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Abstract

For every integer k ≥ 2 and every A ⊆ N, we define the k-directions sets of A as Dk(A) := {a/‖a‖ : a ∈ Ak}

and Dk(A) := {a/‖a‖ : a ∈ Ak}, where ‖ · ‖ is the Euclidean norm and Ak := {a ∈ Ak : ai , a j for all i , j}.
Via an appropriate homeomorphism, Dk(A) is a generalisation of the ratio set R(A) := {a/b : a, b ∈ A}.
We study Dk(A) and Dk(A) as subspaces of S k−1 := {x ∈ [0, 1]k : ‖x‖ = 1}. In particular, generalising a
result of Bukor and Tóth, we provide a characterisation of the sets X ⊆ S k−1 such that there exists A ⊆ N
satisfying Dk(A)′ = X, where Y ′ denotes the set of accumulation points of Y . Moreover, we provide
a simple sufficient condition for Dk(A) to be dense in S k−1. We conclude with questions for further
research.
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1. Introduction

Given A ⊆ N, its ratio set is defined as R(A) := {a/b : a, b ∈ A}. The study of the
topological properties of R(A) as a subspace of [0,+∞], especially the question of
when R(A) is dense in [0,+∞], is a classical topic and has been considered by many
researchers [1–4, 10, 12, 13, 19–23]. More recently, some authors have also studied
R(A) as a subspace of the p-adic numbers Qp [6, 8, 9, 14, 15, 17].

We consider a further variation on this theme, which stems from the following
easy observation: [0, +∞] is homeomorphic to S 1 := {x ∈ [0, 1]2 : ‖x‖ = 1} via the
map x 7→ (1, x)/‖(1, x)‖, if x ∈ [0,+∞), and +∞ 7→ (0, 1). This sends R(A) onto
D2(A) := {ρ(a) : a ∈ A2}, where ρ(a) := a/‖a‖ for each a , 0. Hence, topological
questions about R(A) as a subspace of [0,+∞] are equivalent to questions about D2(A)
as a subspace of S 1. The novelty of this approach is that it can be generalised to higher
dimensions. For every integer k ≥ 2, define the k-directions sets of A as

Dk(A) := {ρ(a) : a ∈ Ak} and Dk(A) := {ρ(a) : a ∈ Ak},
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where for every set B we let Bk := {b ∈ Bk : bi , b j for all i , j} denote the set of k-
tuples with pairwise distinct entries in B. Also put S k−1 := {x ∈ [0, 1]k : ‖x‖ = 1}. We
shall study Dk(A) and Dk(A) as subspaces of S k−1.

Bukor and Tóth [2] characterised the subsets of [0,+∞] that are equal to R(A)′ for
some A ⊆ N, where Y ′ denotes the set of accumulation points of Y . In terms of D2(A),
via the homeomorphism [0,+∞]→ S 1 mentioned above, their result is as follows.

Theorem 1.1. Let X ⊆ S 1. Then there exists A ⊆ N such that X = D2(A)′ if and only if
the following conditions are satisfied:

(i) X is closed;
(ii) (x1, x2) ∈ X implies (x2, x1) ∈ X;
(iii) if X is nonempty, then (1, 0) ∈ X.

Note that Theorem 1.1 holds also if D2(A) is replaced by D2(A). Indeed, we have
D2(A) ⊆ D2(A) ⊆ D2(A) ∪ {ρ(1, 1)} and consequently D2(A)′ = D2(A)′.

Our first result generalises Theorem 1.1. Before stating it, we need to introduce
some notation. Let x = (x1, . . . , xk) ∈ S k−1. For every permutation π of {1, . . . , k}, we
put π(x) := (xπ(1), . . . , xπ(k)). Also, for every I ⊆ {1, . . . , k}, we say that I meets x if there
exists j ∈ I such that x j , 0. In such a case, we put ρI(x) := ρ(y), where y = (y1, . . . , yk)
is defined by yi := xi if i ∈ I, and yi := 0 for i < I. (This is well defined since y , 0.)

Our first result is the following theorem.

Theorem 1.2. Let X ⊆ S k−1 for some integer k ≥ 2. Then there exists A ⊆ N such that
X = Dk(A)′ if and only if the following conditions are satisfied:

(i) X is closed;
(ii) x ∈ X implies π(x) ∈ X, for every permutation π of {1, . . . , k};
(iii) x ∈ X implies ρI(x) ∈ X, for every I ⊆ {1, . . . , k} that meets x.

