DIRECTIONS SETS: A GENERALISATION OF RATIO SETS

PAOLO LEONETTI[®] and CARLO SANNA[®]

(Received 21 July 2019; accepted 27 July 2019; first published online 13 September 2019)

Abstract

For every integer $k \ge 2$ and every $A \subseteq \mathbb{N}$, we define the *k*-directions sets of A as $D^k(A) := \{a/|a|| : a \in A^k\}$ and $D^{\underline{k}}(A) := \{a/|a|| : a \in A^{\underline{k}}\}$, where $|| \cdot ||$ is the Euclidean norm and $A^{\underline{k}} := \{a \in A^k : a_i \ne a_j \text{ for all } i \ne j\}$. Via an appropriate homeomorphism, $D^k(A)$ is a generalisation of the *ratio set* $R(A) := \{a/b : a, b \in A\}$. We study $D^k(A)$ and $D^{\underline{k}}(A)$ as subspaces of $S^{k-1} := \{x \in [0, 1]^k : ||x|| = 1\}$. In particular, generalising a result of Bukor and Tóth, we provide a characterisation of the sets $X \subseteq S^{k-1}$ such that there exists $A \subseteq \mathbb{N}$ satisfying $D^{\underline{k}}(A)' = X$, where Y' denotes the set of accumulation points of Y. Moreover, we provide a simple sufficient condition for $D^k(A)$ to be dense in S^{k-1} . We conclude with questions for further research.

2010 *Mathematics subject classification*: primary 11B05; secondary 11A99. *Keywords and phrases*: accumulation points, closure, ratio sets.

1. Introduction

Given $A \subseteq \mathbb{N}$, its *ratio set* is defined as $R(A) := \{a/b : a, b \in A\}$. The study of the topological properties of R(A) as a subspace of $[0, +\infty]$, especially the question of when R(A) is dense in $[0, +\infty]$, is a classical topic and has been considered by many researchers [1-4, 10, 12, 13, 19-23]. More recently, some authors have also studied R(A) as a subspace of the *p*-adic numbers \mathbb{Q}_p [6, 8, 9, 14, 15, 17].

We consider a further variation on this theme, which stems from the following easy observation: $[0, +\infty]$ is homeomorphic to $S^1 := \{x \in [0, 1]^2 : ||x|| = 1\}$ via the map $x \mapsto (1, x)/||(1, x)||$, if $x \in [0, +\infty)$, and $+\infty \mapsto (0, 1)$. This sends R(A) onto $D^2(A) := \{\rho(a) : a \in A^2\}$, where $\rho(a) := a/||a||$ for each $a \neq 0$. Hence, topological questions about R(A) as a subspace of $[0, +\infty]$ are equivalent to questions about $D^2(A)$ as a subspace of $[0, +\infty]$ are equivalent to questions about $D^2(A)$ as a subspace of $[0, +\infty]$ are equivalent to questions about $D^2(A)$ as a subspace of S^1 . The novelty of this approach is that it can be generalised to higher dimensions. For every integer $k \ge 2$, define the *k*-directions sets of A as

 $D^{k}(A) := \{\rho(a) : a \in A^{k}\}$ and $D^{\underline{k}}(A) := \{\rho(a) : a \in A^{\underline{k}}\},\$

P. Leonetti is supported by the Austrian Science Fund (FWF), project F5512-N26; C. Sanna is supported by a postdoctoral fellowship of INdAM and is a member of the INdAM group GNSAGA.

^{© 2019} Australian Mathematical Publishing Association Inc.

where for every set *B* we let $B^{\underline{k}} := \{ \boldsymbol{b} \in B^k : b_i \neq b_j \text{ for all } i \neq j \}$ denote the set of *k*-tuples with pairwise distinct entries in *B*. Also put $S^{k-1} := \{ \boldsymbol{x} \in [0, 1]^k : ||\boldsymbol{x}|| = 1 \}$. We shall study $D^k(A)$ and $D^{\underline{k}}(A)$ as subspaces of S^{k-1} .

Bukor and Tóth [2] characterised the subsets of $[0, +\infty]$ that are equal to R(A)' for some $A \subseteq \mathbb{N}$, where Y' denotes the set of accumulation points of Y. In terms of $D^2(A)$, via the homeomorphism $[0, +\infty] \rightarrow S^1$ mentioned above, their result is as follows.

