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ABSTRACT

Multivariate stochastic processes with Poisson marginals are of interest in
insurance and finance; they can be used to model the joint behaviour of sev-
eral claim arrival processes, for example. We discuss various methods for the
construction of such models, with particular emphasis on the use of copulas.
An important class of multivariate counting processes with Poisson marginals
arises if the events of a background Poisson process with constant intensity
are moved forward in time by a random amount and possibly deleted; here
we think of the events of the background process as triggering later claims in
different categories. We discuss structural aspects of these models, their depen-
dence properties together with stochastic order aspects, and also some related
computational issues. Various actuarial applications are indicated.
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1. INTRODUCTION

The standard model from risk theory assumes that claim arrival times form
a (homogeneous) Poisson process and that claim sizes are independent and
identically distributed; also, claim sizes and claim arrival times are indepen-
dent. There is considerable interest in and need for models that take depen-
dencies into account. One specific such question deals with the claim arrival
times only: If we consider more than one type of claim then naturally the
question arises as to how dependencies between the claim arrival times for
the different claim types can be modelled. (Often, it is easy to extend such
models so that they include claim sizes. Also, the counting processes can be
regarded as representing the total claim size(s) in the degenerate situation
where all claims have size 1.) A standard example for such possible interde-
pendencies is that of a windstorm giving rise to immediate claims, but also
leading to heavy rain and flooding with the corresponding later claims. Another

ASTIN BULLETIN, Vol. 35, No. 2, 2005, pp. 379-408

available at https://www.cambridge.org/core/terms. https://doi.org/10.2143/AST.35.2.2003459
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 14 Jul 2025 at 18:09:13, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.2143/AST.35.2.2003459
https://www.cambridge.org/core


important case arises in connection with claims originating at different spatial
locations.

In the present paper we specifically consider models that have classical, but
possibly dependent marginals. We are interested in the construction and analy-
sis of multivariate stochastic processes X = (X1,…,Xd) with the property that
the one-dimensional marginal processes Xi are Poisson processes with constant
rates li respectively, i = 1,…,d. As Xi counts the claims of type i we are therefore
in the classical situation as far as the individual components are concerned. The
emphasis is on modelling dependencies between the marginal processes.

We also assume stationarity in time; in order to avoid confusion with other
stationarity concepts referring to space shifts in multivariate point processes,
for example, we will use the term time shift stationarity. Informally, the com-
ponent counting processes count events, such as claims of a particular type in
the present application context. Formally, we regard a counting process Xi as
a family of nonnegative, integer-valued random variables indexed by subsets
A of the real line �, where Xi (A) denotes the number of events of type i with
‘time stamp’ in A. If observations start at time 0, then it is customary to work
with t 7 Xi ([0,t]) as the random measure A 7 Xi (A) can then conveniently be
described by its ‘distribution function’. This leads to the familiar situation
where the stochastic process is a family of random variables indexed by real
numbers. However, the slightly more abstract view of counting processes as ran-
dom measures is the key to a concise description and also, in our opinion, to
a deeper understanding of our models. In particular, time shift stationarity
can now formally be expressed as the requirement that the distribution of
the random vector (X1(A1+ t),…,Xd (Ad + t)) does not depend on t ∈�. Here
A1,…,Ad are Borel subsets of the real line and we have written Ai + t for the
shifted set {x + t : x ∈Ai}.

The paper is organized as follows. In Section 2 we review two recent
approaches to the construction of multivariate counting processes with Pois-
son process marginals. Both are related to the idea of modelling dependencies
via copulas. In the first approach X is assumed to be a multivariate Lévy process
which implies that the component processes can be regarded as thinnings of a
basic (univariate) Poisson process; see Lindskog and McNeil (2003). In the
second approach, due to Pfeifer and Neslehova (2004), copulas are used to
construct X((0,T ]) for fixed T > 0. In Section 3 we introduce models that incor-
porate thinning and shifts; we will use the acronym ‘TaS’ for this class. These
models avoid some of the limitations of the constructions discussed in Section 2.
We present some auxiliary (elementary) material from the theory of point
processes and then obtain a structural result which is the basis for the further
analysis, in particular for the investigation of dependence properties and sto-
chastic order aspects of TaS models in Section 4. A key step is the interpretation
of the thinning and shift operations as operations on the multivariate Poisson
process that results if we attach suitable marks to the points of the initial uni-
variate process of triggering events. In Section 5 we show that TaS models
arise quite naturally from the assumption of time shift stationarity if the mul-
tivariate counting process X can be obtained from a multivariate Poisson
process N by coordinate projections. We relate time shift stationarity of X to

380 N. BAUERLE AND R. GRUBEL

available at https://www.cambridge.org/core/terms. https://doi.org/10.2143/AST.35.2.2003459
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 14 Jul 2025 at 18:09:13, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.2143/AST.35.2.2003459
https://www.cambridge.org/core


a spatial form of stationarity of N and an invariance property of the intensity
measure associated with N. Interestingly, a variant of the copula idea of sep-
arating marginal distributions and dependence aspects reappears in a version
for Poisson point processes. In Section 6 we list various actuarial applications.
Section 7 deals with related computational issues; in this last section we also
look more closely at the two-dimensional case, we work out an example in
detail and we close with some summarizing comments.

The models discussed below also give rise to some interesting statistical
problems, but these will be investigated in a separate paper.

2. COPULA-BASED MODELS

The distribution function F of a d-dimensional random vector z = (z1, z2, …,
zd) can be written in the form

F (x1,…,xd) = C (F1(x1),…,Fd (xd)),

where F1,…,Fd are the one-dimensional distribution functions associated with
the components z1,…,zd of the random vector and where C is a d-dimensional
distribution function on the unit cube with uniform marginals, i.e. C(u,1,…,
1) = ··· = C(1,…,1,u) = u for all u in the unit interval [0,1]. This decomposition
separates the marginal distributions from the dependence structure; standard
references are Nelsen (1999) and Joe (1997). Chapter 5 of a forthcoming book
by McNeil, Frey and Embrechts (2004) reviews copulas in the context of risk
theory and in particular discusses the use of the decomposition to explain the
practically important phenomenon of tail clustering.

Suppose now that we start observations at time 0 so that our multivariate
counting process can be indexed by �+ as explained in the introduction. Then
the transformation to uniform marginals can be applied to the individual random
vectors (X1(t),…,Xd(t)) for each t ≥ 0. This would result in a family (Ct)t ≥ 0 of
copulas. In comparison to the above static situation this has two disadvan-
tages. First, a whole family of copulas is simply an unwieldy object. Secondly,
as we will explain in Remark (d) at the end of Section 5, this family would not
satisfy our demands: Whereas in the random vector case the distribution is com-
pletely specified by the copula and the marginal distibutions, the family (Ct)t ≥ 0
and the distributions of the component processes Xi, 1 ≤ i ≤ d, together do not
determine the finite-dimensional distributions of the multivariate counting
process X.

We are aware of two attempts to overcome these difficulties. For the first
of these, we introduce some notation that will also be useful in the subsequent
sections. Let � := {1,…,d} and for all D ⊂ �,
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FIGURE 1: Representation of counting processes of Lévy type.

(we switch between row and column vectors whenever typographically conve-
nient). The condition that the marginal processes be constant rate Poisson
processes implies that the paths of X are of pure jump type and that the jumps
X(t) – X(t–) are of the form e(D) for some (non-empty) D ⊂ �. A jump e(D)
at time t means that the component processes Xi with i ∈D (and only these)
have a jump of height 1 at time t. If we assume in addition to the above
that X is a Lévy process, then the Markov property and the homogeneity in
time imply that the copula family introduced above can be described by its
‘infinitesimal generator’, the Lévy copula, which together with the other char-
acteristics of a Lévy process is enough to specify the distribution of the whole
multivariate process; see e.g. the recent monograph by Cont and Tankov (2004).
In particular, for counting processes with paths of pure jump type and jumps
of the form e(D) the Lévy assumption implies that the distribution of X is
completely specified by (up to) 2d – 1 numbers lD ≥ 0, 0 ! D ⊂ �: A counting
process X of Lévy type can be represented as

Xi (t) = DN t
D i"

! ] g, i = 1,…,d,

where ND are independent Poisson processes with rate lD, D as above. The rates
li of the marginal processes are related to the rates lD by li = D i" lD! , i = 1,
…,d. A similar result has been used in Lindskog and McNeil (2003). The
processes ND in turn can be obtained from one single (univariate) Poisson
process N with rate l = �D 1 lD! by independent marking of the points of N
with probabilities pD = lD /l and then collecting the marked points into ND.
This may be easier to understand with the help of an example: Figure 1 shows
a segment of a simulated path for d = 2, with l{1} = l{2} = l{1,2} = 1.

