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Abstract
I discuss and clarify the relationship between the recent wave of “intrinsic” coordinate-free
approaches to Maxwell gravitation and the coordinate-based discussions of Saunders (2013)
and Wallace (2020).

1. Introduction
In recent years, philosophers of physics have considered afresh the question of the
appropriate spacetime setting for Newtonian gravitation theory. At the center of this
debate have been two apparently conflicting proposals for what one should take this
geometry to be: on the one hand, Saunders’ (2013) proposal that Corollary VI to the
Laws of Motion in Newton’s Principia reveals that Maxwellian spacetime is the cor-
rect setting for Newtonian physics, and on the other hand, Knox’s (2014) proposal that
Corollary VI motivates a transition to a geometrized formulation of Newtonian gravi-
tation, known as Newton–Cartan theory (NCT). Their claims have sparked a series of
discussions of theories of Newtonian gravitation set on Maxwellian spacetime, and their
relationship to NCT (Weatherall 2016; Teh 2018; Jacobs 2023; March et al. 2024; March
2024; Dewar 2018; Chen 2023).

One focus of these discussions has been on how Maxwellian spacetime—which
is supposed to be equipped with a standard of rotation, but not a standard of abso-
lute acceleration—should best be characterized. Earman (1989) originally defined the
standard of rotation as an equivalence class of derivative operators, and Dewar (2018)
also adopted this definition. But a number of authors have voiced concerns about
this approach. For example, Weatherall (2018, 34) notes that it “makes reference to
structure that one does not attribute to spacetime,” Jacobs (2022) argues that it is not
suitably “intrinsic,”1 and Wallace (2019, 2020) even suggests that the awkwardness of
differential-geometric presentations of Maxwellian spacetime obscures the similarities
between NCT and theories of Newtonian gravitation set on Maxwellian spacetime, and
(more generally) shows that coordinate-free differential geometry is not an intuitive way
of characterizing certain spacetime structures. In response to these concerns, Weatherall

1See also Dürr and Read (2019, 1094–96).
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2 Approaches to Maxwellian Spacetime

(2018) developed an “intrinsic” characterization of the standard of rotation, and Chen
(2023) and March (2023) have recently shown that this object can be used to write
down dynamics for Newtonian gravitation on Maxwellian spacetime, a.k.a. Maxwell
gravitation (MG).

However, this new wave of (coordinate-free differential-geometric) presentations of
MG are somewhat removed from Saunders’ original coordinate-based “vector relation-
ism” (VR). It would be of interest to see how these fit together. It also remains unclear
how Wallace’s (2020) own (also coordinate-based) discussion of VR and NCT relates
to the approaches outlined above.

In this paper, I aim to fill in these remaining pieces of the puzzle, by (a) making pre-
cise the relationship between VR and MG, and (b) translating Wallace’s argument into
the language of coordinate-free differential geometry. I thereby (i) clarify how Wallace’s
argument relates to other arguments concerning the (in)equivalence of MG and NCT in
the literature, and (ii) address Wallace’s concern that coordinate-free presentations of
MG obscure its similarities to NCT. Indeed, I will argue, the same similarities Wallace
discusses can be seen very naturally from a coordinate-free differential-geometric stand-
point. Finally, this (iii) gives us the resources to connect up to Teh’s (2018) discussion
of Wallace and VR, in which he also claims to put Wallace into the language of
coordinate-free differential geometry.

In more detail, the structure of this paper is as follows. In section 2 I recall some
basic details of MG and NCT. I then turn to the task of connecting these coordinate-
free approaches with the work of Saunders (2013) and Wallace (2020). In section 3,
I present Saunders’ VR, and make precise its relationship to MG. Section 4 recon-
structs Wallace’s argument that VR and NCT are theoretically equivalent; section 5 aims
to dispel the remainder of Wallace’s concerns about coordinate-free presentations of
Maxwellian spacetime by showing that the same argument can be made in the language
of coordinate-free differential geometry. To end, in section 6, I compare my approach to
that of Teh (2018). Section 7 concludes.

2. Background: Maxwell gravitation and Newton–Cartan theory
This section reviews some basic details of the coordinate-free approaches to MG and
NCT as presented in, e.g., Chen (2023); March (2024); Malament (2012)—readers
familiar with this material should feel free to skip to the next section. Let M be a smooth
four-manifold (assumed connected, Hausdorff, and paracompact). A temporal metric ta
on M is a smooth, closed, non-vanishing one-form;2 a spatial metric hab on M is a
smooth, symmetric, rank-(2, 0) tensor field which admits, at each point in M, a set of

four non-vanishing covectors
i

σa, i = 0, 1, 2, 3, which form a basis for the cotangent

space and satisfy hab i
σa

j
σb = 1 for i = j = 1, 2, 3 and 0 otherwise. A spatial and tempo-

ral metric are orthogonal iff hantn = 0. A vector field σa is spacelike iff tnσn = 0, and
timelike otherwise. Given the structure defined here, ta induces a foliation of M into
spacelike hypersurfaces, and relative to any such hypersurface, hab induces a unique

2Here and throughout, abstract indices are written in Latin script; component indices are written in Greek
script, with the exception of i, j, k, which are reserved for the spatial components of tensor fields in some
coordinate basis; the Einstein summation convention is used. Round brackets denote symmetrization, square
brackets antisymmetrization.
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Eleanor March 3

spatial derivative operator D such that Dahbc = 0.3 hab is flat just in case for any such
spacelike hypersurface, D commutes on spacelike vector fields, i.e. D[aDb]σ

c = 0 for all
spacelike vector fields σa.

