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Abstract. According to M. Gromov, any sequence of Riemann manifolds with
uniformly bounded geometry has a subsequence that converges to a limit. It is
shown here that this limit Riemann structure is Lipschitz, generates a Lipschitz
geodesic flow, and consequently, as Gromov asserted, the limit distance function
is of class C u . Sharpness of the results is discussed. A simple, extrinsic proof of
Gromov's Theorem is included.

1. Introduction
As presented in [8], M. Gromov's theory of Riemann manifolds with pinched
curvature contains the following:

COMPACTNESS THEOREM. Any sequence of Riemann manifolds with bounded geometry,
as described below, has a subsequence of mutually diffeomorphic manifolds converging
(in a certain isometric sense) to a limit Riemann manifold.

The class c€= ^(n, A, So, v0) consists of all n-dimensional compact C°° Riemann
manifolds whose absolute sectional curvature is ^A2, whose diameter is sg 0 , and
whose volume is ^v0. These manifolds are said to have bounded geometry. The
parameters n, A, So, v0 are arbitrary but fixed.

The Riemann structure g on the limit manifold M is asserted to be continuous
and its distance function d is asserted to be C11 - continuously differentiable with
Lipschitz first derivatives. Since the proof of this finite differentiability has not met
with complete acceptance (see [15] for instance) I offer an alternative one here.
It was inspired by lectures of H. H. Wu in which he presented similar results of his
and R. Green's [6].

Here, existence of the limit Riemann manifold is established extrinsically via the
cheap Whitney embedding method (see § 3) whereas Greene and Wu proceed
intrinsically. In the Greene-Wu regularity analysis (and also in a similar proof given
by S. Peters [17]) harmonic coordinates and PDE estimates play an important role.
They conclude that the limit Riemann structure is of class C1" (it has ^-Holder
continuous first derivatives, v<l) in their special coordinate systems and the
distance function is C1'", a < 1. The regularity analysis below uses less delicate
coordinates and ODE estimates to prove that the limit Riemann structure is Co>1

(i.e. Lipschitz) and that its distance function is C11. In §4, sharpness of these
differentiability results is discussed.
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2. Lipschitz geodesic flows
Let us fix some terminology. Consider a single smooth compact manifold M and
a continuous Riemann structure g on M. The g-length of a piecewise C1 curve
/3:[a, b]^M is

i=[V(O|gd<.
J a

The g-distance from p to g in M is the infimum of g-lengths of such )3's that join
p and q. It is denoted dg(p, q) and dg is a metric on M. A C1 curve y: (a, b)-> M
is a g-geodesic of speed c if the g-norm of its tangent vector is identically c and, for
any t, t* e (a, b) with \t-t*\ small,

c\t-t*\ = dg(y(t),y(t*)).

A flow <p on TM is a g-geodesic flow if the projection TT : TM -> M sends <p-trajectories
onto g-geodesics and <p,(v) is the tangent to TT(<P,(V)).

The following definition is implicit in the work of Gromov. It specifies the type
of convergence and Riemann structure to be studied.

Definition. A sequence of smooth Riemann structures gk on M ^-converges to a
continuous Riemann structure g provided:

C^a) gk =t g as fc-»oo in the sense of C° Riemann structures;
{<Sb) the (Levi-Civita) connection of gk stays bounded as fc->oo;

the absolute sectional curvatures of gk are uniformly bounded.

We say that these gk ^-approximate g, that g is a Gromov limit, and that g is of
class $.

To understand the meaning of ^-convergence, fix a finite atlas of smooth compact
M-charts s4 = {il/} and express each gk in ip-coordinates. Do the same for g. Over
each ij) this gives real nxn matrix-valued functions gkij(x) and gtJ(x). The condition
(^a) requires uniform convergence of the former to the latter as k -> oo and x varies
in the i/>-chart. In the same vein, (®b) requires that the Christoffel symbols T'kij(x)
of gk in the i/>-coordinates stay uniformly bounded as k -* oo. Since all the first partial
derivatives of the gkij respecting the ip- coordinates are determined as recombinations
of the Christoffel symbols and the gkij themselves [18, p. 55, formulas (3), (4)], (<gb)
can be replaced by

(•^b') Respecting the atlas s& on M, the C1 size of the i/*-chart expression of gk

is uniformly bounded as k->oo'
Note: {c§b') implies g is Lipschitz. By compactness of M, {<Sb') is independent of s£.