Lévy type counting processes have a very specific dependence structure:
In the random measure notation, Xi(Ai) and Xj(Aj) will always be independent
if Ai ∩ Aj = 0 because of the independence of the increments of X. Hence, for
such processes, dependence of the marginal processes is only possible via the
synchronicity of the jumps.

A completely different approach has recently been suggested by Pfeifer and
Neslehova (2004). In one of their models these authors consider the finite time
interval [0,T ] instead of �+ and condition on the final random vector X(T) =
(X1(T),…,Xd (T)) of the process. A static d-dimensional copula can be used,
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together with the condition that the components Xi(T) have a Poisson distri-
bution with parameter liT, i = 1,…,d, to construct the law of the vector X(T).
Pfeifer and Neslehova (2004) discuss in detail the use of standard copulas,
including a description of an algorithm that implements the discretization step.
To obtain (X(t))0 ≤ t ≤ T from the final random vector X (T) one can use the famil-
iar fact that, conditionally on their total number in [0,T ] being equal to n, the
n points of a Poisson process with constant rate are independent and uniformly
distributed on [0,T ]. Hence, in the d-dimensional case, we obtain (X(t)) 0 ≤ t ≤ T
from X (T) via

Xi (t) = 1 ,

( )

t
j

X T

0

1

i

=

! 5 ? (zij), 1 ≤ i ≤ d, 0 ≤ t ≤ T,

where zij, 1 ≤ i ≤ d, 1 ≤ j ≤ Xi (T), are independent and uniformly distributed on
[0,T ]. Here 1A denotes the indicator function associated with the set A.

In this approach the dependence modelling of the component processes is
thus based entirely on the dependence modelling of the total number of claims
in the period of interest. This means that this period has to be fixed in advance.
In order to overcome the restriction to a finite time interval there are two
strategies: First, one could simply take T large enough. The second method
makes use of the fact that the superposition of independent Poisson processes
is again a Poisson process. One could therefore extend the construction to arbi-
trary time intervals by patching together enough intervals of the form [k, k + 1),
k = 0,1,…; see Section 5 in Pfeifer and Neslehova (2004). Note, however, that
with the second approach the dependence of the component processes is lim-
ited to the somewhat arbitrary base intervals: What happens in [k, k + 1) and
[l, l + 1) is independent if k ! l. Also, the result is not a time shift stationary
process in the sense explained in the introduction: Whereas X1(k + 1) – X1(k +
1/2) and X1(k + 1 + 1/2) – X1(k + 1) will always be independent this is in general
not the case with X1(k + 1/2) – X1(k) and X1(k + 1) – X1(k +1/2), if the base
intervals are chosen as above; i.e., in the random measure notation, we may (and
in general will) have that the distribution of (X1(A1), X2(A2)) is not the same
as the distribution of (X1(A1 + t), X2(A2 + t)) if A1 = A2 = (0,1/2] and t = 1/2.

If instead we choose T large enough another problem arises. The con-
struction implies that the conditional distribution L (X(t) | X(T )) of X(t) given
X(T) can be written as

L (X (t) | X (T)) = Bin(X1(T), t /T )7 ···7 Bin(Xd (T), t /T ) ,

where Bin(n,p) denotes the binomial distribution with parameters n and p and
the ‘7’ is product measure, representing independence. From the familiar law
of small numbers we know that Bin(lT,t /T) converges to the Poisson distribu-
tion with parameter tl if limT → ∞ lT /T = l. The conditions on the marginal
processes (together with the strong law of large numbers) imply that Xi(T)/T →
li almost surely as T → ∞, for i = 1,…,d. Hence the components of X (t) will
asymptotically be independent, almost surely. This can easily be generalized to
the finite-dimensional increments of X and leads to the overall conclusion that,
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asymptotically as T → ∞, the copula chosen for the final value will be irrelevant
to any fixed initial segment (X(s))0 ≤ s ≤ t of the process and that the components
of such a segment will become independent.

Thus, in summary, despite their intrinsic interest both constructions have
shortcomings if we analyze the resulting models from the point of view that
we adopt in the present paper. First, as an immediate consequence of their
defining properties, Lévy type counting processes have no dependence ‘across
time’, and the dependence ‘across components’ is of a very special nature.
For this class of processes dependence modelling is reduced to the choice of
thinning probabilities. Secondly, the models introduced by Pfeifer and Nesle-
hova (2004) are more flexible as they can make use of the whole range of (sta-
tic) copulas, but they require the choice of a compact base interval [0,T ]. If such
an interval does not suggest itself from the application of interest, then both
remedies known so far, letting either T tend to ∞ or patching together several
such intervals, have their disadvantages, the second getting into conflict with
our assumption of time shift stationarity.

In the next section we introduce a family of models that extends the Lévy
models by incorporating random shifts of the individual points. We will see
that, at least to some extent, this can be used to overcome the difficulties that
we have discussed in detail in this section.

3. MODELS WITH THINNING AND SHIFTS

We first recall some elementary facts from the general theory of point processes;
Daley and Vere-Jones (1988) and Resnick (1987) are standard references in
this area. In order to keep the presentation compact we skip some technical
details, such as measurability issues. In connection with our models the spe-
cial class of Poisson point processes suffices: Given a s-finite measure n on some
space E, an integer-valued random measure N on E is a Poisson process with
intensity measure n, which we abbreviate to N ~ PP(n), if

(D1) N(A) has a Poisson distribution with mean n (A),
(D2) for pairwise disjoint A1,…,Ak, the random variables N(A1),…,N(Ak) are

independent.

With E = � and n = r, r > 0 and  Lebesgue measure, we obtain the familiar
Poisson process on the real line with constant rate (or intensity) r. Quite gen-
erally, if n is diffuse in the sense that n ({x}) = 0 for all x ∈E, in addition to
being s-finite, then N ~ PP(n) has countable support and no multiple points
(with probability 1). This means that, with dx the one-point mass in x ∈E, N =

i 1= dR
3

i
! , with (Ri)i ∈� a sequence of E-valued random quantities.

There are four basic operations on Poisson processes that we will need
below, see e.g. Section 3.3.2 in Resnick (1987). First, a mapping T : E → F
transforms a point process NE on E into a point process NF on F via NF (A) :=
NE(T –1(A)). The class of Poisson processes is stable under such mappings in
the sense that NE ~ PP(nE) implies NF ~ PP(nF), where nF (A) = nE(T –1(A)) is the
measure-theoretical image of nE under T, in the same way as NF is the image
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FIGURE 2: An example combining thinning and shifts.

of NE under T. Secondly, if we split N independently such that each point of
N becomes a point of N1 with probability p and of N2 with probability 1 – p,
then N1 and N2 are independent and N1 ~ PP(pn), N2 ~ PP((1 – p)n) if N ~ PP(n).
This splitting property may in fact be deduced from the marking property: If
(Yi) i ∈ � is a sequence of independent and identically distributed F-valued ran-
dom variables and N = i 1= dR

3

i
! ~ PP(n), then N := i 1= d ,R Yi

3

i
! ] g is a Poisson process

on E ≈ F with intensity measure n̂ := n 7 Q, where Q is the distribution of the
Yi ’s. Finally, from (D1) and (D2) the superposition property follows easily: If
N1 ~ PP(n1), N2 ~ PP(n2) are independent, both with the same state space E,
then N1 + N2 ~ PP(n1 + n2), where (N1 + N2) (A) = N1(A) + N2(A). The splitting,
marking and superposition properties extend to the case of more than two
constituents by induction.