Given a structure ⟨M, ta, hab⟩, with ta and hab orthogonal, we can consider two fur-
ther pieces of structure on ⟨M, ta, hab⟩: a compatible connection ∇,4 and a compatible
standard of rotation ⟳.5 In what follows, we will often want to consider connections
and standards of rotation which “agree” with one another in the following sense: for
any vector field ηa on M, ∇[aηb] = ⟳aηb. In this case, following March (2024), I will
say that the connection and standard of rotation are compatible.6 Likewise, a connec-
tion ∇ is compatible with a spacetime ⟨M, ta, hab,⟳⟩ just in case it is compatible with
the metrics and ⟳. Finally, a spacetime ⟨M, ta, hab,⟳⟩ is rotationally flat just in case
hab is flat and there exists a unit timelike vector field ξ a on M such that ⟳aξ b = 0 and
£ξ hab = 0,7 or equivalently, just in case some flat derivative operator is compatible with
⟨M, ta, hab,⟳⟩ (Weatherall 2018, proposition 1). I will call a structure ⟨M, ta, hab,⟳⟩,
with M diffeomorphic to R4, and ⟨M, ta, hab⟩ complete (in the sense that every spacelike
hypersurface is geodesically complete with respect to D),8 a Maxwellian spacetime, and
a structure ⟨M, ta, hab, ∇⟩ (under the same conditions) a Newton–Cartan spacetime.

In both MG and NCT, we will assume that matter fields are associated with a sym-
metric rank-(2, 0) tensor T ab,9 called the mass-momentum tensor, which is assumed to
satisfy the Newtonian mass condition: whenever T ab ̸= 0, T nmtntm > 0. This captures the
idea that the matter fields we are interested in are massive, in the sense that there can only
be non-zero mass-momentum in spacetime regions where the mass density ρ := T nmtntm
is strictly positive.10 Since T ab is symmetric, the Newtonian mass condition guarantees
that whenever T ab ̸= 0, we can uniquely decompose T ab as

T ab = ρξ
a
ξ

b + σ
ab,

where ξ a := ρ−1tnT na is a smooth unit timelike future-directed vector field (inter-
pretable as the net four-velocity of the matter fields F), and σab is a smooth symmetric
rank-(2, 0) tensor field which is spacelike in both indices (interpretable as the stress
tensor for F).

3See Weatherall (2018, 37–38) and Malament (2012, §4.1) for details.
4Recall that a connection is compatible with the metrics just in case ∇atb = 0 and ∇ahbc = 0.
5This was introduced by Weatherall (2018): if ta, hab are orthogonal temporal and spatial metrics on M,

a standard of rotation ⟳ compatible with ta and hab is a map from smooth vector fields ξ a on M to smooth,
antisymmetric rank-(2, 0) tensor fields ⟳bξ a on M, such that (i) ⟳ commutes with addition of smooth vector
fields; (ii) given any smooth vector field ξ a and smooth scalar field α , ⟳a(αξ b) = α ⟳aξ b + ξ [bda]α;
(iii) ⟳ commutes with index substitution; (iv) given any smooth vector field ξ a, if da(ξ

ntn) = 0 then ⟳aξ b

is spacelike in both indices; and (v) given any smooth spacelike vector field σa, ⟳aσb = D[aσb].
6See Weatherall (2018, proposition 1); any connection determines a unique compatible standard of

rotation, but a standard of rotation does not determine a unique compatible connection.
7Here and throughout, £ denotes the Lie derivative.
8These conditions could be dropped; I adopt them here to ease comparison with Saunders’ vector

relationism in §3.
9One might take the symmetry of T ab as a postulate, as in, e.g., Malament (2012), or to follow from a

variational definition—see, e.g., Duval and Künzle (1978); Weatherall (2019).
10For example, Weatherall (2012, 211) suggests that “[one] might take [the Newtonian mass condition]

to be a benign and unsurprising characterization of what we mean by ‘massive particle’ in Newtonian
gravitation.”
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4 Approaches to Maxwellian Spacetime

We are now in a position to introduce MG and NCT. I will begin with MG.11 Let
⟨M, ta, hab,⟳⟩ be a Maxwellian spacetime, and let T ab be the mass-momentum tensor
for whichever matter fields are present. Then ⟨M, ta, hab,⟳, T ab⟩ is a model of Maxwell
gravitation just in case

(i) ⟨M, ta, hab,⟳⟩ is rotationally flat; and
(ii) for all points p ∈ M such that ρ ̸= 0, the following equations hold at p:

£ξ ρ − 1
2

ρ ĥmn£ξ hmn = 0, (1a)

1
3

3

∑
i=1

i
λ rξ

n
∆n(ξ

m
∆m

i
λ

r) =−4
3

πρ − 1
3

Dm(ρ
−1Dnσ

nm), (1b)

£ξ (⟳
c
ξ

a) + 2(⟳n
ξ
[c)ĥnm£ξ ha]m+⟳c(ρ−1Dnσ

na) = 0, (1c)

where ĥab is the spatial metric relative to ξ a,12 the
i

λ a are three orthonormal connecting
fields for ξ a, and ∆ is the “restricted derivative operator” defined in Weatherall (2018,
36–37). This acts on arbitrary spacelike vector fields σa at a point p according to

η
n
∆nσ

a := £η σ
a + σn ⟳

n
η

a − 1
2

σn£η han,

where ηa is a unit timelike vector at p (the Lie derivative is taken with respect to any
extension of ηa off p). It also has the property that ηn∆nσa = ηn∇nσa for any derivative
operator ∇ compatible with ⟳ (Weatherall 2018, 37).

For NCT, let ⟨M, ta, hab, ∇⟩ be a Newton–Cartan spacetime, and T ab the mass-
momentum tensor for whichever matter fields are present. Then ⟨M, ta, hab, ∇, T ab⟩ is a
model of Newton–Cartan theory just in case

∇nT na = 0, (2a)

Rab = 4πρtatb, (2b)

Ra c
b d = Rc a

d b, (2c)

Rab
cd = 0. (2d)

The relationship between MG and NCT is summarized by the following pair of
propositions (Chen 2023; March 2023).