THEOREM 1. A Riemann structure g of class <& generates a Lipschitz geodesic flow.
It is not immediate, but existence of g-geodesics follows from continuity of g alone.
The existence proof becomes easier when Lipschitzness of g is used. For uniqueness
and Lipschitz dependence on initial data, we need g to be of class 'S. As a first step
we make a local estimate in R".
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LEMMA 1. Let g be a Lipschitz Riemann structure on W. Then, for small r,

\ — C Lr< -, r— < 1 + C Lr,
\x-y\o

where dg denotes g-distance, \ \z denotes the g(z)-norm, L is the Lipschitz constant of
g, C is a constant comparing \ \z against the Euclidean norm, and \x\ + \y\ + \z\< r.

Proof. Let | | denote the Euclidea.n norm. By continuity of g there exists a constant
C such that

(1) C" '<

for all non-zero v in W and all z near the origin. Since g is Lipschitz,

\(v,w)g(x)-(v,w)g(y)\<L\x-y\\v\\w\,

for some constant L, all x, y near the origin and all vectors v, w in R". Setting v = w
gives | |u |x- |u | 2 |^L|x-y | | t ) | 2 . Thus,

(2)

For x, y near the origin, there is a piecewise C curve y such that dg(x, y) =
Jo |"y'(')ly(i) dt. (Exact equality is attained but we need not use this.) Clearly y is
near the origin too. Then

dg(x,y)= \1\y'(t)\yWdt= \ | y (
Jo Jo

\y'(t)\0-CL\y(t)\\y'(t)\dt

\y'(t)\o-CLrC\y'(t)\odt,

• \ :

by (2) and (1). Since Jo |"y'(')|o dt ̂  \x-y\0 we get the first inequality claimed in the
lemma. The second is similar. Let cr( t) be the segment from x to y, a( t) = ty + ( 1 - t)x.
Then

•i

l = | \y-:
Jo

= \y - Ao+{\y -

^ \y-x\0+CLr\y-x\dt<{l- QED

LEMMA 2. Suppose that a sequence gk of smooth Riemann structures ^-converges to
g as fc -> oo. Then, for some r > 0, the g^-exponential maps restricted to the g-discs of
radius r in TM converge uniformly,

linn = ep: TpM(r) -* M.
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136 C. C. Pugh

These ep are uniform Lipeomorphisms to neighbourhoods of pe M. Their radial seg-
ments, t>-*ep(tv), are g-geodesics and g has no other local geodesies.

Proof. By the Rauch Comparison theorem [1, p. 251] and Klingenberg's lemma [2]
there is a uniform radius r > 0 such that exp^p smoothly embeds each TpM(2r)
and, on this disc, its derivative has uniformly bounded norm and conorm. It follows
that these exp^p-radii minimize gfc-length and that {exp^p} is equicontinuous. For
a subsequence gm,

ep = limm expmp

is a Lipeomorphic embedding. Suppose that for some second subsequence, gt,,

e* = limmexp*jP.

We must show ep = e*.
Fix a smooth coordinate system at p. Assumption {(&6) says that the Christoffel

matrices for gk in these coordinates are uniformly bounded. Since the g^-geodesics
yk solve

it follows that yk is uniformly bounded, i.e. that the geodesies are uniformly
Cu-equicontinuous. Thus, the radii of ep and e* are of class C1 1.

Let ym and y be the radii ym : t>-+expmp (tvm) and y: t>-*ep(tv) where 0< / < 2 r
and v, vm e TpM satisfy

ym(rm) = y{r), limm rm = r.