For the construction of the TaS models we start with a background Pois-
son process N on � with constant intensity l and a thinning mechanism
described by a probability distribution (pD)D ⊂ � on P (�), the power set (set of
all subsets) of �, as in the first model type discussed in Section 2. Addition-
ally, we now have a sequence (Yl)l ∈ � of independent d-dimensional random vec-
tors, the shifts, all with distribution Q. In the actuarial applications, Q will in
general be concentrated on the non-negative orthant �+

d, but our results below
do not require such a support condition. We assume that the Poisson process,
the thinning mechanism and the shift sequence are independent; as a consequence,
the stochastic structure of all subsequent constructions is fully determined by
l, (pD)D ⊂ � and Q. We may order the points (Tl)l ∈ � of the background process
in such a way that

–∞ < ··· < T–2 < T–1 < T0 < 0 ≤ T1 < T2 < ··· < ∞.

The points for component Xi of X are now constructed by shifting those Tl that
are not deleted for this component (which happens with probability D i" pD! ) by
the amount Yli,Yl = (Yl1,…,Yld). Again, it may be easier to understand this con-
struction by way of an illustration: Figure 2 has the same basic parameters as
used for Figure 1 but includes shifts simulated from a distribution Q that is the
product of the uniform distribution on the unit interval and the exponential
distribution with mean 1 (shifts with origin to the left or destination to the right
of the plotting window are not shown).
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Table 1 displays the numerical values for the first eight claims in Figure 2. For
example, an event occurring at time 0.960 gives rise to a claim of type 2 only;
the corresponding delay is 0.230, so that the claim is registered at time 1.190.
The event occurring at time 6.022 is the first to trigger claims of both types.

This example also helps to explain a technical point: Whereas, in order to
emphasize the connection with the Lévy case, Figure 2 suggests that first the
thinning is done and then the shifts are applied, Table 1 lists also those shifts
that because of the thinning later become irrelevant, such as the value Y1 = 0.316
in the first line. Because of our basic independence assumptions the order of
the two operations is irrelevant; in the proofs it will be more convenient to
delete components in the second step. Indeed, we will think of the first four
columns of the table as the points of a marked Poisson process in the proof
of Theorem 1 below. With this order of the operations of shifting and thin-
ning, we start with a simple one-dimensional Poisson process with constant rate.
With each event of this process we associate a d-dimensional shift vector and
a subset D ⊂ � of surviving components. Once the shifts are carried out a
Poisson process on �d results whose points consist of the potential claim arrival
times for each of the d different claim types, with one point for each of the trig-
gering events (the time stamps of the triggering events are lost in the process).
Each point of this d-dimensional process is additionally marked by the set
D ⊂ � of claim types that are going to survive the thinning step. After the sec-
ond (thinning) step, we have independent Poisson processes on �D, one for
each D with pD > 0. The number Xi (A) of claims of type i with time stamp in
A is now obtained by taking the sum of the number of points in these indi-
vidual processes that have their i th coordinate in A.

It should be clear that this generalizes the Lévy model which we would
obtain with Q concentrated on the zero vector. Also, this model is easy to
simulate. We abbreviate the above by calling X a TaS model (‘thin and shift’)
with parameters l, p and Q, where l is the intensity of the Poisson base process,
p = (pD)D ⊂ � the thinning mechanism and Q the shift distribution. That these
models satisfy our basic requirement of Poisson marginals is a standard fact
from the general theory of point processes, see e.g. p. 138 in Resnick (1987):

386 N. BAUERLE AND R. GRUBEL

TABLE 1

NUMERICAL VALUES FOR FIGURE 2

N Y1 Y2 D X1 X2

0.960 0.316 0.230 {2} — 1.190 
2.481 0.916 0.206 {1} 3.397 — 
4.543 0.660 0.008 {2} — 4.551 
4.987 0.308 0.463 {1} 5.295 — 
6.022 0.455 0.369 {1,2} 6.477 6.391 
6.773 0.663 5.642 {1} 7.436 — 
7.211 0.328 0.429 {1} 7.539 — 
8.440 0.181 0.533 {1,2} 8.621 8.973
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Shifting the points of a constant rate Poisson process (on �) by i.i.d. amounts
results in a constant rate Poisson process.

TaS models can be used to represent a mechanism underlying the genera-
tion of claims: There are triggering events, occurring with rate l; these may or
may not generate claims (here p is used) at later instances (Q describes the
delay distribution). Similar models are popular in quite diverse fields where they
are used to explain clustering. They are special cases of the Neyman-Scott or
cluster processes; see e.g. Sections 3.4 and 4.4 in Cox and Isham (1980). Here,
however, we associate different component processes to the different shifts of
one original point and we are interested in the dependence of the components,
an aspect that is lost once the component processes have been merged into a
point process on �. (We will briefly discuss the merged processes in Section 6.3
below.)

Suppose now that the d-dimensional counting process X = (X1,…,Xd) is of
TaS type with parameters l, p and Q. The following is our basic structural
result for these models; it gives a general description of the joint distribution
of X1(A1),…,Xd (Ad) in terms of these parameters. We need two more defini-
tions: For subsets A1,…,Ad of � and D, D� ⊂ � with D ⊂ D� let

M (D,D�; A1,…,Ad) := B1 ≈ ··· ≈ Bd with :
, ,
, ,

,�
B

A i D

A i D D

for
for
otherwise

5i

i

i
c

!

!=

Z

[

\

]]

]]

Further, with e = e(�) = (1,…,1) the d-dimensional vector that has all compo-
nents equal to 1, we define a measure n (Q) on �d by

n (Q)(A) := Q# (A – te)dt

for all d-dimensional Borel sets A; here A – x denotes the set {a – x : a ∈A}.
This measure plays an important role throughout the sequel. It is obvious from
the result cited above on i.i.d. shiftings of constant rate Poisson processes that
the marginal measures n (Q)pi, 1 ≤ i ≤ d, where pi : �d → � denotes the projec-
tion on the i th coordinate, are all equal to the Lebesgue measure. The following
direct computation may be instructive:
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for all one-dimensional Borel sets B. Other properties of n(Q) will be given where
they are needed.
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THEOREM 1. Let X be a d-dimensional counting process of TaS type with base rate
l, thinning mechanism p = (pD)D ⊂ � and shift distribution Q. Then, for any Borel
subsets A1,…,Ad of the real line, we have the following distributional representa-
tion:

d
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where the random variables z(D; A1,…,Ad), 0!D ⊂ �, are independent and Pois-
son distributed with

Ez(D; A1,…,Ad) = l pD
D D

�

�2

! n(Q) (M (D, D�; A1,…,Ad)).

PROOF: Marking the events of the background process by their shift vectors and
the respective set of surviving component indices leads to a Poisson process on
� ≈ �+

d ≈ P (�) with intensity measure l, 7 Q 7 (pD)D ⊂ �. The transformation

T : � ≈ �+
d ≈ P (�) → �d ≈ P (�),

(t, (y1,…,yd), D�) 7 ((t + y1,…, t + yd), D�),

makes this into a Poisson process Z on �d ≈ P (�) with intensity ln(Q) 7 (pD)D ⊂ �;
Z can be regarded as a marked point process on �d, with marks from P (�).

Now let A1,…,Ad be given. The vector X (A) := (X1(A1),…,Xd (Ad)) can be
written as a linear combination of the vectors e (D), D ⊂ �, with non-negative
integer coefficients: Each event of the background process contributes one
such vector, with D = 0 in all but finitely many cases. A marked point (t,(y1,…,
yd), D�) contributes to e (D) if and only if D ⊂ D� and t + yi ∈Ai for i ∈D, t +
yi ∉ Ai for i ∈D� \ D, which translates into

D ⊂ D�, (t + y1, …, t + yd) ∈M (D, D�; A1, …, Ad)

for the Z-process. Now let j(D, D�; A1,…,Ad) be the part of the coefficient of
e (D) that comes from the points of Z with mark D�; obviously,

Xi(Ai) = j
D DD i � 2"

!! (D, D�; A1,…,Ad) for i = 1,…,d.

Using (D1) we see that j (D, D�; A1,…,Ad) has a Poisson distribution with

Ej (D, D�; A1,…,Ad) = lpD�n (Q) (M (D, D�; A1,…,Ad)).