Proposition 1. Let ⟨M, ta, hab, ∇, T ab⟩ be a model of Newton–Cartan theory. Then
there exists a unique standard of rotation ⟳ such that ∇ is compatible with ⟳ and
⟨M, ta, hab,⟳, T ab⟩ is a model of Maxwell gravitation.

Proposition 2. Let ⟨M, ta, hab,⟳, T ab⟩ be a model of Maxwell gravitation. Then there
exists a derivative operator ∇ compatible with ⟳ such that ⟨M, ta, hab, ∇, T ab⟩ is a model
of Newton–Cartan theory. Moreover, the derivative operator ∇ is not unique. If ∇ is such

11For details on the relationship between this way of presenting MG and the approach of Dewar (2018),
see Chen (2023).

12That is, the unique symmetric tensor field on M such that ĥanξ n = 0 and hanĥnb = δ a
b − tbξ a.
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a derivative operator, then so is (∇, tbtcσa),13 where σa is any spacelike, twist-free, and
divergence-free vector field such that ρσa = 0.

Corollary (Chen 2023). Let ⟨M, ta, hab,⟳, T ab⟩ be a model of Maxwell gravita-
tion such that ρ ̸= 0 throughout some open region O. Then there exists a unique
derivative operator ∇ compatible with ⟳ such that ⟨M, ta, hab, ∇, T ab⟩ is a model of
Newton–Cartan theory.

3. Maxwell gravitation and vector relationism
In section 2 I have reviewed the recent coordinate-free approaches to MG, and their
relationship to NCT. But as noted in section 1, these presentations of MG are rather dis-
tant from Saunders’ (2013) original discussion of Newtonian gravitation on Maxwellian
spacetime. This distance has three sources, which will occupy us for the rest of this
section:

• Saunders’ preferred characterization of the appropriate setting for his vector rela-
tionist dynamics is as an affine space which he calls Newton–Huygens spacetime,
rather than a differentiable manifold with differential-geometric objects defined
thereon.

• Saunders’ dynamics are presented in the coordinate-based framework.
• Saunders’ theory concerns only the dynamics of point particles, rather than fields.

The first of these is easily dealt with—as Saunders notes, the idea of Newton–Huygens
spacetime is just that (rotationally flat) Maxwellian spacetime can be redescribed as an
affine space, albeit one in which affine structure is appropriately restricted to space-
like hypersurfaces.14 For the second two bullet points, we need to recall some details
of Saunders’ theory. Saunders presents vector relationism as a theory of the displace-
ment vectors between point particles, formulated with reference to some Maxwellian
coordinate system. The dynamics are specified by the following pair of equations:

ri j = Xi − X j, (3a)

d2ri j

dt2 =
1
mi

∑
k ̸=i

Fik −
1

m j
∑
k ̸= j

F jk, (3b)

where Xi(t) denotes the position of particle i at time t with respect to such a coor-
dinate system, mi its mass, and the Fi j denote interparticle forces. These are taken

13The notation here follows Malament (2012, proposition 1.7.3): ∇′ = (∇,Ca
bc) iff for all smooth tensor

fields α
a1...ar

b1 ...bs
on M,

(∇′
n − ∇n)α

a1...ar
b1 ...bs

= α
a1...ar

mb2 ...bs
Cm

nb1
+ · · ·+ α

a1 ...ar
b1...bs−1mCm

nbs

− α
ma2 ...ar

b1...bs
Ca1

nm − · · · − α
a1 ...ar−1m

b1 ...bs
Car

nm .

14Saunders (2013) only discusses Earman’s (1989) characterization of Maxwellian spacetime, but this is
equivalent to the definition of a rotationally flat Maxwellian spacetime as presented here—see Chen (2023,
proposition 1). See Wallace (2020) for discussion of why rotationally flat Maxwellian spacetime is the
appropriate setting for vector relationism.
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6 Approaches to Maxwellian Spacetime

to be antisymmetric in i and j (this is the import of Newton’s third law) and func-
tions of ri j only. The equations (3) are invariant under the Maxwell group (Wallace
2020)—transformations of the form

t → t + τ,

xi(t)→ Ri
jx j(t) + ai(t),

where Ri
j is an arbitrary 3D rotation matrix, ai(t) an arbitrary vector-valued function of

time, and τ an arbitrary scalar.
With this in hand, I will now address the second two bullet points by examining

the relationship between the dynamics (1) and (3) of MG and VR, respectively. First,
following Wallace (2020, 11), we can decompose the forces in (3b) into “universal” and
“non-universal” components—characterized, respectively by whether the ratio qi/mi is
constant for that force, where mi is the inertial mass of a particle and qi its charge. For
the case of only potential forces, (3) may then be written as

d2Xi

dt2 −
d2X j

dt2 =− ∑
k ̸=i

∇φ(Xi − Xk) + ∑
k ̸= j

∇φ(X j − Xk)

− qi

mi
∑
k ̸=i

∇V (Xi − Xk) +
q j

m j
∑
k ̸= j

∇V (X j − Xk), (4)

where φ is the potential associated with the universal force, and V the potential for
the non-universal force (there could be multiple such; I omit them for simplicity). Now
consider the continuum limit, where point-particle trajectories are parametrized by some
continuous spatial parameter x. In this limit, (4) becomes

∂i

(
d2X(x, t)

dt2

)
δxi =−∂i

∫
d3x′∇φ(x − x′, t)δxi

− ∂i

∫
d3x′ρ̃(x, t)ρ−1(x, t)∇V (x − x′, t)δxi,

where ρ(x, t) is the mass density, and ρ̃(x, t) the charge density associated with the
non-universal interaction, so that

∂i

(
d2X j(x, t)

dt2

)
=−∂i

∫
d3x′(∂ j

φ(x − x′, t) + ρ̃(x, t)ρ−1(x, t)∂ jV (x − x′, t)). (5)

