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The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to
compute a sequence of ideally stable equilibria resulting from numerical variation
of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric
DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant
m = 2, n = −1 resonant surface leads to lower MHD energies and increases in
the equilibrium island widths at the m = 2 (and sidebands) surfaces, in agreement
with theoretical expectations. Island overlap at large perturbation strengths leads to
stochastic magnetic fields which correlate well with the experimentally inferred field
structure. The magnitude and spatial phase (around the dominant rational surfaces)
of the resonant (shielding) component of the parallel current are shown to change
qualitatively with the magnetic island topology.

1. Introduction
The application of small-amplitude symmetry-breaking, non-axisymmetric magnetic

fields (δB/B∼10−4–10−3) to tokamak plasmas can be very useful. In H-mode plasmas,
edge-localized modes (ELMs) can be suppressed, mitigated and sometimes controlled
using these fields (Evans et al. 2004; Canik et al. 2010), but this mechanism is not
fully understood. Early theories of resonant magnetic perturbation ELM suppression
suggested that resonant perturbing fields opened overlapping island chains, leading
toward stochastic regions (Fenstermacher et al. 2008), but this can be at odds with
a high electron temperature H-mode profile. More recent developments suggest that
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the ELM cycle can be interrupted (suppressed) if some transport mechanism stops the
inward growth of the pedestal width (Snyder et al. 2012). It has been suggested from
modelling that an RMP-induced single harmonic island chain could stop the inward
pedestal growth (Wade et al. 2015). Despite extended MHD modelling that predicts
the possibility of this island formation (Ferraro 2012), it is difficult to verify this
suggestion experimentally.

Understanding the role of island formation due to RMPs is thus an important
aspect of ELM suppression and a main goal of the work in this paper. While this
understanding is most crucial in the H-mode pedestal region, we focus on a more
tractable island scenario: low-rotation L-mode plasmas with RMPs. These plasmas
provide a better test bed for evaluating numerical models (which presently lack
rotational effects) addressing island formation.

Resistive nonlinear MHD simulations are used to model island formation in
plasmas. In this paper, we study numerically the effect of varying RMP strengths
on the production of islands and the level of induced magnetic stochasticity in
low-rotation L-mode plasmas. An efficient, parallel version of the Scalable Iterative
Equilibrium Solver for Toroidal Applications (SIESTA (Hirshman, Sanchez & Cook
2011; Seal, Perumalla & Hirshman 2013)) code has been developed to compute
non-ideal, three-dimensional (3-D) equilibria in tokamaks and stellarators. Here, it is
used to analyse the effect of different resonant perturbation strengths at the dominant
q = 2 (m = 2, n = −1) rational surface in a representative DIII-D (Luxon 2002)
plasma. We then compare the numerically modelled islands to measurements.

A fully self-consistent, 3-D free-boundary calculation is beyond the calculational
capability of the (at present, fixed boundary) SIESTA code. Therefore, in this paper
we have studied the effect of varying a model amplitude which should be interpreted
to account approximately for the applied RMP magnetic field at the dominant
resonant surface. Not surprisingly, the amplitude found to yield the best agreement
with experimental data is also close (to within a factor of 2) to the applied vacuum
perturbation superimposed on the DIII-D fields at the resonant surface (which can be
amplified or shielded by the plasma response).

We will demonstrate that the fixed boundary assumption of axisymmetry does
not preclude the internal island structure found by SIESTA, which is a nonlinear
(saturated) tearing mode driven by the dominant m = 2, n = −1 component of the
RMP spectrum. In particular, the final state of the plasma – after applying this
resonant perturbation – has a lower energy than the pure axisymmetric equilibrium,
even with an axisymmetric boundary – so it will not spontaneously revert to the pure
axisymmetric state.