THEOREM 1.1. Let $X \subseteq S^1$. Then there exists $A \subseteq \mathbb{N}$ such that $X = D^2(A)'$ if and only if the following conditions are satisfied:

- (i) X is closed;
- (ii) $(x_1, x_2) \in X$ implies $(x_2, x_1) \in X$;
- (iii) if X is nonempty, then $(1, 0) \in X$.

Note that Theorem 1.1 holds also if $D^2(A)$ is replaced by $D^2(A)$. Indeed, we have $D^2(A) \subseteq D^2(A) \subseteq D^2(A) \cup \{\rho(1,1)\}$ and consequently $D^2(A)' = D^2(A)'$.

Our first result generalises Theorem 1.1. Before stating it, we need to introduce some notation. Let $\mathbf{x} = (x_1, ..., x_k) \in S^{k-1}$. For every permutation π of $\{1, ..., k\}$, we put $\pi(\mathbf{x}) := (x_{\pi(1)}, ..., x_{\pi(k)})$. Also, for every $I \subseteq \{1, ..., k\}$, we say that *I meets* \mathbf{x} if there exists $j \in I$ such that $x_j \neq 0$. In such a case, we put $\rho_I(\mathbf{x}) := \rho(\mathbf{y})$, where $\mathbf{y} = (y_1, ..., y_k)$ is defined by $y_i := x_i$ if $i \in I$, and $y_i := 0$ for $i \notin I$. (This is well defined since $\mathbf{y} \neq \mathbf{0}$.)

Our first result is the following theorem.

THEOREM 1.2. Let $X \subseteq S^{k-1}$ for some integer $k \ge 2$. Then there exists $A \subseteq \mathbb{N}$ such that $X = D^{\underline{k}}(A)'$ if and only if the following conditions are satisfied:

- (i) X is closed;
- (ii) $\mathbf{x} \in X$ implies $\pi(\mathbf{x}) \in X$, for every permutation π of $\{1, \ldots, k\}$;
- (iii) $\mathbf{x} \in X$ implies $\rho_I(\mathbf{x}) \in X$, for every $I \subseteq \{1, \ldots, k\}$ that meets \mathbf{x} .

We note that Theorem 1.2 is indeed a generalisation of Theorem 1.1, because $\rho_I(\mathbf{x}) \in \{\mathbf{x}, (1,0), (0,1)\}$ for every $I \subseteq \{1,2\}$ that meets $\mathbf{x} \in S^1$. Furthermore, for $k \ge 3$, Theorem 1.2 is false if $D^{\underline{k}}(A)$ is replaced by $D^k(A)$ (see Remark 2.1 below).

We now turn our attention to the question of when $D^{k}(A)$ is dense in S^{k-1} . First, we have the following easy proposition.

PROPOSITION 1.3. Let $k \ge 2$ be an integer and fix $A \subseteq \mathbb{N}$. Then $D^k(A)$ is dense in S^{k-1} if and only if $D^{\underline{k}}(A)$ is dense in S^{k-1} .

PROOF. On the one hand, since $D^{\underline{k}}(A) \subseteq D^{k}(A)$, if $D^{\underline{k}}(A)$ is dense in S^{k-1} then $D^{k}(A)$ is dense in S^{k-1} . On the other hand, suppose that $D^{k}(A)$ is dense in S^{k-1} . Then, for every $\mathbf{x} \in S^{k-1} \cap \mathbb{R}^{\underline{k}}$, there exists $\mathbf{a}^{(n)} \in A^{\underline{k}}$ such that $\rho(\mathbf{a}^{(n)}) \to \mathbf{x}$. Consequently, for all sufficiently large *n* we have $\mathbf{a}^{(n)} \in A^{\underline{k}}$. This implies that $D^{\underline{k}}(A)$ is dense in $S^{k-1} \cap \mathbb{R}^{\underline{k}}$. Since $S^{k-1} \cap \mathbb{R}^{\underline{k}}$ is dense in S^{k-1} , it follows that $D^{\underline{k}}(A)$ is dense in S^{k-1} , as desired. \Box

The next result shows that if $D^k(A)$ is dense in S^{k-1} , for some integer $k \ge 3$ and $A \subseteq \mathbb{N}$, then $D^{k-1}(A)$ is dense in S^{k-2} , but the opposite implication is false.

