(kp — 1) +kg(kqg—1)] -4,
and the new assortativity coefficient 7 is
8Mi—v 8(M —1)(u+A"u)— (v+A"v)?
AMiv -2 AWM -D(w+Aw)— (v +Av)2

7=

(27.45)

Modularity Once more, we assume that the community partitions g; are unchanged
after disconnecting the edge between p and g. It follows that

Sa=Sa+A"Sa=5s-26(8p»8q) (27.46)
Sp=Sp+A7Sp =Sp =2 (Kq, +Kg,) +2(6(2p-20),+1) (27.47)
where K, is now updated using
Ko =Ko+ A Ky =Ko —6(8p,8) — (4. 8)- (27.48)
These now define the updating scheme for 0= (§ A—Sp /2M) /2M.

Lastly, in Table 27.1 we compare the computational complexity of these updating
schemes to solutions using an adjacency matrix and an edgelist [452]. In all cases, the
updating schemes have better (lower) complexity.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

466 CHAPTER 27. BIG DATA AND SCALABILITY

Table 27.1 Complexity of updating schemes [452].

Statistic Adjacency matrix ~ Edge list Updating scheme

Degree (one node) O(N) O((k)) o(1)

Degree (network) O(N?) O({k)N) 0O(1)

Clustering coefficient O((k) N) 0(<k>3) 0(1) JO((k))
(one node)

Clustering coefficient O ((k) N?) O((k)3 N) O ({k))
(network)

Assortativity O(N?) O(kYN) O(k))

Modularity O(N?) O(k)N) O(1)

27.7 Making graphs

Most graph models are implemented in ways that don’t account for scalability. For
example, suppose we wish to generate a very large ErdGs—Rényi graph G (N, p) on
N > 1 nodes where each edge exists with probability p. The naive, or unscalable way
is to take each pair of nodes (i,), of which there are (}) = O(N?), generate a random
number r uniformly distributed on [0, 1], and insert edge i, j if r < p. Because we are
looping through the set of nodes twice, we have a quadratic algorithm; fine for small
networks, prohibitive for large ones.

This naive double-loop is also wasteful. We individually test every pair of nodes,
and (depending on p) many of those tests will fail and no edge will be created. A more
efficient approach (see also remarks) is to change how edges are inserted to skip over
the node pairs where no edge will be inserted.!! We describe this now.

Suppose nodes are numbered 0, 1,..., N — 1. We begin at node # = 0. Then for
eachnode v =1,..., N — 1, the naive algorithm would generate r and insert edge u, v
if r < p. The process would continue with u > 1,2,... and v = u + 1. Let’s be more
efficient. Let vi = u + 1 + ¢ be the first neighbor with which u forms an edge. Here ¢ is
the number of intervening pairs u, v; that did not form an edge. Similarly, vo = vi+1+6
where now § is the new number of intervening pairs between v; and v;,. The steps ¢
are distributed geometrically: Pr(6) = (1 — p)®p. Therefore, instead of considering
every v after u, we generate ¢ and skip ahead that many nodes. Specifically, generate r
uniformly on (0, 1) and set § = |log(r)/log(1 — p)], where | -] is the floor function.!
(We take 6 = 0 if p = 1.) Then we can insert edge u, v + 1 + §, and continue. We give
the full algorithm in Alg. 27.3.

While the naive algorithm has an O(Nz) complexity, Alg. 27.3 has a complexity
of only O(N + M). To see this, consider the average number of times the inner loop

1T 'We can also just generate edges as integer pairs i, j ~ U[0, N — 1], but we focus on the “skipping”
method because it more easily generalizes to the other graph models we will discuss.

12 This expression comes from using inverse transform sampling [130]. We compute the CDF of Pr(6),
set it equal to r ~ U[O0, 1], then solve for §. When the CDF F (x) can be inverted, this is a clever way to
transform U [0, 1]-distributed random numbers to x ~ f(x). In our case, we have r = 3% p(1 — p)d =

(1-p)® = 6=logr/log(l - p).

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.71. MAKING GRAPHS 467

Algorithm 27.3 Efficient algorithm for generating Erd§s—Rényi graphs. Runs in
O(N+M).