2. Ideal equilibrium properties
The numerical analysis presented here is based on DIII-D shot no. 154921,

time = 2530 ms. This discharge is a nearly up–down symmetric, D-shaped plasma
limited on the inner wall, with magnetic energy WB= 33.8 MJ and a plasma thermal
energy WT = (3/2)WP= 0.25 MJ, corresponding to a low volume-averaged β ∼ 0.5 %.
It is a low βn ∼ 0.5, low torque (nearly balanced neutral beam injection), and
therefore a low rotation L-mode discharge∗. In figure 1, contours of magnetic
∗The experiments described here were done in L-mode plasmas to maximize the ability to diagnose and

analyse the experiments. The constant L-mode temperature gradient near mid-radius of the plasma allows the
easiest distinction for profile flattening due a single, large island, as compared to the edge pedestal in a
diverted H-mode where many very small overlapping islands are expected. Further, while low-rotation H-mode
plasmas can be accessed, clear profile flattening from RMP-induced islands has yet to be demonstrated. It is a
goal to study this type of island formation in H-mode plasmas in the future.
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Island formation due to RMPS 3

FIGURE 1. Toroidal flux contours for DIII-D shot no. 154 921, time = 2530 ms. The
blue contours correspond to normalized toroidal flux Φ < 1/3; the green contours are
intermediate values 1/3<Φ < 2/3; and the red contours are Φ > 2/3.

normalized toroidal flux Φ are shown for an axisymmetric equilibrium corresponding
to these discharge parameters. These were calculated by the Variational Moments
Equilibrium Code (VMEC (Hirshman, Van Rij & Merkel 1986)) and agree very
well with the equilibrium and reconstruction code EFIT (Lao et al. 1985, 2005). In
these computations, stellarator symmetry was enforced in the 2-D equilibrium, since
presently the SIESTA code can only compute equilibria with this constraint. This
approximation is justifiable since the free-boundary equilibrium computed by VMEC
(and EFIT) is indeed approximately up–down symmetric. The nested flux contours are
spaced equally in the SIESTA radial coordinate s =√Φ. The s coordinate, together
with the poloidal and toroidal angles u, v, form the SIESTA computational grid.
The profile for the safety factor q is shown in figure 2. It was obtained from EFIT
reconstruction using motional Stark effect (MSE) data to constrain the internal current
profile. A low-order rational surface occurs at s∼ 0.7, where the resonance condition
m + nq = 0 is satisfied for m = 2, n = −1. Here, m and n are the poloidal and
toroidal Fourier numbers in the spectrum of the applied helical perturbation. Island
formation is expected to occur at this location when a helical radial magnetic field
perturbation is applied using RMP coils, as described in the next section. Finally, the
axisymmetric (unperturbed) pressure profile is shown in figure 3. A finite pressure
gradient exists at the rational surface for the axisymmetric equilibrium.
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FIGURE 2. Safety factor q versus the SIESTA minor radius s.

FIGURE 3. Unperturbed pressure profile (in mks units, Pa) versus the SIESTA minor
radius s.

3. Application of non-ideal (tearing) perturbation
The SIESTA computations for the selected discharge were performed using a fixed

plasma boundary corresponding to the axisymmetric equilibrium shape shown in
figure 1. The spectrum of the applied RMP is dominated by a helical perturbation
with the q = 2 helicity and should not have a significant effect on the boundary
shape. This has been confirmed by 3-D free-boundary VMEC calculations with the
RMP coils. In SIESTA, resonant perturbations need to be applied to the VMEC
equilibrium to break the surfaces, regardless of whether an underlying 2-D or 3-D
VMEC equilibrium is used. The effect of the RMP is therefore modelled here by
applying a tearing-parity helical perturbation localized around the q = 2 resonant
surface in the plasma. The strength of this perturbation is varied to examine the
resulting ideally stable sequence of equilibria computed by SIESTA. These equilibria
correspond to local (ideal) minima of the magnetic energy, which can, however, be
lowered by increasing the RMP strength. The simulated RMP is of the form:

δB=∇×A‖. (3.1)

Here, A‖ = −E‖1t is the projection of the vector potential parallel to the local
magnetic field B, where E‖ = (E · B)B/B2 is the non-ideal (resistive) parallel
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component of the electric field. In SIESTA, the quantity E · B ≡ e is chosen to
gain access to lower energy states with enhanced islands:

δW =−
∫

J ·E dV =−
∫
|√g|Ke ds du dv. (3.2)