Directions sets

THEOREM 1.4. Let $k \ge 3$ be an integer. On the one hand, if $D^k(A)$ is dense in S^{k-1} , for some $A \subseteq \mathbb{N}$, then $D^{k-1}(A)$ is dense in S^{k-2} . On the other hand, there exists $A \subseteq \mathbb{N}$ such that $D^k(A)$ is not dense in S^{k-1} but $D^{k-1}(A)$ is dense in S^{k-2} .

We also provide a simple sufficient condition for $D^k(A)$ to be dense in S^{k-1} .

THEOREM 1.5. Let $A \subseteq \mathbb{N}$. If there exists an increasing sequence $a_n \in A$ such that $a_{n-1}/a_n \to 1$, then $D^k(A)$ is dense in S^{k-1} for every integer $k \ge 2$.

The case k = 2 of Theorem 1.5 was proved by Starni [19] (hereafter, we tacitly express all the results about R(A) in terms of $D^2(A)$), who also showed that the condition is sufficient but not necessary.

Let \mathbb{P} be the set of prime numbers. It is known that $D^2(\mathbb{P})$ is dense in S^1 [13, 19] (see also [5, 7, 16, 18] for similar results in number fields). Let p_n be the *n*th prime number. As a consequence of the prime number theorem, $p_n \sim n \log n$ [11, Theorem 8]. Hence, $p_{n-1}/p_n \rightarrow 1$ and thus Theorem 1.5 yields the following result.

COROLLARY 1.6. $D^k(\mathbb{P})$ is dense in S^{k-1} , for every integer $k \ge 2$.

We leave the following questions to interested readers.

QUESTION 1.7. What is a simple characterisation of the sets $X \subseteq S^{k-1}$, $k \ge 2$, such that there exists $A \subseteq \mathbb{N}$ satisfying $X = D^k(A)'$?

QUESTION 1.8. Strauch and Tóth [20] proved that if $A \subseteq \mathbb{N}$ has lower asymptotic density at least 1/2, then $D^2(A)$ is dense in S^1 . Moreover, they showed that for every $\delta \in [0, 1/2)$ there exists some $A \subseteq \mathbb{N}$ with lower asymptotic density equal to δ and such that $D^2(A)$ is not dense in S^1 . How can these results be generalised to $D^k(A)$ with $k \ge 3$?

QUESTION 1.9. Bukor *et al.* [4] proved that \mathbb{N} can be partitioned into three sets *A*, *B*, *C*, such that none of $D^2(A)$, $D^2(B)$, $D^2(C)$ is dense in S^1 . Moreover, they showed that such a partition is impossible using only two sets. How can these results be generalised to $D^k(A)$ with $k \ge 3$?

Notation. We use \mathbb{N} to denote the set of positive integers. We write vectors in bold and we use subscripts to denote their components, so that $\mathbf{x} = (x_1, \dots, x_k)$. Also, we put $\|\mathbf{x}\| := \sqrt{x_1^2 + \dots + x_k^2}$ for the Euclidean norm of \mathbf{x} . If X is a subset of a topological space T, then X' denotes the set of accumulation points of X. Given a sequence $x^{(n)} \in T$, we write $x^{(n)} \rightarrow x$ to mean that $x^{(n)} \rightarrow x$ as $n \rightarrow +\infty$ and $x^{(n)} \neq x$ for infinitely many n.

[3]