If (D1�,D1) ! (D2�,D2) then j (D, D�; A1,…,Ad) and j (D2,D2�; A1,…,Ad) refer to
disjoint regions of the state space of Z, hence with
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z (D;A1,…,Ad) := j
D D� 2

! (D, D�; A1,…,Ad)

an appeal to (D2) completes the proof. ¡

For some of the applications of the theorem the following interpretation of the
variables in the representation, apparent from its proof, is useful: The random
variable z (D; A1,…,Ad) is the number of points t of the base process whose
set D� of surviving components includes D and whose shifts t + yi are in Ai for
i ∈D and in Ai

c for i ∈D� \ D.
Despite its somewhat complicated appearance Theorem 1 has some useful

qualitative and quantitative consequences. It displays, for example, the simple
‘multiplicative’ way that the parameters enter the dependency structure of the
model. If Q is concentrated on the zero vector, in which case we have thinning
only, then, for A = A1 ≈ … ≈ Ad ,

n (Q) (A) = d0# (A – te)dt = ({t ∈� : te ∈A}) = (A1 ∩ … ∩ Ad),

which identifies n (d0) as ‘Lebesgue measure on the diagonal’, i.e. the image of
 under the transformation � & x 7 (x,…,x) ∈�d. As a consequence, com-
ponents referring to disjoint time intervals become independent, as mentioned
previously in Section 2.

4. DEPENDENCE PROPERTIES OF TAS MODELS

The main conclusion with respect to the dependency of the component
processes is the general structure of the components as overlapping sums of
independent, Poisson distributed random variables. For example, for i ! j we
have

iX A
X A

z z
z zj j

distr
0 1

0 2
=

+
+

i]

^
d d

g

h
n n

with z0, z1, z2 independent and Poisson distributed. This type of multivariate
Poisson distribution is discussed in Chapter 37 of Johnson, Kotz and Bala-
krishnan (1997). It follows immediately that

cov(Xi(Ai), Xj(Aj)) = var(z0) = Ez0.

We can also use Theorem 1 to relate the covariance to the model parameters.
For this, we define the tail measure q = (qD)D ⊂ � associated with the thinning
mechanism p = (pD)D ⊂ � by

qD := pD
D D

�

� 2

! for all D ⊂ �.
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In words: qD is the probability that at least the components with indices in D
survive, whereas pD is the probability that exactly these survive. If the individual
components survive independently with probability r, for example, then

pD = r |D| (1 – r)d – |D|, qD = r |D| for all D ⊂ �.

For D0, D�⊂ � fixed with D0 ⊂ D� the sets M(D,D�; A1,…,Ad) with D0 ⊂ D ⊂ D�
are disjoint, and it is easy to check that

M
D D D�0 1 1

! (D, D�; A1,…,Ad) = B1 ≈ ··· ≈ Bd with Bi :=
,

,�

A i Dfor
otherwise

0!,i
(

.

In particular, this union does not depend on D�. Hence, if z0 denotes as above
the sum of the z-variables that are common to Xi (Ai) and Xj (Aj),

j

,
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where Y = (Y1,…,Yd) is a random vector with distribution Q and P refers to
the background probability space (W, A, P) on which all the random quanti-
ties are defined. Alternatively, we can write the integral as n (Qij) (Ai ≈ Aj) if Qij
denotes the distribution of the two-dimensional random vector (Yi,Yj).

Obviously it follows that only non-negative correlations are possible in TaS
models. We will now investigate the dependence structure in greater detail.
It turns out that TaS models as a rule display some kind of strong positive
dependence, namely association. Recall that a random vector z = (z1,…,zd) is
called (positively) associated if

cov( f (z), g(z)) ≥ 0

for all increasing functions f,g : �d → �. We obtain the following result:

THEOREM 2. Let X be a d-dimensional counting process of TaS type. Then
(i) for any Borel subsets A1,…,Ad of the real line, (X1(A1),…,Xd (Ad)) is associ-

ated, and
(ii) the components of X are independent if and only if pD = 0 for all D ⊂ � with

|D| ≥ 2.
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PROOF: (i) The random variables z(D; A1,…,Ad ), 0 ! D ⊂ � are associated,
since they are independent; see Theorem 2.1 in Esary et al. (1967). Xi(Ai) is a
nondecreasing function (sum) of the random variables z(D;A1,…,Ad), 0 !D ⊂ �.
Thus, according to property (P4) in Esary et al. (1967) the statement follows.
(ii) If pD = 0 for all D ⊂ � with |D| ≥ 2, the independence of the components
follows from the construction. Now suppose there exists a D ⊂ � with i, j ∈D
and pD > 0. Then there also exist Borel sets Ai and Aj with n (Qij) (Ai ≈ Aj) > 0.
Thus, Xi(Ai) and Xj(Aj) are dependent. ¡

Theorem 2 now has the following implications. Suppose A1,…,Ad are Borel
subsets of the real line. The association property of the components yields 

d

d> , ..., > >

> , ..., >

P X A x X A x P X A x

P X A x X A x

d d
i

d

i d d

1 1 1 1 1

1

1

$

= = =

=

1

1

%] ]^ ]^

] ]_

g g h g h

g g i

for all x1,…,xd , where (X1
⊥(A1),…,Xd

⊥(Ad)) has the same marginals as the ran-
dom vector (X1(A1),…,Xd (Ad )) but with independent components. Thus, a
model with independent component processes underestimates the probability
for a mutual occurrence of a large number of claims in arbitrary time intervals.
Moreover, association implies positive supermodular dependence (see e.g. Chris-
tofides and Vaggelatou (2004)), i.e. we have

Ef (X1(A1),…,Xd(Ad)) ≥ Ef (X1
⊥(A1),…,Xd

⊥(Ad))

for all functions f : �d → � for which the expectations exist and which are
supermodular. A function f : �d → � is called supermodular, if

f (x) + f (y) ≤ f (x ∨ y) + f (x ∧ y)

for all x,y ∈ �d with x ∨ y and x ∧ y denoting the componentwise maximum
and minimum of x and y respectively. This property immediately implies some
interesting ordering relations. To this end, let us recall some basic definitions
from the theory of stochastic orders. For given random variables X,Y we say
X ≤stY if Ef (X) ≤ Ef (Y) for all increasing f : � → � and X ≤cx Y if Ef (X) ≤ Ef (Y)
for all convex f : � → � whenever these expectations exist. For a comprehen-
sive review we refer the reader to Müller and Stoyan (2002). For our counting
variables we thus obtain

i iX A X A
i

cx
i

#=
i i! !] ]g g

which means that the situation is more risky measured in the convex ordering
in case we have dependence. Moreover it holds that

max{Xi (Ai), i = 1,…,d} ≤st max{Xi
⊥(Ai), i = 1,…,d}
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which means that the maximum number of points in given sets is stochastically
larger in the case with independent components. For these and further results
see Chapter 3.9 in Müller and Stoyan (2002).

We now use Theorem 1 to obtain the global dependency structure of TaS models,
by which we mean the distributional asymptotics of the random vector that
counts the number of events of different type in a large time interval. We write
Nd ( m,S) for the d-dimensional normal distribution with mean vector m and
covariance matrix S ; ‘→distr’ denotes convergence in distribution.

THEOREM 3. Let X = (X1,…,Xd) be a d-dimensional counting process of TaS type
with base rate l, thinning mechanism p = (pD)D ⊂ � and shift distribution Q. We assume
that Ò ||x ||, Q (dx) < ∞. Then, as T → ∞,

d
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where S = (sij)1 ≤ i, j ≤ d is given by sij = lq{i, j}, 1 ≤ i, j ≤ d.

PROOF: As in the proof of Theorem 1 let j (D, D�; A1,…,Ad) be the number
of events in the background process that contribute to the coefficient of e (D)
in (X1(A1),…,Xd(Ad)) and have survival mark D�. Let 

hT (D, D�) := j(D,D�; [0,T ],…, [0,T ]).

Then hT (D,D�) is Poisson distributed with

EhT (D, D�) = lpD�n (Q) (AT (D,D�))

where

AT (D,D�) = B1 ≈ … ≈ Bd with Bi :=

, , ,

, , ,
, .�

T i D

T i D D

for

for
otherwise

5

0
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!

!