Here, K= J ·B/B2 is the component of the parallel current. In a VMEC equilibrium
with no islands, this localized current sheet ‘shields’ the islands from forming around
rational surfaces. The steepest descent choice e≈K corresponds physically to parallel
resistivity. However, this value for e would alter the equilibrium properties (such
as the rotational transform ι = 1/q due to the resulting ‘resistive’ changes of the
current. Instead, the value of e is chosen so that the non-resonant equilibrium current
profile is preserved while the resonant shielding components of the parallel current
are diminished. The following ansatz accomplishes this:

e≈K ′ ≡
∑

m,n-resonant

(
√

gK)mn(s) cos(mu+ nv). (3.3)

In the sum in (3.3), the m= 0, n= 0 average component of the parallel current is
excluded and only the resonant Fourier modes of K are retained. These resonances
occur in the plasma at radial positions smn, where m + nq(smn) = 0. Stellarator
symmetry has been assumed in retaining only cos(mu + nv) modes for the parallel
current. A final constraint on the parallel electric field used in SIESTA is to impose
‘tearing’ parity on the radial distribution of e. This parity is required to create
magnetic islands (odd parity, or ‘rippling’ modes, do not create islands). Moreover, the
odd-parity modes give rise to the equilibrium Pfirsch–Schlüter parallel current (Pfirsch
& Schlüter 1962; Boozer 1983) required to balance curvature-driven perpendicular
currents from the current continuity equation:

∇ · J = 0
= B · ∇K +∇⊥ · J⊥.

}
(3.4)

In SIESTA, tearing mode parity is applied by introducing kmn(s), which is the
parallel current Fourier amplitude Kmn(s) symmetrized with respect to the resonant
surface smn:

kmn(s)= 1
2 amn(s)[(√gK)mn(|s− smn| + smn)+ (√gK)mn(−|s− smn| + smn)]. (3.5)

In (3.5), the filter function amn(s)= a0
mn > 0 when the arguments of Kmn are in the

allowable range 06 s6 1, and amn(s)= 0 outside this range. The constant perturbation
strength is a0. With this ansatz for the tearing perturbation, the resistive energy change
becomes (note that the odd-parity part of K integrates to zero):

δW =−
∑

m,n-resonant

amn(s)k2
mn(s) < 0. (3.6)

The perturbation strength amn in (3.6) must be small enough so that the linearization
of the energy in (3.2) is valid.

For an axisymmetric equilibrium, there are no initial resonant current components.
In that case, the initial parallel electric field perturbation required to create islands
has tearing parity and a narrow Lorentzian shape in radius centred about low-order
rational surfaces. This approximates the localized (delta function) shielding currents
that suppress islands in a VMEC/EFIT equilibrium in the presence of small applied
RMPs. A Lorentzian was chosen as a simple representation for a localized even-parity
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perturbation which is required to tear the magnetic surfaces. Its width was varied to
minimize the resulting perturbation of the MHD energy. From (3.2) the energy change
will be second-order (quadratic) for small applied perturbation strengths.

4. Numerical results: island formation scaling with perturbation amplitude
All of the numerical results obtained here were computed using a single radial mesh

Ns = 101. The Fourier mode spectra were chosen to be M ∈ (0, 12) and N ∈ (−3, 3)
for the poloidal and toroidal mode numbers, respectively. Normalized MHD force
residuals were converged to a tolerance of less than 10−20 in all cases. For these
parameters, the parallel SIESTA code converged in about 200 s using 8 processors.
The running time scaled approximately linearly with the number of processors up
to about Ns/2 processors, at which point no further reduction in computation time
occurred.

Figure 4 shows the resulting magnetic flux contours for the outer half of the DIII-D
plasma (s>0.5) after application of the tearing perturbation |A‖|∼ |E‖|∼a0

2,−1 in (3.1).
These perturbations have helicity m= 2, n=−1 in VMEC coordinates with a small
amplitude a0

2,−1 = 10−5 in figure 4(a) and large amplitude a0
2,−1 = 10−3 in figure 4(b).