2. Proof of Theorem 1.2

Only if part. Suppose that $X = D^{\underline{k}}(A)'$ for some $A \subseteq \mathbb{N}$. We shall prove that X satisfies (i)–(iii). Clearly, X is closed, since it is a set of accumulation points. Hence, (i) holds. Pick $\mathbf{x} \in X$. Then there exists a sequence $\mathbf{a}^{(n)} \in A^{\underline{k}}$ such that $\rho(\mathbf{a}^{(n)}) \rightarrow \mathbf{x}$. In particular, this implies that $||\mathbf{a}^{(n)}|| \rightarrow +\infty$ and that A is infinite. Let π be a permutation of $\{1, \ldots, k\}$. Setting $\mathbf{b}^{(n)} := \pi(\mathbf{a}^{(n)})$, it follows easily that $\mathbf{b}^{(n)} \in A^{\underline{k}}$ and $\rho(\mathbf{b}^{(n)}) \rightarrow \pi(\mathbf{x})$. Consequently, $\pi(\mathbf{x}) \in X$ and (ii) holds. Finally, assume that $I \subseteq \{1, \ldots, k\}$ meets \mathbf{x} . Up to passing to a subsequence of $\mathbf{a}^{(n)}$, we can assume that each sequence $a_i^{(n)}$, with $i \in \{1, \ldots, k\}$, is nondecreasing. Recalling that A is infinite, this implies that we can fix k - #I distinct $c_i \in A$, with $i \in \{1, \ldots, k\} \setminus I$, such that $\mathbf{d}^{(n)} \in A^{\underline{k}}$ for every sufficiently large $n \in \mathbb{N}$, where $\mathbf{d}^{(n)} \in \mathbb{N}^k$ is defined by $d_i^{(n)} := a_i^{(n)}$ if $i \in I$, and $d_i^{(n)} := c_i$ if $i \notin I$. Since I meets \mathbf{x} , there exists $j \in I$ such that $x_j \neq 0$, which in turn implies that $a_j^{(n)} \rightarrow +\infty$ and consequently $||\mathbf{d}^{(n)}|| \rightarrow +\infty$. At this point, it follows easily that $\rho(\mathbf{d}^{(n)}) \rightarrow \rho_I(\mathbf{x})$. Hence, $\rho_I(\mathbf{x}) \in X$ and (ii) holds.

If part. Suppose that $X \subseteq S^{k-1}$ satisfies (i)–(iii). We shall prove that there exists $A \subseteq \mathbb{N}$ such that $X = D^{\underline{k}}(A)'$. Since X is a closed subset of S^{k-1} , it follows that X has a countable dense subset, say $Y := \{y^{(m)} : m \in \mathbb{N}\}$.

Claim 1. There exists a sequence $c^{(m)}$ such that:

- (c1) $\boldsymbol{c}^{(m)} \in \mathbb{N}^{\underline{k}}$ for every $m \in \mathbb{N}$;
- (c2) $m \mapsto \rho(\boldsymbol{c}^{(m)})$ is an injection;
- (c3) $|(1/m!)c_i^{(m)} y_i^{(m)}| \to 0$, for every $i \in \{1, \dots, k\}$;
- (c4) $\|\rho(\boldsymbol{c}^{(m)}) \boldsymbol{y}^{(m)}\| \to 0.$

PROOF. For every $m \in \mathbb{N}$ and $i \in \{1, ..., k\}$, we define $c_i^{(m)} := \lfloor m! y_i^{(m)} \rfloor + s_i^{(m)} + t^{(m)}$, where $s^{(m)} \in \mathbb{N}^k$ and $t^{(m)} \in \mathbb{N}$ will be chosen later. For each $m \in \mathbb{N}$, it is easy to see that we can choose $s^{(m)} \in \{1, ..., k\}^k$ such that $c^{(m)} \in \mathbb{N}^{\underline{k}}$. (Note that this property does not depend on $t^{(m)}$.) We make this choice so that (c1) holds. Now note that for every fixed $u, v \in \mathbb{R}^+$, with $u \neq v$, the function $\mathbb{R}^+ \to \mathbb{R} : t \mapsto (u+t)/(v+t)$ is injective. Therefore, for each $m \in \mathbb{N}$ we can choose $t^{(m)} \in \{1, ..., m\}$ such that $c_1^{(m)}/c_2^{(m)} \neq c_1^{(\ell)}/c_2^{(\ell)}$ for every positive integer $\ell < m$. In turn, this choice implies that (c2) holds. At this point, both (c3) and (c4) follow easily. This proves our claim.

Claim 2. Define $A := \bigcup_{i=1}^{k} A_i$, where $A_i := \{c_i^{(m)} : m \in \mathbb{N}\}$ for every $i \in \{1, \dots, k\}$. We claim that $X = D^{\underline{k}}(A)'$.