By construction, limm ym = y and |ym|gm = 1 = |y|g. Hence,

(3) dgm(p, ym(0) = lgm(ym\io.o) = t = ̂ (y|[o,»]).

for 0< t <2r. We claim that

(4) dg(p,y(t)) = t, 0<r<2r.

First suppose that dg(p, y(r)) < T, for some re [0, 2r]. Then there exists a piecewise
C1 curve 0 from p to q d=y{r) whose g-length is less than T = /g(y|[0,T]). But clearly
lgm(P) converges to /g(/S) as m->oo. Thus, for large m and some 8>0,

Since ym=3y as m^<x> and since j8 almost joins p to ym(r), it follows that
dgm(p, ym(T))s T - ^ 5 for large m, contradicting (3). Thus,

dg(p,y(t))>t, 0<f<2r.

The reverse inequality is always true because, being C1, y|[0,i] is one of the paths
over which dg(p, q) is denned by infimization. This verifies (4).

From (4) we see that both the ep-radii and the e*-radii are arc-length minimizing,
unit speed, g-geodesics. We next claim

def

(5) Any piecewise C curve /3 from p to q = y(x) with T £ [0, r] and

lg(P) = dg(p, q) is a reparameterization of y|[o,T]-
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def

Again, y(t) =ep(tv), 0<f<2r . Fix a (3 as in (5) and observe that it minimizes
arc-length everywhere along itself:

(6) dg(p(t),p(s)) = lg(p\M), 0<!<s<r.

For otherwise there is a path from p to q, shorter than /3. To prove (5) we show

(7) B is tangent to y at q.
Choose smooth coordinates which are g-orthonormal at q. Let (j> be the g-angle
between /3 and y at q, 0 < 0 < TT. Draw a triangle BqC in the q-coordinates so that
B lies on /3, C lies on the extension of y past q, and, letting | | denote the g(^)-norm,
Bq\ = \qC\. Then let B and C approach q. See figure 1.

FIGURE 1. The isosceles triangle BqC.

The vertex angle of BqC converges to TT — <f> as B and C converge to q, so the equal
base angles ip converge to \<j>. Hence

\BC\
(8) -,-* cos (!< as B, C-*q.

\Bq\ + \qC\

Consider the piecewise C1 path A = BB<J BC where BB is the part of B from p to
B, and BC is the segment from B to C in the ^-coordinates. By (6),

= {dg(p,q)-dg(B,

By lemma 1, \BC\ = (l + e)dg(B, C) with e-»0 as B and C converge to q. By
continuity of g, the ratio lg(BC)/\BC\ tends to 1 as |BC|-»0. Thus, by (8),

= dg(p, q) + [(2cos(^) + e")-l]dg(q, C),
where e, e', and e" tend to 0 as B and C converge to q. If <j> ^ 0 then the factor
inside brackets is eventually <1 , so dg{p, C) < dg(p, q) + dg(q, C) which contradicts
(4). Hence 0 = 0 and (7) is verified. (Note that in the case <j> = IT, the triangle may
be degenerate: B may equal C and iff may equal \ir.)

Returning to (5), we think of ep as a fixed Lipeomorphic chart and draw /3 in it.
At every point, /3 is tangent to the ep-radii. Since their foliation is Lipschitz, it
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follows from van Kampen's Uniqueness theorem [9, p. 35] that /? coincides with
one of the ep-radii; i.e. /3 = y\[0,r] and (5) is proved. In particular, the ep-radii and
the e*-radii coincide, so the subsequence chosen to make exp^,, converge was
superfluous: the whole sequence exp^p converges to ep as fc-»oo, which is what we
claimed at the outset. QED

To prove theorem 1, we must measure Lipschitz constants in TM and to do so it
is convenient to use the Sasaki-Riemann structure there. We recall its construction
[13, p. 137-139]. Let a smooth Riemann structure g on M be given. Its Christoffel
symbols r£ define the horizontal sub-bundle $f of T{TM) as follows. For each
ve TM, 3fv is the linear subspace of TV(TM) given by