In all cases, the perturbation is centred at the q = 2 surface (s = 0.7). These are
the initial states arising from these perturbations and do not correspond to actual
equilibria. In fact, the MHD force F = J × B − ∇p is quite large for both of these
configurations, corresponding to a normalized force residual |F|2 ∼ 10−6, since the
pressure is unperturbed and no longer satisfies the equilibrium condition B · ∇p= 0.
The magnetic field in SIESTA is normalized to |B| ∼ 1 so that |F|2 ∼ 1 indicates
a large departure from equilibrium. In all cases, departure from the axisymmetric
VMEC equilibrium, which corresponds to horizontal lines in the flux plots, is clearly
visible due to emergence of islands. Island widths increase approximately as the
square root of the perturbation strength, in accordance with theoretical expectations,
until overlap of adjacent resonant chains occurs and stochastic magnetic field lines
occur, as clearly shown in figure 5(c), which corresponds to the largest tearing
perturbation strength ∼3 × 10−3. Note that the m = 5, n = −2 island chain visible
after the initial perturbation in figure 4(c) is almost lost in the stochastic sea of the
converged result in figure 5(c).

While the surface splitting is largest at the q = 2 surface where the applied
perturbation is largest, additional smaller island chains are excited at adjacent
low-order rational surfaces corresponding to q = 3, 4. This spectral ‘pollution’ is
due to the fact that the VMEC coordinate system used for the SIESTA calculations
is not a straight magnetic field-line set of coordinates (where the resonance operator
Bu/Bv = 1/q is a pure number, independent of poloidal and toroidal angles). Small
satellite resonances are excited by the primary m = 2, n = −1 perturbation in
VMEC coordinates when it is decomposed into straight PEST (Chance et al. 1978)
coordinates (as discussed further in § 5), accounting for the excitation of the additional
island chains seen in figures 4 and 5.

SIESTA was iterated to reduce the force residuals for these perturbed states
to levels below |F|2 ∼ 10−20. Here, |F|2 should vanish in equilibrium. The final
equilibrium contours are shown in figure 5. The basic topology of the islands was
preserved during the equilibrium iterations by applying only ideal displacements after
the initial resistive perturbations. For this study, additional non-ideal perturbations
were suppressed to preserve both the island topology generated by the applied
perturbation and the equilibrium rotational transform (1/q) profile. In this way,
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(b)(a)

(c)

FIGURE 4. Flux surface contours immediately after application of a tearing perturbation.
s is the radial flux coordinate and θ is the poloidal angle in π radian units. Only the outer
half of the plasma is shown. (a) Small tearing perturbation; (b) large tearing perturbation;
(c) largest tearing perturbation.

equilibria corresponding to local ideally stable states were generated. It should be
noted that although the magnetic contours in figures 4 and 5 look very similar, the
same is not true for the pressure contours (not shown). Indeed the unperturbed (2-D)
pressure does not satisfy B · ∇p = 0 for the perturbed state until the equilibrium is
achieved.
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(b)(a)

(c)

FIGURE 5. Converged (equilibrium) flux contours for various perturbation strengths. s is
the radial flux coordinate and θ is the poloidal angle in π radian units. Only the outer
half of the plasma is shown. (a) Small tearing perturbation; (b) larger tearing perturbation;
(c) largest tearing perturbation.

The reduction in the total energy (magnetic plus kinetic pressure, see figure 6)
from the original VMEC equilibrium without islands is quite small for all three cases
shown in figure 5, corresponding to δW=−(0.16, 2.24, 8.5)× 10−6, respectively. Here,
δW= (Wfinal−WVMEC)/WVMEC is the normalized energy change in the final equilibrium
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FIGURE 6. Energy change as a function of the applied resonant m=2, n=−1 perturbation
strength.

with islands compared to the initial VMEC equilibrium state. The equilibria with
larger islands (figure 5b and c) correspond to lower energy than those with smaller
islands and, if physically accessible, would be the preferred equilibrium state for the
plasma. The stability of these equilibria could be tested by using them as initial states
for time-dependent simulations (Sovinec et al. 2004; Breslau, Ferraro & Jardin 2009).
The fact that δW continues to decrease with the applied perturbation strength for
strengths >2× 10−3 suggests that even more stochastic equilibria could be achieved.
(Convergence of SIESTA deteriorated for large amplitudes, so this premise could
not be tested.) The flattening of the energy decrease versus normalized perturbation
strength around 2 suggests that this might be a stable equilibrium (at least with
respect to this class of perturbations). It is also coincides with a perturbation strength
that gives an equilibrium in closest agreement with experimental temperature profiles
(see § 6).