6

6

@

@

Z

[

\

]]

]]

(We have AT (D,D�) = M (D,D�; [0,T ],…,[0,T ]) in the notation introduced in
Section 3.) Fubini’s theorem gives

n (Q) (AT (D,D�)) = 1 ,A D D�T## ] g(x – te)dtQ (dx).

In the case D = D� the value of the indicator function is equal to 1 if and only
if – xi ≤ t ≤ T – xi for all i ∈D. Hence the inner integral evaluates to

1 ,A D D te� -T# ] g (x)dt = T – max
i D!

xi + min
i D!

xi,
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which, as a function of x ∈ �+
d , is bounded by T. We can therefore use dom-

inated convergence to obtain that, for all D ⊂ �, D ! 0,

lim T
1

T " 3
n (Q) (AT (D, D)) = 1.

The familiar asymptotics for Poisson distributions now provides

T
1 (hT(D,D) – EhT(D,D)) →distr N (0, lpD).

In the case D ! D� we have, because of D ! 0, an i ∈D and a j ∈D�\ D, so that
x ∈AT (D, D�) – te implies

– xi ≤ t ≤ T – xi and (t < xj or t > T – xj),

which leads to

1 ,A D D te� -T# ] g (x)dt ≤ |xi – xj | ≤ xi + xj for all xi, xj ∈�+.

Using the assumption that Ò ||x ||Q (dx) < ∞ and dominated convergence we
obtain that hT (D, D�) /T converges to 0 in probability.

We now regard hT = (hT (D, D�)) 0 ! D ⊂ D� ⊂ � as a random vector. The com-
ponents of hT are independent and asymptotically normal in the sense that,
after subtracting the mean and dividing by T, letting T → ∞ yields a limiting
normal distribution, possibly degenerate (with variance 0). This implies that the
vector as a whole is asymptotically normal. The vector (X1([0,T ]),…,Xd ([0,T ]))
of interest is a (fixed and deterministic) linear transformation of hT by Theo-
rem 1, hence also asymptotically normal.

Finally, using the calculation preceding the theorem and

Plim T
1

T " 3
# (t +Yi ∈ [0,T ], t +Yj ∈ [0,T ])dt = lim T

1
T " 3

EhT ({i, j},{i, j}) = 1

we obtain the asserted covariance structure. ¡

An important consequence of Theorem 3 is the fact that asymptotically the shift
distribution Q does not matter, as long as its mean is finite. In particular, TaS mod-
els have the same global dependence structure as the pure thinning processes with
Q = d0, i.e. the Lévy models. The TaS models provide additional local features, but
not global ones. In contrast, as explained in Section 2, in the construction by
Pfeifer and Neslehova (2004) we can have completely arbitrary dependence for
the vector (X1([0,T ]),…,Xd ([0,T ])) but the local dependence is small if T is large.

5. TOWARDS POISSON PROCESS COPULAS

In the previous sections we introduced TaS models as a class of multivariate
counting processes X = (X1,…,Xd) and discussed some of their properties. We
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now investigate the extent to which such models arise naturally from the basic
assumptions that the marginal processes X1,…,Xd are Poisson processes with
constant rate and that X is time shift stationary.

The definition of TaS models in Section 3 begins with a ‘parent’ Poisson
process that describes the times of the triggering events. As explained in that
section, we can alternatively regard a multivariate counting process X of TaS
type as a superposition of independent Poisson processes, if we mark the time
points of the parent process by the set D ⊂ {1,…,d} of coordinates of X where
the triggering event results in a claim. The thinning part of the models thus
leads to a superposition of independent Poisson processes; the dependence
‘across time’, which is our main interest, is entirely due to the shift part of the
TaS models. In this section we therefore concentrate on one such process (no
thinning, shifts only, so that in the marked Poisson process construction, all
points have survival mark D = �) and we assume that X arises by projection from
a Poisson point process N with state space �d in the sense that, for i = 1,…,d,

Xi(B) = N (pi
–1 (B )) for all Borel sets B ⊂ �.

Here pi : �d → �, x = (x1,…,xd) 7 xi, denotes the projection onto the i th coor-
dinate. Let n be the intensity measure associated with N. What can be said
about N and n if X is time shift stationary with constant rate marginals?

We assume throughout this section that the counting processes are locally
finite with probability 1. In terms of insurance applications this means that we
exclude the case where we could have an infinite number of claims in a finite
time interval. This assumption implies that, if X arises by projection from a
Poisson process with intensity measure n,

n (pi
–1 ( [ai,bi))) < ∞ for i = 1,…,d, ai , bi ∈�, ai < bi.

For example, a d-dimensional Poisson process with constant positive intensity,
i.e. with n = ld where d denotes d-dimensional Lebesgue measure and l > 0,
would not generate a locally finite multivariate counting process if d > 1. To
avoid trivialities at the other extreme we also assume that n # 0, i.e. with prob-
ability 1 there is at least one claim.

As X is a deterministic function of N, the distribution of N determines the
distribution of X, hence the distribution of X is completely specified by n. Our
first result in this section implies that, conversely, the distribution of X also
specifies the intensity measure n and therefore the distribution of N. This aspect
will be further expounded at the end of this section.

THEOREM 4. Let X = (X1,…,Xd) and X = (X1,…,Xd) be multivariate counting
processes that arise by projection from the Poisson processes N and N with inten-
sity measures n and n̂ respectively. Suppose that the random vectors

(X1(B1),…,Xd (Bd)) and (X1(B1),…,Xd(Bd))

have the same distribution for all sets of finite intervals Bi = [ai,bi), i = 1,…,d.
Then N and N have the same distribution, i.e. n = n̂ .
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PROOF: We show that the condition implies n (A) = n̂ (A) for all A ∈B d of the
form A = B1 ≈ … ≈ Bd with Bi = [ai,bi) ⊂ �. Since this is a ∩-stable generator of
Bd the result then follows. Let z = (X1(B1),…,Xd(Bd)). We will show that n (A)
can be obtained from the characteristic function fz associated with z. Equal-
ity in distribution implies equality of the characteristic functions, hence this
would indeed lead to n (A) = n̂ (A).

It follows from the properties of a Poisson process similar as in the proof
of Theorem 1 that there are disjoint sets AD ∈Bd, D ⊂ � and D ! 0, which
depend on B1, …, Bd, such that

Xk(Bk) = zD
D k"

! for k = 1,…,d,

where the zD are Poisson distributed with respective (finite) parameters lD :=
n (AD); in particular, A = A� and hence n (A) = l�. Moreover, the zD are mutu-
ally independent. We have to show that l� can be obtained from the charac-
teristic function fz of z. For t ∈�d we obtain

t t tz z z
!

k D
k Dk

d

D k
k DD1 0

= =
! !=

� !! !!

and thus we have

i .expt Ee E t tf f
! !

D
k DD D k D0 0

= = =
! !

zit z�
Dk kzz !% % !] e eg o o

The characteristic function fzD of the Poisson distributed random variable zD

is given by fzD(q) = exp(lD(e iq – 1)), q ∈�. Inserting we obtain

k D! .expt ef l 1
!

D
i t

D
z

0

= -k! !
] _eg io

Differentiating log fz(t) with respect to tj gives

j
log expt t i i tf lD

D j k D
2
2

=
" !

kz ! !] eg o

and we arrive at

... .log expt t t i i tf l�
d

d
d

k D12 2
2

=
!

kz !] eg o

Inserting t = 0 we obtain the required formula for l� in terms of fz. ¡

Note that there are no assumptions about the marginal processes in Theorem 4.
We next relate the stationarity properties of X and N to each other. We recall that
X is said to be time shift stationary if, for fixed B1,…,Bd ∈B, the distribution
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of (X1(B1 + t ),…,Xd (Bd + t)) does not depend on t. If N is a d-dimensional
point process we say that N is spatially stationary with respect to diagonal
shifts if, for fixed A1,…,Ak ∈B d, the distribution of (N(A1 + te),…,N(Ak + te))
does not depend on t. Finally, a measure n on (�d,B d) is invariant with respect
to diagonal shifts if n (A + te) = n (A) for all A ∈B d.