W = Zai—i+Y,bk-^ and
i ax k d£

where the tangent vector v is expressed in a smooth set of coordinates x\x2,... ,x"
at p as

(The g1, g2,..., g" are the corresponding tangent coordinates in TM. Thus,
x1, x2,.. „, x", gl, f,..., £," coordinatizes the part of TM over the x-chart.) A
second set of coordinates x\ x2,..., x" at p leads to the same subspace 5ifr because
of the way that Christoffel symbols transform. See [18, p. 58 formula (7)]. As v
varies over TM, the subspaces 3€v fill out the sub-bundle X.

The vertical sub-bundle V of TM is simpler to describe. Its fibre at v e TM is
Tv = ker TVTT where n is the projection of TM onto M sending each TPM onto p.
Thus, from g we obtain a canonical splitting

The Sasaki Riemann structure G on TM is uniquely defined by requiring, for all
veTM,

(Sa) XV±VV respecting G(v);
(Sb) TTT is an isometry from (#fw G(v)) to (TPM, g(p)), p = TT(V);

(Sc) The canonical identification

(Vv,G(v)) = (Tv(TpM),G(v))**(TpM,g(p))

is an isometry.

From this local description of G the following uniformity result is straightforward.

LEMMA 3. Let Go be a fixed Riemann structure on TM and let y be a set of smooth
Riemann structures on M such that, respecting some fixed atlas si on M, the g,-, and
g'J matrices of the g€if are uniformly Cl bounded, say by B. Let S c TM be compact.
Then, for some constant C depending only on B, S, and Go,

where G is the Sasaki Riemann structure ofg e^,we TV(TM) is non-zero, and veS.
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Proof. The Christoffel symbols of g e if respecting the charts in sd are uniformly
bounded because they are universal combinations of the g'J and the first partials
of the gM. Thus, measured respecting the fixed Riemann structure Go, the angle
between $fu and Vv is uniformly bounded away from zero as v ranges over S.
Expressing we TV(TM) as w1 + w2 with w,e 3€v and w2e °Vm we then see that

VV < \ VV2| — C W\,

for some uniform constant c. The asserted comparison follows from (Sb), (Sc), and
the hypothesized bound B on the g e y. QED

Proof of theorem 1. By lemma 2, g has unique geodesies and they are of class C1'1.
Thus, the g-geodesic flow

is well defined where y is the g-geodesic with y(0) = ne TM. It is not yet clear that
<p is continuous, let alone Lipschitz.

Since g is of class % it can be $-approximated by smooth Riemann structures
g. Their geodesic flows <p = <p,(v) are C°° and by lemma 2 they uniformly approximate
<p on compact ((, u)-subsets of R x 7"M. Thus, to prove that <p is Lipschitz, it suffices
to show that on compact subsets of IR x TM, <p is uniformly C1 bounded with respect
to some fixed Riemann structure Go on TM; i.e. it suffices to show

(9) I'P'loo a n d || 7<P(||G0 are uniformly bounded on compact subsets

of U x TM as g "^-approximates g.

According to lemma 3 and C^b') it is equivalent to show

(10) \<P~'\G and || T<p,|| a are uniformly bounded on compact subsets of

IR x TM where G is the Sasaki Riemann structure of g and g

<S- approximates g.

The trick for (10) is a calculation in a special chart.
Let y be a unit speed g-geodesic at p; choose a g-orthonormal basis ex, e2,..., en

of TpM with et = y'(0); then g-parallel-translate the e2,...,en down y; then
g-exponentiate them into M. This gives the Fermi chart along y, call it / See [7, p.
113-114] and [11]. Call F the tangent-chart ove r / It is a TM-chart. The geodesic
flow <p, represented in F, solves the ODE

(x\' = ( i \ x(0) = xo,
K ' \i) \-rf{x)(t,€)J
where tf is the Christoffel matrix of g respecting the /-chart. (The same is true for
any tangent chart, not just the Fermi chart.) The tangent flow Tip lives on T(TM),
and, represented in the TF-chart, solves the First Variation Equation of (11), namely

(12) W' = AW,

where I2n is the 2nx2n identity matrix and

0 /„

dx
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Now, in the /-chart at all points of y, Tf = 0 and dTf/dx is the sectional curvature
K. Hence,

. / 0 In\
\ v n I along y.