5. Effect of islands on resonant parallel current
In this section we demonstrate that the equilibrium states shown in figure 5 are

characterized by substantially different parallel resonant currents. The equilibrium
in figure 5(a), corresponding to very small island widths, is very nearly the same
as the original VMEC equilibrium. It has a localized, even-parity resonant parallel
current centred on the primary resonance surface near s= 0.5 (see figure 7a). This is
a remnant of the delta-function ‘shielding current’ which excludes island formation
in VMEC. Figure 7(b) shows the same resonant parallel current for the equilibrium
in figure 5(b), corresponding to larger island widths. The parity of the parallel
current has now become approximately odd so that the radially integrated resonant
current is nearly zero in the case of a well-formed island. This is the equilibrium
Pfirsch–Schlüter current (in the presence of an island) required by current continuity.
In this case it vanishes at the resonant surface because the pressure gradient drive
vanishes as the island forms and a small radial component of the magnetic field
(allowed by resistive MHD) resolves the resonance singularity. Figure 7(c) shows
the resonant current corresponding to the stochastic magnetic field in figure 5(c).
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(b)(a)

(c)

FIGURE 7. Perturbed pressure and current profiles in PEST and VMEC coordinates for
various tearing perturbation strengths. Note that the small-amplitude grid-scale oscillations
predominantly appearing in figure 7(a) can be eliminated by recomputing on a finer radial
grid (not shown here). (a) Small (10−5) tearing perturbation; (b) larger (10−3) tearing
perturbation; (c) largest (3× 10−3) tearing perturbation.
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(a)

(b)

FIGURE 8. Profiles of (a) axisymmetric (2-D) electron temperature and (b) toroidal
rotation before RMP.

The current amplitude around the resonance has increased by almost a factor of 2
compared with figure 7(b). It also has broadened in radial width while maintaining the
Pfirsch–Schlüter odd radial structure. Apparently the curvature of the stochastic field
lines has increased, which in conjunction with the small residual pressure gradient is
enough to drive this moderate amplitude increase.

The two sets of curves labelled ‘VMEC’ and ‘PEST’ in figure 7 correspond
to the original VMEC angular coordinates and the straight magnetic field-line
PEST coordinates, respectively. Both coordinate systems use the geometric toroidal
angle (the long way around the torus) as one of the angular coordinates. In PEST,
the straight-line poloidal angle is θPEST = θVMEC + λ(s, θVMEC, ϕ), where λ is the
VMEC current renormalization function. For the case of small, well-separated islands
(figure 5a, RMP strength of 10−5), the VMEC current shows satellite resonances at
the q= 3 and q= 4 surfaces, whereas these disappear in the PEST representation. For
the case of larger magnetic islands (figure 7b and c), the satellite resonances appear
in both representations due to nonlinear effects.

6. Comparison with experiment
Experimentally, islands can be characterized via profile flattening. On DIII-D,

electron temperature (Te) profiles are measured with poloidally and toroidally
displaced Thomson scattering and electron cyclotron emission (ECE) diagnostics.
Thomson scattering is located at the toroidal angle φ = 120◦ along a vertical path
that approximately covers poloidal angles θ = 45◦–72◦. ECE is located at φ = 80◦
and θ = 0◦ (outboard midplane). Axisymmetric L-mode temperature profiles measured
by Thomson scattering and ECE are shown in upper part of figure 8. The toroidal
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(a)

(b)

(c)

FIGURE 9. Profiles of electron temperature measured at separate toroidal and poloidal
locations at RMP phases φ = 185◦ (a) and φ = 5◦ (b) and toroidal rotation (c) after
application of RMP.

rotation (Ωc) measured by carbon charge-exchange recombination is shown in the
lower part of figure 8.