1: Input: Number of nodes N, edge probability 0 < p < 1
2 E«—0
3: foru=0to N -2do
4: veu+l
while v < N do
draw r ~ U|0, 1]

log(r)
vevs {mg(l—p)J

if v < N then
E — EU{(u,v)}
10: vev+1
11: Return: instance of G(N, p) with nodes 0,...,N — 1

0 ® 2w

executes: 1 + N/{(5) = 1 + O(Np), the 1 being the number of unsuccessful times. The
outer loop executes N times, giving a total complexity of N(1 + O(Np)) = O(N + M)
since M = (1;’)p. This complexity is just about optimal in that we’d need to examine
every edge during generation regardless.

Now, we generalize this method from Erd&s—Rényi networks to Chung—Lu net-
works [107], networks with a given expected degree sequence. These networks intro-
duce heterogeneity into the degree distribution by using node weights w,, and setting
the probability for an edge u, v to be p,, = w,w, /Nw, where w = 3, w, /N.

The obvious, naive O (N 2) algorithm consists of again performing a double loop
over all nodes and checking for each edge by generating r ~ U[0, 1] and inserting edge
u,v if r < w,w,/Nw. We again wish to be efficient by skipping unnecessary node
pairs, but this will be more difficult because the probabilities for possible edges will
not be fixed. To derive a more efficient algorithm, we first present an alternative to the
naive algorithm that can be modified to be efficient.

First, assume the list W of weights for the network is available and sorted in descend-
ing order. As we consider every v =u +1,..., N — 1, p,,, decreases monotonically, so
we avoid recalculating p for each v by setting p = py, u+1 = wuwy+1/NWw and skipping
each v with probability 1 — p. Arriving at the first node v; we do not skip, we then need
to check if vy is actually neighbors with u, since p,,, < p. We calculate ¢ = p,,,, and
assign the edge with probability ¢/p. We then set p = ¢ and continue to discard nodes
with probability 1 — p until all v have been considered. Then we increment « and repeat
the process. The probability that an edge is inserted, ppuy, /P = puv, is as we expect
and, like the naive algorithm, this algorithm is O (N?).

Why organize the naive algorithm in this way? Doing so ensures that p is fixed
at each step until a potential neighbor is identified, allowing us to identify how to
skip over those intervening nodes. Starting with u = 0, and setting p = p, ,+1, draw
r ~ U[0,1] and find the first potential neighbor vi = u + 1 + & by generating a step
6 = |logr/log(1-p)] (taking 6 = 0if p = 1). Once v, is selected, insert edge u, v; with
probability p,,,, /p. Then set p = p,,,| and continue to the second potential neighbor
v, by generating another value of ¢. Since p decreases monotonically for a given u, the

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

468 CHAPTER 27. BIG DATA AND SCALABILITY

expected value of ¢ increases monotonically. We give the full algorithm for Chung—Lu
graphs in Alg. 27.4.

Algorithm 27.4 Efficient algorithm for generating Chung—Lu [107] graphs. Runs in
O(N +M).

1: Input: sorted list of N weights wg > wy > ... > wy_|

2 E 0

3 S X, wy

4: foru=0to N -2 do

5: veu+l

6: p <« min(w,w, /S, 1)

7: while v < N and p > 0 do

8: if p # 1 then

9: draw r ~ U|0, 1]

10: Ve—v+ [blgo(gl(f;,)J
11: if v < N then

12: q «— min(w,w, /S, 1)
13: draw r ~ U[0, 1]

14: if r < g/p then

15: E — EU{(u,v)}
16: p—q

17: vev+1

18: Return: instance of Chung—Lu graph with nodes 0,..., N — 1

Algorithm 27.4 has complexity O(N + M). We omit the proof, which is more
involved compared to that of Alg. 27.3 due to the dynamic rejection sampling. We refer
readers to Miller and Hagberg [310] for details.