It follows that the solution of (12) satisfies the inequality

where \K\ < A2. Also, the vector field <j>' represented in the F-chart, is just the ODE
(11); along y' this is

©'•«)•
Thus, (10) is verified along y' in the F-chart. But the Sasaki Riemann structure G
agrees exactly with the F-chart Riemann structure along y' because Yf = 0 along y.
Thus (10) is verified and <p is Lipschitz. QED

COROLLARY. The g-exponential map e: TM(r) -* M is Lipschitz.

Proof. ep(v) = TT-o <Pi(v) where v e TpM(r), <px is the time one map of the geodesic
flow, and tr: TM -» M is the projection. QED

THEOREM 2. The distance function dg{x,y) of a Riemann structure g of class <& is
C u on a punctured neighbourhood of the diagonal A in M x M.

Proof. Let g 'S-approximate g and let $ be its geodesic flow. For any (x, y) e M x M
near A, define

Rx(y) = Vx(e;\y)), Ry(x) = <p1(e;\x)), R(x,y) = {Ry(x),Rx(y)).
Then R is a C°° tangent vector field on a neighbourhood of A in M x M, vanishing
on A only. We claim that the derivative of the distance-function dg at (x, y)^A is
given by

(13) Tx,yd§:TxJMxM)->R

\ ' dg(x,y)/ie3g

where g©g is the direct sum Riemann structure on MxM.
Fix x and vary y. By the Gauss lemma, the d|-level surface passing through y is

g-orthogonal to Rx(y) and dg increases along the ex-radius through y as g-arc-length.
Thus,

since 1^(^)11 = d|(x,y). Similarly for dd^/dx. The sum of the partials is the total
derivative, so (13) is proved.

Write

where <p is the g-geodesic flow and e is the g-exponential map. According to theorem
1 and the preceding corollary,

(14) R and dg are Lipschitz.

(15) dg =£ dg, <p -=S <p, and R=t R as g ^-converges to g.
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In particular, dg C1-converges. Under C'-convergence, limits and differentiation
interchange, so dg is C1 and

By (14), Tdg is Lipschitz, so dg is of class C11. _ QED

Remark. Using the above formula for Tdg it is not hard to give uniform estimates
concerning the rate at which Tdg blows up at x = y. Another way to handle R,
suggested by R. Greene, involves the Greene-Wu Hessian Comparison theorem
[5, p. 19-20].

3. Gromov Compactness
In [6] Greene and Wu show how to prove the Gromov Compactness theorem (with
C1+a distance function, a < 1) based on the intrinsic techniques of S. Peters [16].
In contrast, here is a direct extrinsic proof. It relies on two things:

(i) The almost linear charts of Jost and Karcher [14];
(ii) The cheap Whitney embedding method [19, p. 113-114].

The use of (ii) parallels part of the Cheeger-Gromov Approximation theorem
[3, theorem 2.5] but is considerably simpler. Along the way, the Cheeger Finiteness
theorem drops out. Moreover, it would not be hard to give a quick proof of the
latter result using exponential charts instead of almost linear ones.

Note that lattices and intrinsic centre of mass constructions are avoided. They
are all replaced by (ii).

First we discuss the almost linear charts. For each M in a class % of manifolds
with bounded geometry, Jost and Karcher produce a finite C°° atlas sd of charts
ip,:: Ut -* W, i = 1 , . . . , N, such that

(16) i/>,( t/J contains in its interior the closed ball B(r) at the origin.