The RMP is applied by an external set of correction coils (C-coils) in an n = 1
configuration using a 13.6 kA waveform. This applies a dominantly n = 1 radial
magnetic field perturbation that has a resonant pitch-aligned amplitude δBmn/BT at
the q= 2 surface of ∼4× 10−4. This amplitude is calculated by Fourier decomposition
of the radial field perturbation normal to unperturbed flux surfaces (Schaffer et al.
2008). With sufficiently low neutral beam torque (Tinj 6 0.3 N m) and subsequently
low rotation, the RMP opens a chain of islands at the q= 2, 3, 4 surfaces, indicated
by temperature flattening in figure 9. This also acts to lock the rotation at the
dominant q = 2 surface, bringing the toroidal rotation to near zero. Modelling the
low-rotation island state with SIESTA is appropriate in these conditions because
rotation is not treated within the code. The toroidal phase of the applied perturbation
is rotated between two positions, fRMP = 5◦ and fRMP = 185◦. This serves to have the
ECE intersect the island X-point at applied fRMP = 5◦ phase and the island O-point
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FIGURE 10. Flux contours at toroidal angle φ = 120◦ with RMP phase = 5◦ for initial
tearing perturbation of 1.8× 10−3 in SIESTA compared to vacuum. Note: the ECE points
have been mapped along the magnetic field from different toroidal and poloidal locations.

in the fRMP = 185◦ phase for the 2/−1 island. Thomson scattering samples midway
between the O-points and X-points in both phases. The 2/−1 island is sampled best
by Thomson scattering (extending across four channels) and ECE (extending across
four channels) in the fRMP 185◦ phase. This corresponds to an approximate width of
s= 0.14.

In the 5◦ phase, the ECE-measured Te profile resembles the axisymmetric L-mode
profile from figure 9, suggesting an intact flux surface within the resolution of the
diagnostic. Profiles measured with Thomson scattering show clearer m= 2, 3, 4 island
flattening, while the 2/−1 width appears smaller than in the 185◦ phase. This is likely
the result of sampling a smaller island cross-section and is used to compare with the
modelling results below.

The sampling of the diagnostics through the island topology is illustrated in
figure 10 (applied 5◦ phase) and figure 11 (applied 185◦ phase). Here, a helical
perturbation of 1.8 × 10−3 and vacuum approximation are shown for each applied
phase. (The vacuum approximation consists of superimposing the RMP vacuum
fields with the 2-D DIII-D equilibrium.) The ECE and Thomson scattering channel
locations are overlaid to show the relative positions where the islands are sampled.
Because ECE is toroidally displaced from the Thomson scattering points, the sampling
locations are mapped along equilibrium field lines to the toroidal angle of the
Thomson scattering. This better illustrates ECE sampling near the O-point in the
185◦ phase and near the X-point in the 5◦ phase. The flattened regions measured
by the diagnostics are indicated by dashed blue lines. In the 185◦ phase, the island
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FIGURE 11. Flux contours at toroidal angle φ= 120◦ with RMP phase = 185◦ for initial
tearing perturbation of 1.8× 10−3 in SIESTA compared to vacuum. Note: the ECE points
have been mapped along the magnetic field from different toroidal and poloidal locations.

modelled by SIESTA extends over nearly the full range of the sampled temperature
perturbations. The sampling in the 5◦ phase indicates the possibility that ECE could
sample a narrow stochastic region, but it is not large enough to measure on more
than one channel. Furthermore, the 2/−1 island width along the Thomson scattering
sampling path is larger than the indicated island size, but similarly under-resolves
the edges of the island due to sparse measurements. In both cases, the vacuum
estimated island sizes are shown to illustrate that plasma amplification of the tearing
response is needed to match experimental conditions. For both toroidal phases shown,
the vacuum modelling under-predicts the island width as the region covered by the
experimental measurements is wider. The ECE data sampling the X-point in the
vacuum case appears in good agreement with the measurements, but this is expected
– a temperature profile will not show flattening through the X-point of any arbitrarily
small island. For this reason, it is more important to compare the experimental data
to regions of measured flattening.