When φ is the familiar gravitational potential, we have

φ(x − x′, t) =
ρ(x′, t)
|x − x′|

,

so that

∂i

(
d2X j(x, t)

dt2

)
=−∂i

∫
d3x′ρ(x′, t)∂ j(|x − x′|)−1

− ∂i

∫
d3x′ρ̃(x, t)ρ−1(x, t)∂ jV (x − x′, t). (6)

We have seen that the appropriate spacetime setting for vector relationism is a rota-
tionally flat Maxwellian spacetime, ⟨M, ta, hab,⟳⟩. Since we can always (since M was
assumed diffeomorphic to R4) find a globally defined scalar field t such that dat = ta,
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we can then set up an arbitrary Maxwellian coordinate system xµ on M as follows: we
take xµ = (t, xi), where t is as above and the xi are three smooth scalar fields such that
the vector fields (∂/∂xi)a are spacelike, orthonormal, rigid, and twist-free (with respect
to ⟳).15

Let xµ be such a coordinate system, and let ∇ be the coordinate derivative operator on
M canonically associated with xµ .16 ∇ is flat (since it is a coordinate derivative operator);
it is compatible with ta by construction, and is compatible with hab since the (∂/∂xi)a

are spacelike and orthonormal. Moreover, since the (∂/∂xµ)a are all twist-free with
respect to ⟳ and ⟳ is rotationally flat, ∇ is also compatible with ⟳.17 Now consider a
smooth unit timelike vector field ξ a on M. The integral curves ξ of any such field can
always be parametrized by their temporal length, which differs from t by at most an
arbitrary additive constant. Then on any such curve ξ , we have

ξ
a =

dxµ(ξ (t))
dt

(
∂

∂xµ

)a

so that, since ∇ is flat,

ξ
n
∇nξ

a =
d2xµ(ξ (t))

dt2

(
∂

∂xµ

)a

.

Clearly, the only non-vanishing d2xµ/dt2 are the d2xi/dt2. Moreover, if σab is a
(symmetric) tensor field which is spacelike in both indices, then we can write

Dnσ
na = ∂µ σ

µν

(
∂

∂xν

)a

,

where the only non-vanishing ∂µ σ µν are the ∂µ σ µi. If we now take ξ a to represent the
four-velocity field of a fluid, and σab the stress tensor for that fluid, then these suggest
the following identifications:

ξ
n
∇nξ

m(dmxi) =
d2X i(x, t)

dt2 , (7a)

ρ
−1Dnσ

nm(dmxi) =
∫

d3x′ρ̃(x, t)ρ−1(x, t)∂ iV (x − x′, t). (7b)

Why? Take (7a). We are looking for something with which to identify the (non-zero)
components of the acceleration vector field of a fluid ξ n∇nξ m(dmxi) with respect to the
coordinate derivative operator canonically associated with some Maxwellian coordinate
system xµ . Not only is this precisely what the d2X i(x, t)/dt2 represent, we have also
seen that when ∇ is such a derivative operator, the ξ n∇nξ m(dmxi) = d2xi(ξ (t))/dt2 take
this same form. Now consider (7b). The left-hand side of this equation are the (non-zero)
components of a spacelike vector field which is supposed to describe the acceleration
due to non-gravitational interactions—think of (the geometrized version of) Newton’s
second law,

ρξ
n
∇nξ

a =−∇nσ
na.

15Existence of such fields follows from the fact that ⟨M, ta, hab,⟳⟩ was assumed complete and rotationally
flat.

16That is, the unique derivative operator such that all the ∇a(∂/∂xµ )b = 0.
17Note that (∂/∂ t)a is twist-free by construction, since ta is closed.
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8 Approaches to Maxwellian Spacetime

And this is precisely the role of the term on the right-hand side. We can then write (6)
as

∇r(ξ
n
∇nξ

m)(dmx j)

(
∂

∂xi

)r

=−∂i

∫
d3x′ρ(x′, t)∂ j(|x − x′|)−1

− Dr(ρ
−1Dnσ

nm)(dmx j)

(
∂

∂xi

)r

. (8)

Now consider the case where i = j. In this case, carrying out the differentiation in the
right-hand side of (8) gives

∇m(ξ
n
∇nξ

m) =−4πρ − Dm(ρ
−1Dnσ

nm),

where we have used the fact that ξ n∇nξ a and ρ−1Dnσna are both spacelike. This imme-
diately yields (1b). Meanwhile, if we take i ̸= j in (8), then differentiating and raising
indices we have

∇
r(ξ n

∇nξ
m)(dmx j)(drxi) =

∫
d3x′ρ(x′, t)

(
3
(x j − x′ j)(xi − x′i)

|x − x′|5

)
− Dr(ρ−1Dnσ

nm)(dmx j)(drxi),

so that, since ⟳a (ξ n∇nξ b) is spacelike in both indices,

∇
a(ξ n

∇nξ
b)− ∇

b(ξ n
∇nξ

a) =−Da(ρ−1Dnσ
nb) + Db(ρ−1Dnσ

na),

which, given the continuity equation (1a) and the fact that ∇ is flat by construction,
entails (1c) (see the proof of Chen 2023, proposition 2). For (1a) itself, note that in
Newtonian point-particle mechanics, mass is transported only by particles along their
(continuous) worldlines, and is a fortiori locally conserved. So we have obtained (1)
from (3), i.e. MG from VR.