PROOF. First, let us prove that $X \subseteq D^{\underline{k}}(A)'$. Pick some $x \in X$. Since Y is a dense subset of X, there exists an increasing sequence of positive integers $(m_n)_{n \in \mathbb{N}}$ such that $y^{(m_n)} \to x$. By the definition of A and by (c1), $c^{(m_n)} \in A^{\underline{k}}$. Moreover, (c2) and (c4) imply that $\rho(c^{(m_n)}) \to x$. Hence, $x \in D^{\underline{k}}(A)'$, as desired.

Now let us prove that $D^{\underline{k}}(A)' \subseteq X$. Pick $\mathbf{x} \in D^{\underline{k}}(A)'$. Then there exists a sequence $\mathbf{a}^{(n)} \in A^{\underline{k}}$ such that $\rho(\mathbf{a}^{(n)}) \rightarrow \mathbf{x}$. Up to passing to a subsequence, we can assume that there exist some $j_1, \ldots, j_k \in \{1, \ldots, k\}$ such that $\mathbf{a}^{(n)} \in A_{j_1} \times \cdots \times A_{j_k}$ for every $n \in \mathbb{N}$.

Directions sets

In turn, this implies that there exists a sequence $\mathbf{m}^{(n)} \in \mathbb{N}^k$ such that $a_i^{(n)} = c_{j_i}^{(m_i^{(n)})}$ for every $n \in \mathbb{N}$ and $i \in \{1, \ldots, k\}$. Thanks to (ii), without loss of generality, we can reorder the entries of $\mathbf{a}^{(n)}$. Hence, up to reordering and up to passing to a subsequence, we can assume that there exists $h \in \{1, \ldots, k\}$ such that $y_{j_1}^{(m_1^{(n)})}, \ldots, y_{j_h}^{(m_h^{(n)})} \neq 0$ and $y_{j_{h+1}}^{(m_{h+1}^{(n)})} = \cdots = y_{j_k}^{(m_k^{(n)})} = 0$ for every $n \in \mathbb{N}$. Similarly, again up to reordering and up to passing to a subsequence, we can assume that there exists $\ell \in \{1, \ldots, h\}$ such that $m_1^{(n)} = \cdots = m_{\ell}^{(n)} > m_{\ell+1}^{(n)} \ge \cdots \ge m_h^{(n)}$ for every $n \in \mathbb{N}$. In particular, since $\mathbf{a}^{(n)} \in A^k$ for every $n \in \mathbb{N}$, we see that j_1, \ldots, j_ℓ are pairwise distinct. Let π be any permutation of $\{1, \ldots, k\}$ such that $\pi(i) = j_i$ for all $i \in I := \{1, \ldots, \ell\}$. Note that I meets $\pi(\mathbf{y}^{(m_1^{(n)})})$ for every $n \in \mathbb{N}$. Put $\mathbf{z}^{(n)} := \rho_I(\pi(\mathbf{y}^{(m_1^{(n)})}))$ for every $n \in \mathbb{N}$. Hence, by (ii) and (iii), $\mathbf{z}^{(n)} \in X$ for every $n \in \mathbb{N}$. Thanks to (c3), $|(1/m_1^{(n))!}a_i^{(n)} - y_{j_i}^{(m_1^{(n)})}| \to 0$ for each $i \in I$, and $(1/m_1^{(n)})!a_i^{(n)} \to 0$ for each $i \in \{1, \ldots, k\} \setminus I$, as $n \to +\infty$. As a consequence, $||\rho(\mathbf{a}^{(n)}) - \mathbf{z}^{(n)}|| \to 0$, which in turn implies that $\mathbf{z}^{(n)} \to \mathbf{x}$. Finally, since X is closed by (i), $\mathbf{x} \in X$, as desired. The proof is complete.