27.8 Summary

What should we do when networks get big? Really big? A variety of tools, such as
graph databases, probabilistic data structures, and local algorithms, are at our disposal,
especially if we are able to accept sampling effects and uncertainty. But remember our
admonishment: there is an opportunity cost to these solutions and it is very often the
case that they are not needed. Try simpler methods first, then adapt.

Areas where such tools are needed include web crawls, online social networks,
and knowledge graphs, and major graph database systems have been proposed for such
domains. Systems biology is yet another area where networks will continue to grow: as
sequencing methods continue to advance, more networks and larger, denser networks
will need to be analyzed. Perhaps not to the scale of trillions of edges, but perhaps so.
Some day, big data solutions may be necessary. Either way, infrastructure is in place if
and when that scale needs to be confronted.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

27.8. SUMMARY 469

Bibliographic remarks

For more on “big data,” its general challenges and opportunities, see Madden [286],
Marx [296], Fan et al. [155], Chen et al. [102], and references therein. For a broad
introduction to graph databases see Robinson et al. [399]. An early and very influential
graph storage project was the Connectivity Server [54]. Many of its ideas became
standard practice for large graph storage and compression, including in the WebGraph
Framework [62]. For a recent survey on the related problem of graph summarization,
see Liu et al. [278]

Many problems related to graph streams have been studied, see McGregor [300]
for a survey. Detecting anomalies in a graph stream is an important, practical problem;
see Aggarwal et al. [4], Manzoor et al. [290], and Eswaran et al. [151] for methods
and Ranshous et al. [389] for a review. Enumerating subgraphs is another streaming
problem, and McGregor et al. [301] discuss algorithms for it. More generally, Al Hasan
and Dave [8] give a survey of triangle counting methods that covers both graph streams
and systems where random access to the graph is possible.

Space-efficient approximate or probabilistic counting dates back to Morris [321].
The HyperLogLog method for cardinality estimation we describe is the culmination of
a long line of research [160, 137, 161]. Heule et al. [212] devised the HyperLogLog++
algorithm to help improve practical application of the method.

Approximate Neighborhood Functions were introduced by Palmer et al. [355].
ANF used Flajolet—Martin counters [160]. Boldi et al. [63] introduced HyperANF by
extending ANF with more advanced HyperLoglLog counters (which were introduced
after ANF) and other programming advancements.

Fast community detection with label propagation (LP) was introduced in a highly
influential paper by Raghavan et al. [384]. An interesting variant that aligns LP with
modularity by using constraints was introduced by Barber and Clark [38]. A multi-
resolution variant of LP was also employed by Boldi et al. [64] for graph compression.

The dynamic updating schemes we presented were introduced by Sun et al. [452].

The algorithms we presented for efficient Erd§s—Rényi and Chung—Lu graphs were
introduced by Miller and Hagberg [310]. Batagelj and Brandes [45] and Hagberg and
Lemons [198] also address this problem for other graph models. Ramani et al. [385]
provide a readable summary of efficient graph-making strategies across a variety of
models.

Exercises

27.1 HyperANF (Alg. 27.2) assumes you can sequentially access the neighbors of a
node (the inner loop). What if you have a graph stream where edges are given
one at a time? What problems may this pose with the basic algorithm and with
optimizing it?

27.2 Suppose you use HyperANF to compute the neighborhood function for a network.
Then that network changes, perhaps some edges have been rewired. How much
does this affect your previous computation? Will you need to rerun HyperANF
from scratch?

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

470 CHAPTER 27. BIG DATA AND SCALABILITY

27.3 Modify HyperANF to compute the graph conductance cut(S)/vol(S) (Sec. 25.5)
of a set of nodes S (S is an input to the new algorithm and assume it can be stored
in memory). What additional data must be tracked during the outer loop?

27.4 Can label propagation be used for local community detection, i.e., to find the
community containing a starting node i without needing to examine the (entire)
rest of the network? Why or why not?

27.5 Derive the updating schemes for transitivity (Eq. (12.9)) instead of the average
clustering coefficient.

27.6 Modify the Miller-Hagberg algorithm (Alg. 27.3) for Erd6s—Rényi graphs to
generate bipartite Erd6s—Rényi graphs.

https://doi.org/10.1017/9781009212601.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.032