Conversely, it is also possible to recover the dynamics (3) from (1), i.e. VR from
MG. Given the identifications (7), we can use (1) to derive expressions for ∂i(d2X i/dt2)
and ∂ [i(d2X j]/dt2) in any Maxwellian coordinate system xµ on M. These are suffi-
cient to specify (5) uniquely, providing that ∂i(d2X i/dt2) and ∂ [i(d2X j]/dt2) fall off
at least as 1/r2 at spatial infinity. If we then specialize to the case of a point-particle
distribution (which justifies making the above assumptions about d2X i/dt2), this gives
φ(x − x′, t)→ φ(x − x′, t) ∑i δ 3(x′ − Xi(t)) and analogously for V . Hence,

∂i

(
d2X j(x, t)

dt2

)
=−∂i ∑

k
∂

j
φ(x − Xk, t)− ∂i ∑

k
ρ̃ρ

−1
∂

jV (x − Xk, t). (9)

Since ρ̃ρ−1 = ∑i qi/miδ
3(x − Xi(t)), (4) then follows from integrating along any path

between Xi(t) and X j(t).
So, despite their surface-level differences there is a close relationship between MG

and VR. Both are set on rotationally flat Maxwellian spacetime. Moreover, the dynamics
of MG emerge naturally in the continuum limit of VR, while VR is precisely what results
from restricting MG to the point-particle sector. In turn, this supports Dewar’s (2018,
268) claim that “Maxwell gravitation . . . represents the natural extension of Saunders’
remarks to the field-theoretic context.” Dewar argues for this on the basis that MG, like
VR, collapses the distinction between materially identical models of NCT. However, the
fact that MG can be recovered in the continuum limit of VR, and vice versa, provides a
more direct route to this conclusion.
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4. Wallace on vector relationism and Newton–Cartan theory
With the relationship between VR and MG on a firmer footing, I will now turn to
Wallace’s (2020) discussion of VR and NCT. Here, Wallace claims to show that “math-
ematically speaking, there is no real distinction between Newton–Cartan theory . . . and
vector relationism” (24), and suggests that any differences between the two theories
are partly an artefact of the awkwardness of standard differential-geometric presenta-
tions of Maxwellian spacetime (28). As a result, Wallace adheres to a coordinate-based
presentation of both theories in setting out his argument.

Wallace’s discussion of VR and NCT centers on the behavior of dynamically iso-
lated subsystems of particles embedded in a larger universe—showing that within VR,
such systems exhibit emergent inertial behavior which can be idealized in terms of test
particles. This forms the basis of his argument that VR and NCT are equivalent. When
non-gravitational interactions vanish, the equations governing the relative acceleration
vectors of infinitesimally separated test particles can be written to take the same form as
the (coordinate-based) equation of geodesic deviation in NCT, and thus, Wallace claims,
may equally well be interpreted as such (Wallace 2020, §8).

Wallace is not explicit about the standard of theoretical equivalence he is working
with here. But it is fairly straightforward to reconstruct from his remarks what he may
have in mind. Having recovered the Newton–Cartan equation of geodesic deviation
within VR, Wallace claims of the two theories:

[Both] are built using Maxwellian spacetime as a background; both have dynamics
that can be expressed as a set of inertial trajectories defined by the matter dis-
tribution and in turn constraining the matter distribution via a matter dynamics
according to which material particles follow those trajectories except when acted
on by non-gravitational forces. (Wallace 2020, 24)

Similarly, in his concluding remarks, Wallace argues that

[There] is essentially no difference between Newton–Cartan theory . . . and
Saunders’s relational version of Newtonian dynamics: at the formal level, the
latter can be reformulated as the former; at the substantive level, the inertial struc-
ture of Saunders’s theory is well defined and coincides with that defined by the
Newton–Cartan connection. (Wallace 2020, 28)

From these remarks, one can isolate three points which Wallace takes to bear on whether
MG and NCT are equivalent:

(1) They have the same background spacetime structure.
(2) Their central dynamical equations can be (re)written so as to appear mathemati-

cally identical.
(3) They have the same inertial structure.

For our purposes, we can elevate this to a criterion of theoretical equivalence, though it
should be borne in mind both that Wallace does not explicitly endorse this, and that such
a criterion may be more or less well-suited to theories other than VR and NCT. I will
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now make several comments on this criterion, all of which will indicate refinements of
the points (1)–(3) above.

First, on point (1), what does the “background spacetime structure” of a theory con-
sist in? In the literature, there are various competing schools of thought about how this
is to be identified. For example, one might take “spacetime structure” to be objects of
a certain object-type that appear between the angle brackets of a theory’s models á la,
e.g., Earman (1989) or Friedman (1983), or one might invoke a criterion such as Knox’s
(2013) spacetime functionalism, according to which “spacetime structure” is just what-
ever it is that encodes the local structure of inertial frames.18 Again, Wallace’s remarks
give some hint as to what he may have in mind here:

[In] Newton–Cartan theory, the connection does double duty, imposing
both the rotation standard (a piece of absolute structure) and the inertial
structure (something dynamical and contingent). . . . the Newton–Cartan
connection is naturally understood as an additional piece of structure added
to Maxwellian spacetime; indeed, as the Maxwellian version of the affine
connection. (Wallace 2020, 29)

This suggests, for the purposes of point (1), that we should take the “background space-
time structure” of a theory to be its absolute objects—i.e., those which are the same in
all its dynamically possible models, where “sameness” is sameness up to isomorphism
(see, e.g., Earman 1989, 45).19 If this is the right precisification of (1), then MG and
NCT do indeed have the same background spacetime structure as Wallace claims—see
March (2024).

Second, on (2), one might worry about the restriction to the “central” dynamical
equations of a theory. While I won’t attempt to address the question of what it means
for some equation or other to be “central” to a theory here, note that this restriction is
needed because Wallace does not explicitly consider all the equations of NCT in his
analysis (and as we will see in section 5, not all the equations of MG and NCT, or VR
and NCT, for that matter, can be written so as to appear mathematically identical).

Continuing with point (2), one might also ask what it means for the central equations
of two theories to “be rewritten so as to appear mathematically identical.” For our pur-
poses, we can take this to mean that we can re-express the dynamics of the theories so
that they have some non-empty set of equations (the “central” ones) in common, while
preserving solutionhood.