REMARK 2.1. We note that for $k \ge 3$ the statement of Theorem 1.2 is false if $D^{\underline{k}}(A)$ is replaced by $D^k(A)$. In fact, fix an integer $k \ge 3$ and let X be the subset of S^{k-1} containing all the permutations of $\eta := \rho(1, \sqrt{2}, 0, ..., 0)$ and $\rho(1, 0, ..., 0)$ (and nothing else). It follows by Theorem 1.2 that there exists $A \subseteq \mathbb{N}$ such that $X = D^{\underline{k}}(A)'$. For the sake of contradiction, let us suppose that there exists $B \subseteq \mathbb{N}$ such that $X = D^{\underline{k}}(A)'$. For the sake of contradiction, let us suppose that there exists $B \subseteq \mathbb{N}$ such that $X = D^{\underline{k}}(B)'$. Since $\eta \in X$, there exists a sequence $b^{(n)} \in B^k$ such that $\rho(b^{(n)}) \rightarrow \eta$. Let $c^{(n)} \in \mathbb{N}^k$ be the sequence defined by $c_i^{(n)} = b_1^{(n)}$ if $i \ne 2$, and $c_i^{(n)} := b_2^{(n)}$ if i = 2. Then $c^{(n)} \in B^k$ and $\rho(c^{(n)}) \rightarrow \theta$, where $\theta := \rho(1, \sqrt{2}, 1, ..., 1)$. (Here we have used the fact that η_1/η_2 is irrational and consequently $\rho(c^{(n)}) \ne \theta$.)

3. Proof of Theorem 1.4

Let $k \ge 3$ be an integer and let $A \subseteq \mathbb{N}$. Suppose that $D^k(A)$ is dense in S^{k-1} . We shall prove that $D^{k-1}(A)$ is dense in S^{k-2} . For every $\mathbf{x} \in S^{k-2}$, let $f_k(\mathbf{x}) \in S^{k-1}$ be defined by $f_k(\mathbf{x}) := \rho(x_1, \ldots, x_{k-1}, 0)$. Since $D^k(A)$ is dense in S^{k-1} , there exists a sequence $\mathbf{a}^{(n)} \in A^k$ such that $\rho(\mathbf{a}^{(n)}) \to f_k(\mathbf{x})$. In turn, this implies that $\rho(\mathbf{b}^{(n)}) \to \mathbf{x}$, where $\mathbf{b}^{(n)} \in A^{k-1}$ is defined by $b_i^{(n)} := a_i^{(n)}$ for $i \in \{1, \ldots, k-1\}$. Hence, $D^{k-1}(A)$ is dense in S^{k-2} , as desired.

Given an integer $k \ge 3$, we shall prove that there exists $A \subseteq \mathbb{N}$ such that $D^{k-1}(A)$ is dense in S^{k-2} , but $D^k(A)$ is not dense in S^{k-1} . Let $X := \{x \in S^{k-1} : x_i = 0 \text{ for some } i\}$. Clearly, X satisfies conditions (i)–(iii) of Theorem 1.2, and consequently there exists $A \subseteq \mathbb{N}$ such that $D^{\underline{k}}(A)' = X$. Therefore, $D^{\underline{k}}(A)$ is not dense in S^{k-1} and, in light of Proposition 1.3, neither is $D^k(A)$ dense in S^{k-1} . Finally, for every $x \in S^{k-2}$ we have $f_k(x) \in X$, and the same reasoning as in the previous paragraph shows that $D^{k-1}(A)$ is dense in S^{k-2} .

4. Proof of Theorem 1.5

Suppose that there exists an increasing sequence $a_n \in A$ such that $a_{n-1}/a_n \to 1$. Fix an integer $k \ge 2$ and pick $\mathbf{x} \in S^{k-1}$ with $x_1, \ldots, x_k > 0$. Clearly, for every integer $m \ge a_1 / \min\{x_1, \ldots, x_k\}$, there exist integers $m_1, \ldots, m_k \ge 2$ such that $a_{m_i-1} \le mx_i < a_{m_i}$ for each $i \in \{1, \ldots, k\}$. Hence, for every $i \in \{1, \ldots, k\}$,

$$x_i < \frac{a_{m_i}}{m} \le \frac{a_{m_i}}{a_{m_i-1}} x_i.$$

Since $m_i \to +\infty$ as $m \to +\infty$, these inequalities yield $a_{m_i}/m \to x_i$ as $m \to +\infty$. Putting $a^{(m)} := (a_{m_1}, \ldots, a_{m_k})$, it follows that $\rho(a^{(m)}) \to x$. Therefore, $D^k(A)$ is dense in S^{k-1} , as claimed.