(17) The (/'.-coordinate expressions for the Riemann structure g and

its inverse g"1 have C1 sizes G.

(18) N,r, and G are the same for all M e f .

From [18, p. 56] we see that (17), (18) are equivalent to

(19) The C2-size of i/>, ° tf/J1 is uniformly bounded.

It is easy to refine and shrink the above construction so that for some constants
(uniform over all M e <£) satisfying

(20) 0 < a < b < r,

we have, in addition to (16)-(19),

(21) {U,{a)} covers M.

(22) If U,(a) meets Uj(b) then U,(a) <= Uj(r).

By Ut(t) we denote the i/»,-ball of radius t, i/»r1(5(0), 0< t < r.
Next we discuss the cheap way to embed M in WN+N. Let o-u ... ,aN be C00

bump functions on M such that a{ has support in U{ and is identically 1 on Uj(r).
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Then [19, p. 113-114]

) , O-^M), . . . , <rN(u))

smoothly embeds M. We understand ovifo(u) = 0 when ui Uj. A useful property of
this embedding is its uniform injectivity. That is,

(23) lfp e f/,(a) and |/(/>) - / ( g ) | < (6 - a)/(ft +1) then q e Uf(b).

To check this, observe that at{p) = \ and \ai(p)-o-i(q)\^{b-a)/(b + l) imply

. , ft-a a+1

Then \>lti(p) — criil/i(q)\ = \o-itl/i(p)-o-iil/i(q)\^(b-a)/(b + l) and |t^-(p)|<a imply

b-a\ La+ )<b,

which verifies (23).
Finally, we observe that / (M) is covered by a natural family of plaques, {#,}.

These are graph-embedded n -discs - see [12] for some dynamic plaquation dis-
cussion. The plaque 0, is by definition

Oi=f(U,(r)),
def

and 0, = / ° i/f, |B(r) is its plaque chart. Since at = 1 on Ui(r) we can write

/ ( " ) = (/i(«)» • • • ,fi-i(u), x,fi+l(u),... ,fN(u), o-x{u),..., a-N(u)),

where u = tl/J1(x)e Ut(r) and xeB(r). This exhibits 0, as the graph of a smooth
map. By (19) and the Higher Order Chain Rule we deduce

(24) The C2-size of 0, is uniformly bounded as (M, g) varies in any class %

of manifolds with bounded geometry.

Proof of Gromov's Compactness theorem. Let (Mk, gk) be an arbitrary sequence in
some class <€ of manifolds with bounded geometry. Let fk:Mk-*WN+N be the
cheap Whitney embedding constructed above, let {6ik} be its plaquation, and let Qik

be the plaque charts. By (24) and the Arzela-Ascoli theorem, we may (choose N
sub-sequences and) assume

0ffc=S0,- l< i<7V asfc^oo

where 0, is of class C1'1. Call 6t the image of 0, and &i(t) the image of its restriction
to B(t), 0< t< r. Since {Uik(a)} covers Mk, it is clear that

M %imkfk(Mk) = U 0,(a) = U 0,(r),
i i

where convergence takes place in the space of compact subsets of UnN+N.
We claim

(25) If 0~(a) meets fy(a) then et(a) c 6j(r).
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Suppose that 0J(a)n 0j(a) ^0. Since 0ik and 0jk converge to 0t and 0, as fc-»oo,
there are points uike Uik(a) and ujke Ujk{a) such that

|/fc("ik)-/fc(«/fc)|-»O asfc^oo.

By (23), uJk e Uik{b) for all large fc; i.e. 0ik(a) n 6»jfc(fo) # 0 . By (22), 0*(a) = M O
and the inclusion persists in the limit, verifying (25). The same analysis shows that
for large k, the only plaque of fk(Mk) near 0^(r) is 6ik(r). Hence, as fc-»oo, plaques
converge to plaques and no new intersections occur. It follows that:

M is a C u sub-manifold of U"N+N to which the sequence of

embedded sub-manifolds fk(Mk) Cu-converges.