We note that Theorem 1.2 is indeed a generalisation of Theorem 1.1, because
ρI(x) ∈ {x, (1, 0), (0, 1)} for every I ⊆ {1, 2} that meets x ∈ S 1. Furthermore, for k ≥ 3,
Theorem 1.2 is false if Dk(A) is replaced by Dk(A) (see Remark 2.1 below).

We now turn our attention to the question of when Dk(A) is dense in S k−1. First, we
have the following easy proposition.

Proposition 1.3. Let k ≥ 2 be an integer and fix A ⊆ N. Then Dk(A) is dense in S k−1 if
and only if Dk(A) is dense in S k−1.

Proof. On the one hand, since Dk(A) ⊆ Dk(A), if Dk(A) is dense in S k−1 then Dk(A)
is dense in S k−1. On the other hand, suppose that Dk(A) is dense in S k−1. Then, for
every x ∈ S k−1 ∩ Rk, there exists a(n) ∈ Ak such that ρ(a(n))→ x. Consequently, for all
sufficiently large n we have a(n) ∈ Ak. This implies that Dk(A) is dense in S k−1 ∩ Rk.
Since S k−1 ∩ Rk is dense in S k−1, it follows that Dk(A) is dense in S k−1, as desired. �

The next result shows that if Dk(A) is dense in S k−1, for some integer k ≥ 3 and
A ⊆ N, then Dk−1(A) is dense in S k−2, but the opposite implication is false.
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Theorem 1.4. Let k ≥ 3 be an integer. On the one hand, if Dk(A) is dense in S k−1, for
some A ⊆ N, then Dk−1(A) is dense in S k−2. On the other hand, there exists A ⊆ N such
that Dk(A) is not dense in S k−1 but Dk−1(A) is dense in S k−2.

We also provide a simple sufficient condition for Dk(A) to be dense in S k−1.

Theorem 1.5. Let A ⊆ N. If there exists an increasing sequence an ∈ A such that
an−1/an → 1, then Dk(A) is dense in S k−1 for every integer k ≥ 2.

The case k = 2 of Theorem 1.5 was proved by Starni [19] (hereafter, we tacitly
express all the results about R(A) in terms of D2(A)), who also showed that the
condition is sufficient but not necessary.

Let P be the set of prime numbers. It is known that D2(P) is dense in S 1 [13, 19] (see
also [5, 7, 16, 18] for similar results in number fields). Let pn be the nth prime number.
As a consequence of the prime number theorem, pn ∼ n log n [11, Theorem 8]. Hence,
pn−1/pn → 1 and thus Theorem 1.5 yields the following result.

Corollary 1.6. Dk(P) is dense in S k−1, for every integer k ≥ 2.

We leave the following questions to interested readers.

Question 1.7. What is a simple characterisation of the sets X ⊆ S k−1, k ≥ 2, such that
there exists A ⊆ N satisfying X = Dk(A)′?

Question 1.8. Strauch and Tóth [20] proved that if A ⊆ N has lower asymptotic density
at least 1/2, then D2(A) is dense in S 1. Moreover, they showed that for every
δ ∈ [0, 1/2) there exists some A ⊆ N with lower asymptotic density equal to δ and
such that D2(A) is not dense in S 1. How can these results be generalised to Dk(A) with
k ≥ 3?

Question 1.9. Bukor et al. [4] proved that N can be partitioned into three sets A, B,
C, such that none of D2(A), D2(B), D2(C) is dense in S 1. Moreover, they showed that
such a partition is impossible using only two sets. How can these results be generalised
to Dk(A) with k ≥ 3?

Notation. We use N to denote the set of positive integers. We write vectors in bold
and we use subscripts to denote their components, so that x = (x1, . . . , xk). Also, we

put ‖x‖ :=
√

x2
1 + · · · + x2

k for the Euclidean norm of x. If X is a subset of a topological
space T , then X′ denotes the set of accumulation points of X. Given a sequence
x(n) ∈ T , we write x(n) →• x to mean that x(n) → x as n→ +∞ and x(n) , x for infinitely
many n.
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2. Proof of Theorem 1.2

Only if part. Suppose that X = Dk(A)′ for some A ⊆ N. We shall prove that X satisfies
(i)–(iii). Clearly, X is closed, since it is a set of accumulation points. Hence, (i) holds.
Pick x ∈ X. Then there exists a sequence a(n) ∈ Ak such that ρ(a(n))→• x. In particular,
this implies that ‖a(n)‖ → +∞ and that A is infinite. Let π be a permutation of {1, . . . , k}.
Setting b(n) := π(a(n)), it follows easily that b(n)