THEOREM 5. Let X be a multivariate counting processes that arises by projection
from a Poisson processes N with intensity measure n. Then the following statements
are equivalent:
(i) X is time shift stationary,
(ii) N is spatially stationary with respect to diagonal shifts,
(iii) n is invariant with respect to diagonal shifts.

PROOF: Using (D1) and (D2) from Section 3 we see that (iii) implies that the
distribution of the random vector (N(A1 + te),…,N(Ak + te)) does not depend
on t, for fixed d-dimensional Borel sets A1, …, Ak, k ∈ �. Because of the
definition of X this in turn implies that the distribution of

(X1(B1+ t),…,Xd (Bd + t)) = (N(p1
–1(B1) + te),…,N (pd

–1(Bd) + te))

does not depend on t, which is (i). Finally, to see that (i) implies (iii), we use
Theorem 4 with X the original counting process and X the shifted process given
by (X1(B1),…,Xd(Bd)) = (X1(B1+ t ),…,Xd (Bd + t)). ¡

Our next result shows that intensity measures that are invariant with respect to
diagonal shifts must be of a very specific form. As in Section 3, for a probabil-
ity measure Q on �d we define the measure n (Q) by n (Q) (A) = Ò Q (A – te) dt,
a minor case of notational overloading in the present framework. Sometimes
it is more convenient to work with integrals of functions than with measures
of sets; the definition of n (Q) is equivalent to the requirement that

, ..., , ..., , ...,x x Q dx x t x t Q dx dx dtnd d d1 1 1= - -z z# ##] ^ ] ] ]g h g g g

for all non-negative and measurable functions ƒ : �d → �.

THEOREM 6. A measure n on (�d,B d ) is invariant with respect to diagonal shifts
if and only if it is of the form n = ln(Q) for some l > 0 and some probability mea-
sure Q on �d.

PROOF: Let n̂ be the measure-theoretical image of n under the transformation

T : �d → �d, (x1, x2,…, xd) 7 (x1, x2 – x1,…, xd – x1).

Let t ∈� be fixed and let ƒ : �d → � be a non-negative measurable function.
Using Ò c dn̂ = Ò c °Tdn with c : �d → � defined by c(x1,…,xd) = c(x1 + t, x2,…,
xd), we obtain
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, , ..., , , ..., .nx t x x dx x t x x x x dxnd d1 2 1 2 1 1+ = + - -z z# #] ] ] ]g g g g

Further, the invariance of n implies that

, ..., , ...,x x dx x t x t dxc n c nd d1 1= - -# #] ] ] ]g g g g for all t ∈ �

for all non-negative measurable functions c : �d → �. In particular, with c : �d →
� defined by c (x1,…,xd) = ƒ(x1+ t, x2 – x1,…,xd – x1),
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Putting these two arguments together we see that

z z, , ..., , , ...,n nx t x x dx x x x dxd d1 2 1 2+ =# #] ] ] ]g g g g

for all t ∈� and for all non-negative measurable functions ƒ : �d → �. This
shows that n̂ is invariant under shifts in the direction of the first coordinate.

Further, because of
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the transformed measure n̂ also has first marginal n̂1 = l. For B ∈Bd – 1 fixed
the measure A 7 n̂ (A ≈ B) therefore has to be a multiple of Lebesgue measure,
i.e. we have

n̂ (A ≈ B) = l(A)Q0(B)

where Q0(B) is a function of B that has the property Q0(�d) = 1 because of the
above statement on the first marginal measure n̂1 of n̂. Since B → n̂ ([0,1] ≈ B)
also is a (finite, non-zero) measure, we see that Q0 is in fact a probability mea-
sure on (�d –1, B d –1).

Now let Q := d0 7 Q0; we claim that n = ln(Q). For ƒ : �d → � measurable
and non-negative again, we have
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which completes the first part of the proof.
Conversely, if n = ln (Q), then

,A te Q A te t e dt Q A t e dt An l l n� �+ = + - = - =� �# #] ] ] ]g g g g

where the second equality follows by substitution. ¡

Because of the cause-effect relationship between the background events and the
claims of different types, it is natural in our application to think of shifts as
moves forward in time. This leads to the requirement in the actuarial applica-
tions of the TaS models that Q be concentrated on the non-negative orthant
�+

d , whereas the representation in Theorem 6 may involve shifts that can be neg-
ative. We now argue that the support condition on Q is a minor one in the sense
that TaS models with this restriction on the shift distribution are dense in the
full class. For this we need a concept of convergence for multivariate counting
processes. We first recall some basic facts about the particular distance of prob-
ability distributions on which this concept relies. These can be found in many
textbooks; see e.g. the appendix in Barbour, Holst and Janson (1992) for a
comprehensive overview or Rachev (1991) for a thorough treatment in the larger
context of probability metrics.

The total variation distance of two probability measures P and Q on some
measurable space (E,A ) is given by

dTV(P, Q ) := sup
A A!

|P (A) – Q (A) |.

For countable E we have

dTV(P, Q ) = .P x Q x
2
1

x E

-
!

! ^ ^h h! !+ +

If P, P1, P2, P3,… are probability measures on (E,A ) then we say that Pn con-
verges to P in total variation as n → ∞ if limn→∞ dTV(Pn,P) = 0, and then limn →∞
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Ò f dPn = Ò f dP for all bounded and measurable functions f : E → �. By a slight
abuse of notation we will also apply this terminology to random variables and,
for example, say that zn converges to z in total variation if this holds for the
respective distributions. For discrete real random variables, especially for count-
ing variables which take their values in �0, convergence in total variation is
equivalent to the familiar concept of convergence in distribution. In particu-
lar, if z, z1, z2,… are Poisson distributed with finite parameters l, l1, l2,…
respectively, then lim n→∞ln = l implies convergence in total variation of zn to
z as n → ∞. Finally, if zn1,…,znk are independent and zni converges to zi in total
variation as n → ∞ for i = 1,…,k, then f (zn1,…,znk) converges in total variation
to f (z1,…,zk) for any measurable function f : Ek → �.

THEOREM 7. Let X = (X1,…,Xd) be a time shift stationary multivariate count-
ing process that arises by projection from a Poisson point process with intensity
measure n. Then there exists a sequence (Qn) n ∈ � of probability measures on the
non-negative orthant �+

d such that the TaS processes X(n) with rate l := n ([0,1] ≈
�d – 1), thinning mechanism (pD)D ⊂ � given by p� = 1 (i.e., no thinning) and shift
distribution Qn converge to X as n → ∞ in the sense that, for all Borel subsets B1,…,
Bd of the real line with finite Lebesgue measure, the random vector (X1

(n) (B1),…,
Xd

(n) (Bd)) converges in total variation to (X1(B1),…,Xd (Bd)).

PROOF: By Theorems 5 and 6 we have n = ln (Q) for some probability measure
Q on �d; we may assume that l = 1. Let Qn and Qn be the distributions of

(z1 ∨ (– n),…,zd ∨ (– n)) and (n + z1 ∨ (– n),…,n + zd ∨ (– n))

respectively where z = (z1,…,zd) is a random vector with distribution Q. Clearly,
Qn is concentrated on �+

d . From the properties of the operator Q 7 n (Q) we
obtain n(Qn) = n(Qn), as Qn arises from Qn by a diagonal shift. Also, by the con-
struction of Qn via z,

| Qn(A) – Q (A) | ≤ 1 – Q ([– n,∞)d ) for all A ∈Bd,

which implies that Qn converges to Q in total variation as n → ∞.
Now let B1,…,Bd ⊂ � be as in the statement of the theorem. As in the proofs

of Theorem 1 and Theorem 4 we can write (X1
(n) (B1),…,Xd

(n) (Bd)) as a fixed
deterministic function of the random vector (N (n) (AD))D ⊂ �, D ! 0, with AD ∈Bd

disjoint and depending on B1,…,Bd, and similarly for X. The components of
these vectors are independent Poisson random variables with parameters given
by n (Qn) (AD), n ∈�, and n (Q) (AD) respectively. The sets AD arising in the
decomposition are d-dimensional rectangles C1 ≈ ··· ≈ Cd where at least one of
the Cj’s has finite Lebesgue measure. In particular, x 7 Ò 1AD – x (te)dt is bounded
by (Cj), hence the total variation convergence of Qn to Q together with

n (Qn) (AD) = 1
��

A x
d

-D## (te)dtQn(dx)
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yields the convergence of n(Qn) (AD) to n(Q)(AD). This in turn implies the con-
vergence in total variation of N (n) (AD) to N (AD) for all D ⊂ �, D ! 0. Using
the last of the properties of total variation convergence given before the state-
ment of the theorem we now obtain the assertion. ¡

In summary these results show that within the class of multivariate counting
processes generated by Poisson point processes the requirements of constant rate
marginals and time shift stationarity essentially lead to the class of TaS models.