To apply theorem 2 directly, we need a sequence of Riemann structures all defined
on the same manifold. This leads us to smooth the tubular neighbourhood of M as
follows.

Let N be the Euclidean-normal plane field to M in U"N+N. Fix a continuous
extension N of JV, defined on a neighbourhood of M. Then fix a smooth approxima-
tion JV of N, so that JV is still transverse to M. Since fk(Mk) converges to M as
sub-manifolds, and since JV is fixed, it follows that the injectivity radius of the
JV-tubular neighbourhood of fk(Mk) stays bounded away from 0 as fc-»oo. See
[19, p. 121]. Thus, we can fix a large k = K, call M =fK(MK), define a C°° tubular
neighbourhood retraction

p: V^M

where V contains all the fk{Mk) with fc> K, and observe that

def

hk = p°fk:Mk^M
is a sequence of C00 diffeomorphisms. (In particular, Mk « M, proving Cheeger's
Finiteness theorem.)

Since M =fK(MK), it has a preferred atlas si of the plaque-charts, 0JK : B(r) -* 6iK,
but it also has atlasses sik = {p ° Bik), k>K. Since p is fixed, C°°, and the &ik are
uniformly C2 bounded according to (24), it follows that the charts p ° ©lfc are all
C2 uniformly related to each other. In fact, p ° &ikC

1A-converges to p ° &t as fc^oo.
Write J^* for the union of all the atlasses Mk with k > «.

Now, let hk = p°fk push ahead the Riemann structure gfc on Mfc to a Riemann
structure gk = /ifc»gfc on M. The coordinate expressions for gk and g^! respecting
the almost linear atlasses {ipik} are uniformly C1 bounded, and the same must be
true for any atlasses which are C2 uniformly related to {i/^}. See [19, p. 58]. Thus,
the .^-coordinate expressions for gk and gZ1 are uniformly C1 bounded. Choosing
a subsequence, we may assume that gk converges to a Lipschitz Riemann structure
g on M. Curvature, diameter, and volume are intrinsic, so the sequence (M,gk) has
bounded geometry; that is,

gk $-converges to g on M.

By theorem 2, its distance function d is C1'1 and this is exactly what Gromov asserted:

A subsequence of (Mk, gk) becomes more and more isometric to (M, g) where g (is
Lipschitz and) has C 1 1 distance function.
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4. The capped cylinder
Let M be an embedded 2-sphere in U3 consisting of two hemi-spheres glued onto
the ends of a cylinder [6, p. 4]; M carries the Riemann structure g inherited from
R3. See figure 2.

FIGURE 2. Half the capped cylinder.

As a surface in U3, M is of class C1'1. It is easy to "^-approximate (M, g) by C°°
spheres with bounded geometry; (M, g) is of class %

Observation 1. Respecting the natural C1'1 differentiable structure on M, g is Lipschitz
but not C\

Reasons. The equations for half of the capped cylinder are
x<0 x>0

cylinder hemi-sphere

The cylinder meets the hemisphere in the circle C = M n {x = 0}. The lower half of
M is the image of h = h{x, y) where

x<0

h(x,y) = (x,y,l-* h(x, y)= (x, y, i -V(i -(x2+,y2)).

Let ex, e2 be the standard unit vectors in R2. Their images under h^ are the tangent
vectors to M at h(x, y):

x<0 xsO

x
e,) = (1,0,0)

We then compute gij(x) = (h!i.(ei), /^(e,)) where ( , ) is the Euclidean dot product
in R3. For g12 this gives

x < 0 x>0

dx ax ))2( i - ( x 2 + / ) )
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Thus, for y ^ 0, dgi2/dx does not converge to the same limit when x tends to 0 from
the left as from the right. This means that g is not C1 at the circle C although it is
Lipschitz vector field? g' is the corresponding Riemann structure f^g on M'. Such

Observation 2. The g-exponentials of the capped cylinder are not of class C1. Con-
sequently, the g-geodesic flow is not C1.