Finally, on point (3), how, according to Wallace, are we to identify the inertial struc-
ture of a theory? Here, Wallace closely follows Knox (2013): the inertial structure of a
theory is whatever it is that encodes the local structure of inertial frames, i.e. those with

18Though note that Knox’s spacetime functionalism cannot be the right criterion if we are looking to
identify Maxwellian spacetime as the background spacetime structure of MG and NCT, since Maxwellian
spacetime by itself lacks a full inertial frame structure.

19Note that I am not suggesting, here, that the notion of an absolute object in this sense has anything to do
with “substantive general covariance” (whatever that might mean), nor am I interested in whether “having an
absolute object” in this sense allows one to distinguish, e.g., general relativity from some desired contrast
class of theories—as Pitts (2006) points out, it does not. It is a precise definition one can consider, and
seems to me a reasonable way of cashing out which degrees of freedom of which objects in the theory are
“dynamical and contingent,” in the sense that they may vary from model to model.
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respect to which gravitating but otherwise force-free bodies move with constant veloci-
ties, in which the equations governing non-gravitational interactions take their simplest
form, and which are universal (in the sense that all bodies and interactions pick out this
same class of frames). Crucially, in the case of non-relativistic theories this means that
if there exists a connection such that the geometrized version of Newton’s second law
(NII)—i.e. ρξ n∇nξ a =−∇nσna—is satisfied, then this (among other things) qualifies
it as encoding the inertial structure of that theory.

5. Understanding Wallace from a coordinate-free perspective
Having presented Wallace’s argument, I will now show that with MG in hand, the
same argument can be made in the language of coordinate-free differential geometry.
For point (1), we have already noted that MG and NCT have the same absolute object
structure (March 2024). For point (2), following Wallace, let us compare the dynamical
equations (1) and (2) of MG and NCT. Let ⟨M, ta, hab,⟳⟩ be a Maxwellian spacetime.
Then for any derivative operator ∇ compatible with ⟨M, ta, hab,⟳⟩, the following impli-
cations hold (illustrated in Figure 1). Statements and proofs of these equivalences are
contained in appendix A.

NII

(2c) (2d) (2b) (2a)

ρξ n∇nξ a =−∇nσna

(NII)
∇n(ρξ n) = 0

rotational
flatness

(1c) (1b) (1a)

NII NIINII

Figure 1. Relationships between the equations of Maxwell gravitation and Newton–Cartan theory.
Labelled arrows are to be understood as in the scope of a conditional—so, e.g., the first arrow from the
left says that if NII holds, then (2c) implies (1c).

There are several features of Figure 1 worth noting. First, while (2d) is equivalent
to the rotational flatness condition, there is no similarly sharp correspondence between
(2c) and (1c). (2c) and NII jointly imply (1c), but (1c) and NII do not imply (2c). This
points to the fact that rotational flatness plays double duty in relating the two theories.
From (1c) and NII we can infer that ξ nξ m(Rc a

n m − Ra c
m n) = 0; the rotational flatness

condition allows us to further infer that ξ nhbm(Rc a
n m − Ra c

m n) = 0, which yields (2c).20

Secondly, although (2b) and (1b) are not in general equivalent, they are equivalent
on assumption of NII and rotational flatness. Likewise, given NII, rotational flatness and

20Recall that hdnhbm(Rc a
n m − Ra c

m n) = 0 in any classical spacetime.
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(1c) are equivalent to (2d) and (2c). As such, once NII has been fixed, we can then move
freely between the remaining pairs of equations.

Now recall point (2) of Wallace’s argument: for an idealized congruence of test par-
ticle trajectories, the dynamics (3) of VR can be rewritten so as to take the same form as
the equation of geodesic deviation in NCT. But we have just seen that this has an obvi-
ous analogy for MG and NCT: by replacing (2b) with the expression for the average
radial acceleration (1b), we can reformulate MG and NCT so that their central dynam-
ical equations appear mathematically identical. Within NCT, (1b) encodes the relative
acceleration of neighboring fluid elements due to both spacetime curvature and non-
gravitational interactions, so represents the natural generalization of Wallace’s geodesic
deviation equation to non-test matter. And just as in Wallace’s example, the only differ-
ence, as far as this pair of equations is concerned, is the interpretation of (1b)—in NCT,
the −4πρ/3 term is naturally understood as a manifestation of geodesic deviation in
curved spacetime, whereas in MG it is not.

Moreover, once we move from VR to MG, the case for regarding this disagreement as
merely verbal appears even stronger. After all, in VR, the gravitational field is explicitly
represented elsewhere in the formalism. But in MG, we do not even have that. Of course,
we are always free to ascribe the −4πρ/3 term in (1b) to “the gravitational field”—but
without some further indication of what this is supposed to be, the gravitational field is
simply that whereby neighboring test particles have non-zero relative acceleration. And
since this is precisely the role of the Newton–Cartan spacetime curvature, the difference
between the two begins to look insubstantive. As such, we seem to have in the rela-
tionship between (1b) and (2b) a coordinate-free realization of point (2) of Wallace’s
argument.

However, we can also say a little more about this reasoning. Given the relationships
illustrated in Figure 1, not only are we free to replace (2b) with (1b) in NCT, we can
also replace (2c) with (1c), (2d) with the rotational flatness condition, and rewrite (2a)
as the conjunction of NII and (1a). From this perspective, the only difference between
these sets of equations is the presence of NII in NCT, whose role is essentially to pro-
vide a (partial) gauge fixing of the connection. This provides a further sense in which
point (2) of Wallace’s argument is strengthened when we move from VR to MG—all the
dynamical equations of NCT, with the exception of NII, can be written so as to appear
mathematically identical to the equations of MG.