∈ Ak and ρ(b(n))→• π(x). Consequently,
π(x) ∈ X and (ii) holds. Finally, assume that I ⊆ {1, . . . , k} meets x. Up to passing to
a subsequence of a(n), we can assume that each sequence a(n)

i , with i ∈ {1, . . . , k}, is
nondecreasing. Recalling that A is infinite, this implies that we can fix k − #I distinct
ci ∈ A, with i ∈ {1, . . . , k} \ I, such that d(n)

∈ Ak for every sufficiently large n ∈ N, where
d(n)
∈ Nk is defined by d(n)

i := a(n)
i if i ∈ I, and d(n)

i := ci if i < I. Since I meets x, there
exists j ∈ I such that x j , 0, which in turn implies that a(n)

j → +∞ and consequently
‖d(n)
‖ → +∞. At this point, it follows easily that ρ(d(n))→• ρI(x). Hence, ρI(x) ∈ X

and (iii) holds.

If part. Suppose that X ⊆ S k−1 satisfies (i)–(iii). We shall prove that there exists A ⊆ N
such that X = Dk(A)′. Since X is a closed subset of S k−1, it follows that X has a
countable dense subset, say Y := {y(m) : m ∈ N}.

Claim 1. There exists a sequence c(m) such that:

(c1) c(m) ∈ Nk for every m ∈ N;
(c2) m 7→ ρ(c(m)) is an injection;
(c3) |(1/m!)c(m)

i − y(m)
i | → 0, for every i ∈ {1, . . . , k};

(c4) ‖ρ(c(m)) − y(m)‖ → 0.

Proof. For every m ∈ N and i ∈ {1, . . . , k}, we define c(m)
i := bm! y(m)

i c + s(m)
i + t(m),

where s(m) ∈ Nk and t(m) ∈ N will be chosen later. For each m ∈ N, it is easy to see that
we can choose s(m) ∈ {1, . . . , k}k such that c(m) ∈ Nk. (Note that this property does not
depend on t(m).) We make this choice so that (c1) holds. Now note that for every fixed
u, v ∈ R+, with u , v, the function R+ → R : t 7→ (u + t)/(v + t) is injective. Therefore,
for each m ∈ N we can choose t(m) ∈ {1, . . . ,m} such that c(m)

1 /c(m)
2 , c(`)

1 /c(`)
2 for every

positive integer ` < m. In turn, this choice implies that (c2) holds. At this point, both
(c3) and (c4) follow easily. This proves our claim. �

Claim 2. Define A :=
⋃k

i=1 Ai, where Ai := {c(m)
i : m ∈ N} for every i ∈ {1, . . . , k}. We

claim that X = Dk(A)′.

Proof. First, let us prove that X ⊆ Dk(A)′. Pick some x ∈ X. Since Y is a dense
subset of X, there exists an increasing sequence of positive integers (mn)n∈N such that
y(mn) → x. By the definition of A and by (c1), c(mn) ∈ Ak. Moreover, (c2) and (c4)
imply that ρ(c(mn))→• x. Hence, x ∈ Dk(A)′, as desired.

Now let us prove that Dk(A)′ ⊆ X. Pick x ∈ Dk(A)′. Then there exists a sequence
a(n) ∈ Ak such that ρ(a(n))→• x. Up to passing to a subsequence, we can assume that
there exist some j1, . . . , jk ∈ {1, . . . , k} such that a(n) ∈ A j1 × · · · × A jk for every n ∈ N.
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In turn, this implies that there exists a sequence m(n) ∈ Nk such that a(n)
i = c(m(n)

i )
ji

for
every n ∈ N and i ∈ {1, . . . , k}. Thanks to (ii), without loss of generality, we can reorder
the entries of a(n). Hence, up to reordering and up to passing to a subsequence,

we can assume that there exists h ∈ {1, . . . , k} such that y
(m(n)

1 )
j1

, . . . , y
(m(n)

h )
jh
, 0 and

y
(m(n)

h+1)
jh+1

= · · · = y
(m(n)

k )
jk

= 0 for every n ∈ N. Similarly, again up to reordering and up
to passing to a subsequence, we can assume that there exists ` ∈ {1, . . . , h} such that
m(n)

1 = · · · = m(n)
`
> m(n)