Reasons. Consider the geodesies spraying out of the point x = y = 0 on M, and
project them into IR2 by the vertical projection. On the x > 0 side we see straight
radii emerging from the origin. On the x < 0 side we see projected helices,
f>-»(-af, sin t) with a > 0 . Fix 0<y1<y2<\ and draw short segments TX, T2 at
(0,^I), (O,^) parallel to the x-axis. See figure 3.

FIGURE 3. Top view of geodesies spraying out of the origin.

The projected helices are the graphs of

x = —a arcsin (y) O s y < l .

Such a curve crosses Tt at xx = — a arcsin (y^ and crosses T2 at x2 = —a arcsin (y2).
Thus, the holonomy map along the radial foliation (seen in the fr-chart) from TX to
T2 is

x < 0 x > 0

^ arcsin (y2) _ ^ j ^ =

'arcsin (y,) 2 ' '.y.

Since 0 < yx < y2 < 1 implies

arcsin (y2) ^ y2

arcsin (>>,) y^

we see that the two holonomy maps do not have a common derivative at x = 0.
Hence, the vertical projection of the radial foliation at 0 is not C1. Since this
projection, restricted to M, is a C1'1 diffeomorphism, the radial foliation is not C1

in M Clearly, then, the g-exponential map and the g-geodesic flow are not C1, nor
(in contrast with the Riemann structure g) can they be made C1 by looking at nicer
charts, C1 related to h.

Remark It is quite interesting that the sphere foliation, dg = constant, is C1'1, while
the radial foliation is only Lipschitz. It's another instance of codimension 1 being
more regular than dimension 1, cf. [11], [12].
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Observation 3. The vector field X tangent to the g-geodesic flow is undefined at tangent

vectors ve TPM when p&C and v?^C.

Reasons. Similar. The Christoffel matrix determines X and it is discontinuous at C.

Question. Let (M, g) be a Gromov limit. Is there a C1 diffeomorphism / of M onto
a smooth manifold M' such that the g'-geodesic flow on T(M') is generated by a
Lipschitz vector field? g' is the corresponding Riemann structure f^g on M'. Such
an / is a smoothing of (M, g). It is an isometry from (M, g) to (M', g').

Remark 1. In [4] O. Durumeric asserts that the Gromov limit Riemann structure is
of class C1 'in a smooth coordinate chart'. Thus, he claims that there exists a
smoothing of (M, g) such that the g'-geodesic flow is generated by a continuous
vector field. See also remark 3, below.

Remark 2. D. Hart's smoothing theorem [9] asserts that any C flow is C equivalent
to a flow generated by a C vector field provided that r is an integer s i . It is
unknown if his result is valid for r = Lipschitz, but if it is then the preceding question
has an affirmative answer and we get a more elementary explanation of theorem 2.
On the other hand, note that there exist C° flows on U4 that are not topologically
equivalent to flows generated by C° vector fields, so Hart's result is not valid for
r = 0. (For R4 is homeomorphic to RxW where W is a Whitehead set that is
nowhere Euclidean. The corresponding flow has no local transversal and is therefore
inequivalent to a vector field generated flow.)

Remark 3. There exists no smoothing of the capped cylinder which makes the
geodesic flow generated by a C1 vector field because the radial exponential foliation
is not C1 (observation 3) and this is a property invariant under C1 isometry. Lipschitz
is the maximum expectable regularity. For the same reason, there might exist a
smoothing in which g' is of class C1+Lip but there can be none in which it is of
class C2. In fact, in [6] Greene and Wu get g' of class C1+" for all v<\, which
just barely falls short.

Remark 4. A more general 'S- limit manifold than the capped cylinder would be
composed of countably many smooth pieces glued C u along their edges. For
example, one could take countably many latitudinal bands of two-spheres and glue
them to appropriate latitudinal bands of cones, cylinders, or the bugle surface. A
characterization of the generic ^-limit manifold might concern the degree to which
its geodesic flow fails to be C1.
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