Note that this also highlights why it is that NCT cannot be the continuum limit of
VR. If one assumes that the dynamics for test particles in NCT are given by the geodesic
equation, then it is possible to show that in both NCT and the continuum limit of VR,
test particles satisfy the equation of geodesic deviation. But precisely what one can-
not recover in the continuum limit of VR is the geodesic equation itself—or rather its
generalization to non-test matter, NII.

Finally, this brings us to point (3), viz. the inertial structure of MG, such as it is.
For this, it is helpful to recall proposition 2. This tells us that, providing there is suffi-
cient matter in one’s spacetime, there exists a unique Newton–Cartan connection which
satisfies NII, i.e. such that massive test bodies follow geodesics. Moreover, providing
that the test bodies of interest are sufficiently far from other massive matter (which we
can idealize as meaning at spatial infinity), then this connection will, at least locally, be
well-approximated by a flat connection. This allows us to recover (and expand upon)
Wallace’s claims about the emergence of inertial structure in MG in three ways.
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First, suppose that we say, with Wallace, that what it is to encode the inertial structure
of a theory just is to be the unique connection such that massive test bodies follow
geodesics. Then it follows that, whenever the conditions of corollary 2 are satisfied, a
model of MG does indeed come equipped with an inertial structure, which coincides
with the Newton–Cartan connection. So while Maxwellian spacetime lacks full inertial
structure by itself, there is an emergent such structure to be had for those models in
which there is sufficient matter available.

Second, continuing with the above theme, if we have antecedent reasons for adopting
NII as an implicit definition of the inertial structure of a theory, then we might as well
go ahead and add this as an extra condition to those models of MG in which there are
open sets throughout which the mass density field is non-vanishing. In that case, one
can also recover the dynamics of NCT from those of MG. So, while one cannot rewrite
the dynamics of MG to appear mathematically identical to those of NCT by themselves,
there is a natural sense in which the dynamics of MG plus definitions are sufficient to
recover the dynamics of NCT, again providing there is sufficient matter in one’s space-
time. This provides a way of making sense of Wallace’s claim that “Saunders’s vector
relational version of Newtonian dynamics . . . can be reformulated as [Newton–Cartan
theory]” (Wallace 2020, 28).

Third, corollary 2 clarifies just what is needed for the emergence of this inertial struc-
ture. In particular, sufficient for this is that there exist open sets throughout which the
mass density field is non-vanishing. So, providing that we are doing non-vacuum contin-
uum mechanics (or even for certain point-particle distributions—see March 2024) then
the above arguments can be made; one does not need to consider a full congruence of
particle trajectories.

All this serves to blunt the force of Wallace’s (2019; 2020) recent claims that
Maxwellian spacetime is not naturally characterized in coordinate-free differential-
geometric terms, and that this is partly what obscures the similarities between MG and
NCT. As I have shown, the same formal similarities which Wallace discusses can also be
seen very naturally from a coordinate-free differential-geometric perspective. As such,
one might suspect that the problem (such as there is) lies not with coordinate-free dif-
ferential geometry per se, but with formulating a theory in terms of geometric objects
which cannot be defined from the structure it ascribes to the world.21

6. The link with Teh
Finally, I will consider the relationship between my discussion of Wallace and that of
Teh (2018), who adopts a rather different strategy for diffusing Wallace’s concerns about
the coordinate-free framework. Teh’s approach begins by noting that compatible con-
nections on a classical spacetime can be represented by means of a special connection
(for some unit timelike vector field ξ a) and a two-form Ωab (see Malament 2012, propo-
sitions 4.3.4, 4.1.3). Providing the connection of interest satisfies (2c), this two-form is
closed, and so can (at least locally) be specified by a one-form Aa, defined up to exact
one-form shifts. Since ξ a is geodesic with respect to its special connection, one can
therefore view ξ a as encoding a “background inertial structure,” and Ωab as encoding

21C.f. Pitts (2012, 2022, 2006). For an extended discussion of other possible issues relating to this in the
context of the interpretation vs. motivation and reduction vs. sophistication debates, see Jacobs (2022).
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the forces experienced by bodies relative to this inertial structure. Alternatively, one
can view Ωab as encoding the force differences between different idealized congruences
of particle trajectories, and so as realizing Saunders’ vector relationist dynamics (Teh
2018, 207).

How does this allow one to make Wallace’s argument, and in what ways does this
address Wallace’s concerns about the coordinate-free framework? On this, one can
identify three points:

• As Teh himself (2018, 203, 220) notes, suppose we are given an equivalence
class [∇] of rotationally equivalent (not necessarily flat) connections which satisfy
(2c).22 Any such connection will be the special connection for some unit timelike
vector field ξ a. Now suppose that we are given another special connection ∇.
Then all the ξ a have the same rotation tensor with respect to ∇. This, Teh claims,
furnishes the notion of rotational equivalence with a physical interpretation in
terms of representations which share the same vorticity.

• Now suppose that the connections in this equivalence class are, in addition, flat.
Then the choice of such a connection is equivalent to a choice of inertial frame
(since the ξ a in question must now be rigid). So the equivocation involved in
defining the rotation standard of Maxwellian spacetime as an equivalence class of
rotationally equivalent flat connections á la Earman (one might think) is no worse
than that involved in equivocating between Maxwellian coordinate systems when
writing down, e.g., Saunders’ vector relationist dynamics.