We close this section with some remarks, related to the above material or
making use of the ideas underlying the above proofs and constructions.

REMARKS. (a) If Q has a density f with respect to d-dimensional Lebesgue
measure d then n (Q) also has a density with respect to d. Suppose that the
random vector Y = (Y1, …,Yd ) has density f and let f be the density of the
(d – 1)-dimensional random vector (Y2 – Y1,…,Yd –Y1). Then x = (x1,…,xd) 7
f (x2 – x1,…,xd – x1) is a density of n(Q). To see this, let again ƒ : �d → � be mea-
surable and non-negative. Then

, ..., , ...,

, ..., , ..., ,

, ..., , ,..., .

d Q

x t x t f x x dx dx dt

x x f x t x t dt dx dx
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On the other hand, it is easy to see that

(z2,…, zd) 7 , , ...,f t z t z t dtd2 + +# ] g

is a density for (Y2 –Y1,…,Yd – Y1). This formula for the density of n (Q) can
be used to simplify some calculations, such as in Section 7 below.

(b) The parametrization of TaS models by a base intensity l, the survival
probabilities pD, D ⊂ �, and the shift distribution Q is convenient but some-
what redundant. For example, we could demand that p0 = 0 since otherwise a
proper change in the base rate together with the corresponding change in the
survival probabilities would lead to the same stochastic process. Similarly, a shift
of Q by a scalar multiple of e = (1,…,1) leaves n (Q) unaffected and hence
would also lead to the same multivariate counting process. Informally, the
points of the background process may be moved backwards and forwards in
time and this can be undone by a corresponding change in the delay times. This
simple fact is the basis for the denseness property of TaS models formalized
in Theorem 7. Such redundancies are also important in connection with sta-
tistical estimation of the model parameters; this aspect of the TaS models will
be further investigated in a separate paper dealing with statistical issues.
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(c) Formally, a counting process X on � is a measurable function, defined on
some probability space and with values in the space M (�) of �0-valued, locally
finite measures m on (�,B), where the s-field on the latter is the one generated
by the ‘projections’ m 7 m(B), B ∈B. The finite-dimensional distributions of X
are the distributions of the random vectors

(X (B1),…,X (Bk)), k ∈�, B1,…,Bk ∈B .

These determine the distribution of X, see e.g. Section 6.2 in Daley and Vere-
Jones (1988). To obtain multivariate counting processes we essentially ‘vec-
torize’ the one-dimensional concept. This means that the family of finite-dimen-
sional distributions associated with the d-dimensional counting process X =
(X1,…,Xd) now relates to the distributions of

(X1(B11), …, X1(B1l1), X2(B21), …, X2(B2l2), …, Xd(Bd1), …, Xd(Bdld ))

with B11,…,Bdld ∈B. It is a consequence of Theorem 4 that in the case that X
arises by projection from a multivariate Poisson process, it is enough to con-
sider the random vectors (X1(B1),…,Xd (Bd )), B1,…,Bd ∈B ; in fact, we may
take these sets to be intervals.

(d) It has already been mentioned at the beginning of Section 2 that the
straightforward translation of the copula idea from random vectors to multi-
variate counting processes leads to two major problems. Using our general
approach via Poisson point processes we now discuss the second of these. For
simplicity we suppose that X = ((X1, t, X2, t))t ≥ 0 is a two-dimensional counting
process, where counting starts at time t = 0 and Xi,t is the number of events of
type i =1,2 up to and including time t. Then, for each t ≥ 0, (X1, t, X2, t) is an
ordinary two-dimensional random vector; let Ct be an associated copula. We
now show, by giving an example, that the family (Ct)t ≥ 0, together with the dis-
tribution of the marginal processes, does not suffice to determine the distri-
bution of X. Our starting point is an ordinary static two-dimensional copula C,
which we assume to be non-symmetric, i.e. C (a, b) ! C (b, a) for some a, b ∈
(0,1). Let N be a Poisson point process on the unit square (0,1) ≈ (0,1) with inten-
sity measure n given by

n ((0,s ] ≈ (0, t ]) = C (s,t) for all s, t ∈(0,1) ≈ (0,1).

We define X = ((X1, t, X2, t))t ≥ 0 by

X1, t := N((0,t] ≈ (0,1]), X2, t := N((0,1] ≈ (0,t])

(the counting processes remain constant from time t = 1 onwards). For the sec-
ond process X = ((X1,t, X2,t))t ≥ 0 we simply switch components, i.e., X1,t := X2,t and
X2,t := X1,t for all t ≥ 0. We claim that X and X generate the same family of cop-
ulas in the above sense, but that X and X do not have the same distribution.
To see this, we first fix t ∈(0,1). Then, as in the proof of Theorem 1,
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where z0, z1, z2 are independent Poisson random variables with respective para-
meters l0, l1, l2 given by

l0 = C(t,t), l1 = t – C (t,t) and l2 = t – C (t,t).

Because of l1 = l2 this implies that the two random vectors (X1,t, X2,t) and (X1,t,
X2,t) have the same distribution and therefore lead to the same copula. On the
other hand,
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Again, z0, z1, z2 are independent Poisson random variables, now with para-
meters given by

l0 = C (a,b), l1 = a – C (a,b) and l2 = b – C (a,b),

and z0, z1, z2 are independent Poisson random variables with the respective
parameters

l0 = C (b,a), l1 = a – C (b,a) and l2 = b – C (b,a).

In particular,

var(X1,a + X2,b) = 2C (a,b) + a + b ! 2C (b,a) + a + b = var(X1,a + X2,b),

which shows that the random vectors (X1,a, X2,b) and (X1,a, X2,b) have different
distributions. In the terminology of the previous part we therefore see that a
further reduction in the family of random vectors (X(B1),…,X(Bd)) to the sets
B1,…,Bd = (0,t], t ≥ 0, would destroy the property that the distributions char-
acterize the distribution of X, even in the case that X arises by projection from
a Poisson process.

(e) Multivariate Poisson processes with constant intensity marginals are in a
way analogous to multivariate random variables with uniform marginals, i.e.
we could consider the corresponding intensity measure n as a Poisson process
copula. Theorem 7 characterizes those copulas that lead to counting processes
that are time shift stationary. It is well known that a non-homogeneous one-
dimensional Poisson processes can be obtained from a homogeneous such
process with a suitable time transformation, similar to the quantile transforma-
tion that underlies the usefulness of classical copulas. At present, this observa-
tion may be used to serve as a guideline in the construction of suitable models.
Due to the fact that the transformations of the marginals refer to time, which
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will in general lead to different ‘speeds' in the respective component processes,
it seems that the practical consequences of this observation may be of limited
value.

6. ACTUARIAL APPLICATIONS

It seems that nowadays models in insurance are towards a broader perspective
on assets and liabilities which particularly takes into account dependencies
between processes. As possible applications of our general TaS models we sug-
gest the following situations.

6.1. Different lines of business

Suppose the points of the base process represent time points of natural cata-
strophes like earthquakes, floods, hurricanes etc. An immediate damage to
houses and cars which produces claims in the non-life insurance branch is then
most likely followed by claims in health insurance due to epidemics or general
bad health conditions after the catastrophe. Thus, X1 and X2 would count the
claims in non-life and health insurance respectively. In the context of this appli-
cation, an extension of our models, where a single event may generate more than
one event in the individual component processes, may be of interest.

6.2. Reinsurance

Consider an insurance company and its main reinsurer which are connected
via e.g. a stop-loss treaty. The reinsurer pays up to a specified limit, all claims
which in total exceed a certain retention within one year. The points of the base
process correspond here to the claim arrival time points for the insurer and
these may also be claim arrival time points for the reinsurer. Thus, X1 and X2
would count the claims for the insurer and for the reinsurer respectively.