`+1 ≥ · · · ≥ m(n)
h for every n ∈ N. In particular, since a(n) ∈ Ak for

every n ∈ N, we see that j1, . . . , j` are pairwise distinct. Let π be any permutation
of {1, . . . , k} such that π(i) = ji for all i ∈ I := {1, . . . , `}. Note that I meets π(y(m(n)

1 ))
for every n ∈ N. Put z(n) := ρI(π(y(m(n)

1 ))) for every n ∈ N. Hence, by (ii) and (iii),

z(n) ∈ X for every n ∈ N. Thanks to (c3), |(1/m(n))!
1 a(n)

i − y
(m(n)

1 )
ji
| → 0 for each i ∈ I,

and (1/m(n)
1 !)a(n)

i → 0 for each i ∈ {1, . . . , k} \ I, as n→ +∞. As a consequence,
‖ρ(a(n)) − z(n)‖ → 0, which in turn implies that z(n) → x. Finally, since X is closed
by (i), x ∈ X, as desired. The proof is complete. �

Remark 2.1. We note that for k ≥ 3 the statement of Theorem 1.2 is false if Dk(A)
is replaced by Dk(A). In fact, fix an integer k ≥ 3 and let X be the subset of S k−1

containing all the permutations of η := ρ(1,
√

2,0, . . . ,0) and ρ(1,0, . . . ,0) (and nothing
else). It follows by Theorem 1.2 that there exists A ⊆ N such that X = Dk(A)′. For the
sake of contradiction, let us suppose that there exists B ⊆ N such that X = Dk(B)′.
Since η ∈ X, there exists a sequence b(n)

∈ Bk such that ρ(b(n))→• η. Let c(n) ∈ Nk be
the sequence defined by c(n)

i = b(n)
1 if i , 2, and c(n)

i := b(n)
2 if i = 2. Then c(n) ∈ Bk and

ρ(c(n))→• θ, where θ := ρ(1,
√

2, 1, . . . , 1). (Here we have used the fact that η1/η2

is irrational and consequently ρ(c(n)) , θ.) Therefore, θ ∈ Dk(B)′ = X, which is a
contradiction.

3. Proof of Theorem 1.4

Let k ≥ 3 be an integer and let A ⊆ N. Suppose that Dk(A) is dense in S k−1. We
shall prove that Dk−1(A) is dense in S k−2. For every x ∈ S k−2, let fk(x) ∈ S k−1 be
defined by fk(x) := ρ(x1, . . . , xk−1, 0). Since Dk(A) is dense in S k−1, there exists a
sequence a(n) ∈ Ak such that ρ(a(n))→ fk(x). In turn, this implies that ρ(b(n))→ x,
where b(n)

∈ Ak−1 is defined by b(n)
i := a(n)

i for i ∈ {1, . . . , k − 1}. Hence, Dk−1(A) is
dense in S k−2, as desired.

Given an integer k ≥ 3, we shall prove that there exists A ⊆ N such that Dk−1(A) is
dense in S k−2, but Dk(A) is not dense in S k−1. Let X := {x ∈ S k−1 : xi = 0 for some i}.
Clearly, X satisfies conditions (i)–(iii) of Theorem 1.2, and consequently there exists
A ⊆ N such that Dk(A)′ = X. Therefore, Dk(A) is not dense in S k−1 and, in light of
Proposition 1.3, neither is Dk(A) dense in S k−1. Finally, for every x ∈ S k−2 we have
fk(x) ∈ X, and the same reasoning as in the previous paragraph shows that Dk−1(A) is
dense in S k−2.
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4. Proof of Theorem 1.5

Suppose that there exists an increasing sequence an ∈ A such that an−1/an → 1.
Fix an integer k ≥ 2 and pick x ∈ S k−1 with x1, . . . , xk > 0. Clearly, for every integer
m ≥ a1 /min{x1, . . . , xk}, there exist integers m1, . . . ,mk ≥ 2 such that ami−1 ≤ mxi < ami

for each i ∈ {1, . . . , k}. Hence, for every i ∈ {1, . . . , k},

xi <
ami

m
≤

ami

ami−1
xi.

Since mi → +∞ as m→ +∞, these inequalities yield ami/m→ xi as m→ +∞. Putting
a(m) := (am1 , . . . , amk ), it follows that ρ(a(m))→ x. Therefore, Dk(A) is dense in S k−1,
as claimed.
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[3] J. Bukor, P. Erdős, T. Šalát and J. T. Tóth, ‘Remarks on the (R)-density of sets of numbers. II’,

Math. Slovaca 47(5) (1997), 517–526.
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