• Teh’s framework emphasizes the way in which the two-form Ωab used to pick out
the Newton–Cartan connection of interest can always be reinterpreted as encoding
either forces experienced by test bodies relative to the inertial structure defined by
ξ a, or as encoding a connection relative to which those same test bodies exhibit
geodesic motion. Or in other words, there is no mathematical difference between
the universal forces of VR and the geodesic motion in curved spacetime of NCT,
as Wallace argues.23

From this, it is clear that Teh’s concern is not primarily to alleviate worries about tak-
ing equivalence classes simpliciter. Nevertheless, I suggest that his approach provides a
complementary avenue to the one I have considered here—particularly on point three,
which provides an alternative route to my earlier conclusion in section 5 that there is
little, if any, difference between the interpretation of (1b) in MG and NCT. On the other
hand, insofar as Teh’s framework highlights the fact that equivocating between rota-
tionally equivalent flat connections is the same as equivocating between inertial frames,
this might just seem like grist to Wallace’s mill: wasn’t one of the advantages of the
coordinate-free approach supposed to be that it avoids all this need for equivocation,
since we can just talk about the objects of interest directly?

Finally, note that the discussion of section 5 highlights which of Teh’s constructions
carry over to Maxwellian spacetime characterized “intrinsically” and which do not. In
particular, Teh’s “proto-Maxwell spacetime”—which he defines using an equivalence

22Recall that two connections ∇, ∇′ are rotationally equivalent just in case, for all unit timelike vector
fields ξ a, ∇[aξ b] = 0 iff ∇′[aξ b] = 0.

23For a different take on this, see Weatherall and Manchak (2014).
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class of rotationally equivalent connections all of which satisfy (2c)—cannot be defined
using just Weatherall’s standard of rotation.

7. Close
In this paper, my aim has been to connect up the recent wave of coordinate-free
approaches to Maxwellian spacetime with the coordinate-based discussions of Saunders
(2013); Wallace (2020). By doing so, I have clarified the relationship between vector
relationism and Maxwell gravitation (the latter is just the continuum limit of the for-
mer, and the former the point-particle sector of the latter, as one would have hoped);
I have also explained why Newton–Cartan theory is not the continuum limit of vector
relationism, contra the appearance of Wallace’s discussion. Finally, I have shown how
the similarities between vector relationism and Newton–Cartan theory which Wallace
discusses can also straightforwardly be seen using the coordinate-free approach, and
used this both to assess Wallace’s argument, and to connect up with Teh’s discussion of
Wallace.

In many ways, the upshot of all this is irenic. Maxwellian spacetime can be charac-
terized in a variety of ways—whether in terms of privileged coordinates, equivalence
classes of connections, or a primitive standard of rotation. And as far as the substantive
things one can say about Maxwellian spacetime and Maxwell gravitation are concerned,
I hope to have shown that there is little to choose between these three perspectives.

That is not to say that, depending on the context at hand, one may not have good rea-
sons for preferring one approach over another—whether for calculational convenience,
ease of presentation, physical (or mathematical, or metaphysical) perspicuity, etc. But I
think it would be a mistake to conclude from this that there is some objective, once-and-
for-all answer as to which approach fares better on any of these criteria. Put simply, what
is most calculationally convenient, or easy to understand, or physically (or mathemati-
cally, or metaphysically) perspicuous for me need not be so for anyone else—and that
is as it should be. The coordinate-based vs. coordinate-free debate may yet be fought
and won on other grounds. But in any case, I hope to have laid to rest the idea that the
example of Maxwellian spacetime provides a reason to prefer one approach over the
other.
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Appendix
A. Statements and proofs of equivalences
Let ⟨M, ta, hab,⟳⟩ be a Maxwellian spacetime, ∇ any compatible connection, and T ab the mass-momentum
tensor, which we assume to satisfy the Newtonian mass condition. That (2d) holds iff ⟨M, ta, hab,⟳⟩ is
rotationally flat is shown by Malament (2012, proposition 4.2.4); that (2a) holds iff NII and (1a) hold is
shown by Malament (2012, 266), noting that ξ n∇nρ = £ξ ρ and ∇nξ n =−1/2ĥnm£ξ hnm.
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For the remaining four implications, assume that NII holds. A straightforward computation shows that
we can use ∇ to rewrite (1c) as

ξ
n
∇n(ω

ca) = 2ω
n[c

θn
a] − ∇

[c(ρ−1
∇nσ

|n|a]),

where ωab, θ ab are the rotation and expansion tensors for ξ a, respectively. It follows that, given NII,

ξ
n
∇n(ω

ca) = 2ω
n[c

θn
a] + ∇

[c(ξ |n|
∇nξ

a]). (A1)

Likewise, (1b) can be rewritten as

1
3

3

∑
i=1

i
λ rξ

n
∇n(ξ

m
∇m

i
λ

r) =−4
3

πρ +
1
3

∇m(ξ
n
∇nξ

m). (A2)

Now we just need to do some calculations, which follow the proofs of propositions 4.3.6, 1.8.5, and 4.3.2
of Malament (2012) closely. First,

ξ
n
∇n(ω

ca) = ∇
[c(ξ |n|

∇nξ
a])− (∇[c

ξ
|n|)(∇nξ

a]) + (Ra c
n m − Rc a

m n)ξ
n
ξ

m

= 2ω
n[c

θn
a] + ∇

[c(ξ |n|
∇nξ

a]) + (Ra c
n m − Rc a

m n)ξ
n
ξ

m,

where we have made use of the fact that ωab is spacelike in both indices. So if (2c) holds, (1c) immediately
follows. Conversely, if (1c) holds then comparison with (A1) yields that (Ra c

n m − Rc a
m n)ξ

nξ m = 0. Then
to establish (2c), we just need to show that (Ra c

n m − Rc a
m n)h

nbξ m = 0 (since (Ra c
n m − Rc a

m n)h
nbhmd = 0

in any classical spacetime). This, in turn, follows from rotational flatness (using the symmetries of the
Riemann tensor). Note that rotational flatness is needed here because ξ a need not be twist-free. Next,
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3
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n
ξ
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so that if (2b) holds, so does (1b). Conversely, if (1b) holds, then by (A2) Rnmξ nξ m = 4πρ . If we then
assume rotational flatness, we also have that Ra

nξ n = Rab = 0, which gives us (2b).
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