6.3. Late claims

A somewhat different application of the TaS model is as follows: Suppose we
add up all components and obtain a new counting process X, i.e. X = i Xi! . Note
that X is not a Poisson process anymore due to the dependence in the compo-
nents. The interpretation is as follows: A point at time t with mark D in the
base process corresponds to an event which triggers a series of claims which arrive
at time points t +Yi1

,…, t +Yi |D|
where Y ~ Q and D = {i1,…, i |D|}. This situation

is well-known from the IBNR (incurred but not reported) problem. Often insured
events need several years until they are settled completely. Here we assume
that at most d payments are needed in order to settle all claims arising from
the same event.
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For the expected total number E X(A) of claims with time stamps in A the
possible non-independence of the component processes is irrelevant and we sim-
ply obtain EX(A) = ld(A) if there is no deletion. Beyond expected values,
Theorem 1 yields the distributional representation

X(A) =distr 1 · Z1 + 2 · Z2 + ··· + d · Zd ,

where Z1,…,Zd are independent random variables, each with a Poisson distri-
bution with parameter depending on A; see Section 7 for an example.

6.4. Distribution of the next claim arrival

An interesting quantity for insurance applications is the time of the first claim
arrival after time 0 say, which we denote by t. Let X = (X1,…,Xd) be a d-dimen-
sional counting process of TaS type with base rate l, thinning mechanism p =
(pD)D ⊂ � and shift distribution Q. Formally, we define

t = inf{t ≥ 0 : Xi((0,t]) > 0 for some i ∈�}.

The distribution of t can be expressed with the help of the model parameters
as follows:

d

!

> , , ..., ,

; , , ..., , , ,

; , , ..., ,

, ; , , ..., ,

, ; , , ..., ,

, .

exp

exp

exp

�

P t t P X t X t

P D t t D D

P D t t

p Q M D D t t

p Q M D D t t

p Q t

z

z

l n

l n

l n p

0 0 0 0

0 0 0

0 0 0

0 0

0 0

0

�

�

0

!

!

!!

!

,

,

,,

,

�

�

�

�

D D

D
D DD D

D
D D DD D

D i
i DD D

1

1

�

�� �

�� �

0

0

00

0

6 1

= = =

= =

= =

= -

= -

= -

1

21

11

1

-

�

�

�

!

%

!!

!!

'!

] ^ ^^

^^

^^

^ ^^f

^ ^^f

^ ^ef

g h h h

h h

h h

h hhp

h hhp

h hop

6 6

6 6

6 6

6 6

6 6

6

@ @

@ @

@ @

@ @

@ @

@

Note that t is in general not exponentially distributed; again, Section 7 contains
an example.

For further applications, also to portfolio credit risk, we refer to Lindskog and
McNeil (2003).

7. COMPUTATIONAL ISSUES AND EXAMPLES

Suppose we are given a TaS model X with parameters l, (pD)D ⊂ � and Q. How
can we obtain quantities of interest (expectations, probabilities etc.) for such
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a model? Under the heading ‘computational’ we summarize Monte Carlo sim-
ulations, standard numerical procedures but also algorithmic issues. With
respect to the first, it should be clear how to simulate values from the random
variables of interest once it is known how to simulate values from the shift
distribution. As so often, stochastic simulation is easy to carry out and can be
an invaluable tool for getting a ‘feel’ for the model, but its accuracy is limited.
Also, the dependence of the values of interest on the model parameters is nor-
mally beyond the reach of plain Monte Carlo procedures. With standard
numerical methods we may at least hope for better accuracy. A typical case is
that of evaluating the probabilities associated with overlapping sums of inde-
pendent Poisson variables that appear in Theorem 1 and its applications; this
is discussed in Chapter 37 of Johnson, Kotz and Balakrishnan (1997).

First we consider the case d = 2, Y = (Y1,Y2) with Y1 / 0, Y2 ≥ 0, so that Q =
d0 7 Q0 with Q0 concentrated on [0,∞). In the actuarial framework this means
that there are only two types of claims and that each claim of type 1 triggers a
later claim of type 2. We now investigate the covariance of X1([0,t]) and X2([0,t ]).
Using the formula in Section 4 we obtain
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From this representation of the covariance we immediately see that whenever
Q0 ≤st Q�0 we obtain

cov(X1([0, t]), X2([0, t])) ≥ cov(X1([0, t]), X�2 ([0, t])).

This means that stochastically larger shifts lead to a smaller covariance. This
is of course what one expects. However, we also get the following somewhat
more surprising result. Suppose that Q0 is a distribution with support [0,∞) and
finite first moment m. Then we have
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Due to the properties of the convex order we thus obtain that Q0 ≤cx Q�0 implies
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cov(X1([0, t]), X2([0, t])) ≤ cov(X1([0, t]), X�2 ([0, t])).

This means that more variability in the shift distribution (leaving the mean
unchanged) leads to a higher covariance.

We now consider a special parametric subclass of the general TaS model,
without the above support assumption on Q but still in dimension d = 2, where
some general computations can be carried out on the basis of the results of
the previous sections. In this subclass we assume independent survival of the
components, so that p{1} = p{2} = r(1 – r), p{1,2} = r2 and p0 = (1 – r)2. We further
assume that the shifts are independent and both exponentially distributed with
the same parameter a, i.e. with Exp(a) for the latter distribution we have Q =
Exp(a) 7 Exp(a). Models from this parametric TaS class are therefore com-
pletely specified by the three (real) parameters l, r and a; our aim is to obtain
some quantities of interest explicitly as functions of these.

It is known that, with Y1,Y2 independent and L (Y1) = L (Y2) = Exp(a), the
distribution of Y1 –Y2 is two-sided exponential with parameter a. Together
with Remark (a) at the end of Section 5 this gives the density

(x1, x2) 7 a
2

e – a |x1 – x2 |, x1,x2 ∈ �,

for n (Q). In particular, for all t > 0,

n (Q) ([0, t] ≈ [0, t]) = a
2

tt

00
## e – a |x1 – x2 | dx1dx2 =

a
t e1 a

-
- - t

.

The formula for the covariance given at the beginning of Section 4 leads to

cov(X1([0, t]), X2([0, t])) = lr2 .
a

t e1 a

-
- - t

c m

We next consider the time t of the first claim arrival after time 0. Because of
� = {1,2} the last sum in the formula for P(t > t) given in Section 6.4 reduces
to the cases {1}, {2} and {1,2}. As both marginal measures of n (Q) are equal
to , we have

n (Q) (p1
–1([0,t ])) = n (Q) ([0,t ] ≈ �) = t

and similarly n (Q)(p2
–1([0,t ])) = t. Further, with the computation used above

for the covariance,
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hence
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> .exp
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2 1 a2
2
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As announced at the end of Section 6.4, this is not an exponential distribu-
tion. Finally, we consider the total number X([0, t]) = X1([0, t]) + X2([0, t]) of
claims in the time interval [0, t]. In the notation that we used at the beginning
of Section 4 we can write this as X([0, t]) = 2z0 + z1 + z2, so that

X([0, t]) = Z + 2Z�

with independent random variables Z and Z�. Here Z and Z� both have a Pois-
son distribution and, using similar calculations as for the covariance and the
arrival time,

EZ� = lr2
a

t e
lr

1 a
2

- - - t
_ i, EZ = 2lr(1 – r) .

a
t e

lr
1

2 a
2

+ - - t
_ i

It is known that distributions of this type are compound Poisson, which means
that Panjer recursion or transform methods can be applied to obtain numerical
values for the probabilities P(X([0,t]) = k), k ∈�0, for any specific values of the
parameters l, r and a.

In summary, we have introduced a flexible class of models for multivariate
counting processes. The underlying structural assumptions of this class appear
to be quite natural in a variety of insurance applications. Some general results
have been obtained, in particular for the covariance of the component processes
and the waiting time for the next claim. These aspects can be related to the sto-
chastic ordering of the shift distributions that are part of the model specifica-
tion. We have also shown that these models arise in a natural way in connection
with time shift stationarity. Finally, at least in some simple but prototypical
cases some explicit computations can be carried out that reveal the dependence
of quantities of interest on the model parameters.
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