References

- B. Brown, M. Dairyko, S. R. Garcia, B. Lutz and M. Someck, 'Four quotient set gems', Amer. Math. Monthly 121(7) (2014), 590–599.
- [2] J. Bukor and J. T. Tóth, 'On accumulation points of ratio sets of positive integers', Amer. Math. Monthly 103(4) (1996), 502–504.
- [3] J. Bukor, P. Erdős, T. Šalát and J. T. Tóth, 'Remarks on the (R)-density of sets of numbers. II', *Math. Slovaca* 47(5) (1997), 517–526.
- [4] J. Bukor, T. Šalát and J. T. Tóth, 'Remarks on *R*-density of sets of numbers', *Tatra Mt. Math. Publ.* 11 (1997), 159–165.
- [5] J. Chattopadhyay, B. Roy and S. Sarkar, 'On fractionally dense sets', *Rocky Mountain J. Math.* (to appear), https://projecteuclid.org:443/euclid.rmjm/1539914457.
- [6] C. Donnay, S. R. Garcia and J. Rouse, 'p-adic quotient sets II: Quadratic forms', J. Number Theory 201 (2019), 23–39.
- [7] S. R. Garcia, 'Quotients of Gaussian primes', Amer. Math. Monthly 120(9) (2013), 851-853.
- [8] S. R. Garcia and F. Luca, 'Quotients of Fibonacci numbers', *Amer. Math. Monthly* 123(10) (2016), 1039–1044.
- [9] S. R. Garcia, Y. X. Hong, F. Luca, E. Pinsker, C. Sanna, E. Schechter and A. Starr, 'p-adic quotient sets', Acta Arith. 179(2) (2017), 163–184.
- [10] S. R. Garcia, V. Selhorst-Jones, D. E. Poore and N. Simon, 'Quotient sets and Diophantine equations', *Amer. Math. Monthly* 118(8) (2011), 704–711.
- [11] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edn (Oxford University Press, Oxford, 2008), revised by D. R. Heath-Brown and J. H. Silverman, with a foreword by Andrew Wiles.
- [12] S. Hedman and D. Rose, 'Light subsets of \mathbb{N} with dense quotient sets', *Amer. Math. Monthly* **116**(7) (2009), 635–641.
- [13] D. Hobby and D. M. Silberger, 'Quotients of primes', Amer. Math. Monthly 100(1) (1993), 50-52.
- [14] P. Miska and C. Sanna, 'p-adic denseness of members of partitions of N and their ratio sets', Bull. Malays. Math. Sci. Soc. (2) (to appear), https://doi.org/10.1007/s40840-019-00728-6.
- [15] P. Miska, N. Murru and C. Sanna, 'On the *p*-adic denseness of the quotient set of a polynomial image', *J. Number Theory* **197** (2019), 218–227.
- [16] M. Pan and W. Zhang, 'Quotients of Hurwitz primes', Preprint, 2019, arXiv:1904.08002.
- [17] C. Sanna, 'The quotient set of *k*-generalised Fibonacci numbers is dense in \mathbb{Q}_p ', *Bull. Aust. Math. Soc.* **96**(1) (2017), 24–29.
- [18] B. D. Sittinger, 'Quotients of primes in an algebraic number ring', Notes Number Theory Discrete Math. 24(2) (2018), 55–62.
- P. Starni, 'Answers to two questions concerning quotients of primes', *Amer. Math. Monthly* 102(4) (1995), 347–349.

Directions sets

- [20] O. Strauch and J. T. Tóth, 'Asymptotic density of $A \subset \mathbf{N}$ and density of the ratio set R(A)', *Acta Arith.* 87(1) (1998), 67–78.
- [21] O. Strauch and J. T. Tóth, 'Corrigendum to Theorem 5 of the paper: "Asymptotic density of $A \subset \mathbb{N}$ and density of the ratio set R(A)", *Acta Arith.* **103**(2) (2002), 191–200; *Acta Arith.* **87**(1) (1998), 67–78.
- [22] T. Šalát, 'On ratio sets of sets of natural numbers', Acta Arith. 15 (1968/1969), 273–278.
- [23] T. Šalát, 'Corrigendum to the paper "On ratio sets of sets of natural numbers", Acta Arith. 16 (1969/1970), 103.

PAOLO LEONETTI, Institute of Analysis and Number Theory, Graz University of Technology, Graz, Austria e-mail: leonetti.paolo@gmail.com

CARLO SANNA, Department of Mathematics, Università degli Studi di Genova, Genova, Italy e-mail: carlo.sanna.dev@gmail.com

[7]