The correlation of widths of these flattened regions with the strength of the helical
amplitudes applied to the VMEC equilibria is demonstrated in figure 12. The radial
width of the island of the primary 2/−1 resonance as calculated from figure 5 (and
similar plots for intermediate helical perturbations) is plotted versus the applied
helical strength. This is compared with the island width estimated from the Thomson
scattering and ECE data shown in figure 8. The conclusion is that perturbation
strengths between 1.5 × 10−3 and 2.0 × 10−3 are in closest agreement with the
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FIGURE 12. m= 2, n=−1 island width as a function of the applied initial 2/−1 tearing
perturbation.

data, which is approximately 50 % larger than the vacuum islands. In this range,
the shielding current is completely eliminated and only odd-parity resonant currents
are present, as shown in figure 7(b) and (c). Above the experimentally matched
perturbation strengths, the 2/−1 and 3/−1 islands overlap (as seen in figure 5c) and
create a wide stochastic region (indicated by large error bars in figure 12).

This parity change is illustrated in figure 13, where the parallel current is
averaged over twice the pressure width (distance between even-parity pressure
perturbation peaks as shown in figure 7) and divided by the averaged absolute
value, 〈K‖〉21Pmn/〈|K‖|〉21Pmn . Thus, an even parity (screening) current is indicated by
−1 and an odd parity (resonant) current is indicated by 0. Figure 13 shows that
as the perturbation is increased, the parity smoothly varies between the shielding to
resonant parallel currents and the experimentally matched perturbation strength shows
an odd-parity current. The parity estimate at larger perturbations continues to increase
above 0. This is not the result of increased even-parity shielding currents, but is
instead a consequence of averaging only over twice the pressure width, while the
current perturbation extends much deeper into the core (as shown in figure 7b and c).

7. Conclusions
Numerical modelling of 3-D equilibria with applied perturbations using the SIESTA

code illustrates key features about the island structure and access to the low-energy
island state. The equilibria are based on a DIII-D discharge with islands resulting
from external non-axisymmetric magnetic perturbations. Varying the applied magnetic
perturbation at the dominant low-order resonant surface (q = 2) within SIESTA
accesses a series of 3-D equilibria. Increasing the perturbation level provides
access to successively lower energy states that can eventually match experimental
conditions. Here, the experimental conditions are matched on the basis of island size
measurements. Increasing the perturbation beyond the experimental regime results in
further lower energy states that are inaccessible to experiment, likely due to the lack
of sufficiently large applied magnetic perturbations.
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FIGURE 13. Pressure width and resonant current parity as a function of the applied initial
2/−1 tearing perturbation.

At very low perturbations, small magnetic islands appear, corresponding to a
minimal departure from the original VMEC equilibrium with nested magnetic
surfaces. In this case, the resonant parallel current is peaked around the low-order
rational surfaces and is a remnant of the shielding current delta function (even parity)
required by the VMEC solution. As the perturbation strength increases, the island
width increases and the parallel current structure transitions to one that has an odd
parity about the resonant surface and vanishes there due to the pressure profile
flattening associated with island formation. The island size with odd-parity current
best matches the experimental island condition. Further increase of the perturbation
strength leads to island overlap and stochastic magnetic fields that in turn lead to
pressure (temperature) flattening beyond that seen experimentally.

In experiments, a sufficiently large magnetic perturbation induces a nonlinear
transition to a saturated island state beyond that predicted by vacuum modelling
absent additional plasma response. Interestingly, the perturbation applied in SIESTA
that corresponds to the experimentally observed vacuum island width lies in the region
between clear even-parity screening currents and fully odd-parity Pfirsch–Schlüter
currents. It is possible that the SIESTA solution indicates nonlinearly unstable internal
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resistive modes that are difficult to access without sufficient magnetic perturbation.
Otherwise, the odd-parity current solution could be found at other perturbation levels,
depending on initial conditions. Modelling the access to this nonlinear state is difficult,
and it is to be hoped that future work will better address this.
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