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Abstract

For every integer k > 2 and every A C N, we define the k-directions sets of A as D¥(A) := {a/||a|| : a € A¥}
and DE(A) := {a/|lal| : @ € AX}, where || - || is the Euclidean norm and A% := {a € A : a; # ajforalli# j}.
Via an appropriate homeomorphism, DF(A) is a generalisation of the ratio set R(A) :={a/b:a,b € A}.
We study D¥(A) and DX(A) as subspaces of S*~! := {x € [0, 1]* : |lx|| = 1}. In particular, generalising a
result of Bukor and Téth, we provide a characterisation of the sets X C S~ such that there exists A C N
satisfying DX(A) = X, where ¥’ denotes the set of accumulation points of Y. Moreover, we provide
a simple sufficient condition for DF(A) to be dense in S¥!. We conclude with questions for further
research.
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1. Introduction

Given A C N, its ratio set is defined as R(A) :={a/b : a,b € A}. The study of the
topological properties of R(A) as a subspace of [0, +co], especially the question of
when R(A) is dense in [0, +o0], is a classical topic and has been considered by many
researchers [1-4, 10, 12, 13, 19-23]. More recently, some authors have also studied
R(A) as a subspace of the p-adic numbers Q,, [6, 8, 9, 14, 15, 17].

We consider a further variation on this theme, which stems from the following
easy observation: [0, +o0] is homeomorphic to S! := {x € [0, 11> : ||x|| = 1} via the
map x — (1, x)/||(1, x)||, if x € [0, +c0), and +oco - (0, 1). This sends R(A) onto
D*(A) := {p(a) : a € A%}, where p(a) := a/||a|| for each a # 0. Hence, topological
questions about R(A) as a subspace of [0, +oo] are equivalent to questions about D*(A)
as a subspace of S '. The novelty of this approach is that it can be generalised to higher
dimensions. For every integer k > 2, define the k-directions sets of A as

DF(A) = {p(a):ac A*Y and DKA) = {p(a):ac Ay,
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where for every set B we let B := (b€ B* : b; # bjforall i # j} denote the set of k-
tuples with pairwise distinct entries in B. Also put S~ := {x € [0, 1]% : ||x]| = 1}. We
shall study D*(A) and DX(A) as subspaces of S¥~!.

Bukor and Téth [2] characterised the subsets of [0, +o0] that are equal to R(A)” for
some A C N, where Y’ denotes the set of accumulation points of Y. In terms of D?*(A),
via the homeomorphism [0, +c0] — S! mentioned above, their result is as follows.

Tueorem 1.1. Let X € S'. Then there exists A C N such that X = D*(A) if and only if
the following conditions are satisfied:

(1) Xisclosed;
(1) (x1,x2) € X implies (x,x1) € X;
(iii) if X is nonempty, then (1,0) € X.

Note that Theorem 1.1 holds also if D?*(A) is replaced by D%(A). Indeed, we have
D2(A) € D*(A) € D(A) U {p(1, 1)} and consequently D*(A) = D%(A)'.

Our first result generalises Theorem 1.1. Before stating it, we need to introduce
some notation. Let x = (xi,...,x) € S¥!. For every permutation 7 of {1,...,k}, we
put w(x) := (Xx(1), - - - » X(k))- Also, forevery I C {1,...,k}, we say that I meets x if there
exists j € I such that x; # 0. In such a case, we put p;(x) := p(y), where y = (y1,..., )
is defined by y; := x; if i € [, and y; := 0 for i ¢ I. (This is well defined since y # 0.)

Our first result is the following theorem.

Tueorem 1.2. Let X € S*=! for some integer k > 2. Then there exists A C N such that
X = DAY if and only if the following conditions are satisfied:

(i) Xis closed;
(i) x € X implies n(x) € X, for every permutation w of {1, ...,k};
(i) x € X implies p;(x) € X, for every I C{1,...,k} that meets x.

We note that Theorem 1.2 is indeed a generalisation of Theorem 1.1, because
p1(x) € {x,(1,0), (0, 1)} for every I C {1,2} that meets x € S'. Furthermore, for k > 3,
Theorem 1.2 is false if DX(A) is replaced by D*(A) (see Remark 2.1 below).

We now turn our attention to the question of when D*(A) is dense in S*~!. First, we
have the following easy proposition.

ProrosiTiON 1.3. Let k > 2 be an integer and fix A C N. Then D*(A) is dense in S*~! if
and only if DE(A) is dense in S¥'.

Proor. On the one hand, since DX(A) C D¥(A), if DX(A) is dense in S*~! then D*(A)
is dense in S¥~!. On the other hand, suppose that D¥(A) is dense in S*~!. Then, for
every x € S¥"1 N R, there exists a™ € A* such that p(a™) — x. Consequently, for all
sufficiently large n we have a™ € AL, This implies that DX(A) is dense in S*~! N R,
Since S~' N RX is dense in S, it follows that D(A) is dense in S*~!, as desired. O

The next result shows that if D¥(A) is dense in S*!, for some integer k > 3 and
A CN, then D*"!(A) is dense in S¥~2, but the opposite implication is false.
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TueoreM 1.4. Let k > 3 be an integer. On the one hand, if D*(A) is dense in S*~!, for
some A CN, then Dk‘l(A) is dense in S*¥2. On the other hand, there exists A C N such
that D*(A) is not dense in S*=! but D*"'(A) is dense in S*2.

We also provide a simple sufficient condition for D¥(A) to be dense in S*~!.

TueOREM 1.5. Let A C N. If there exists an increasing sequence a, € A such that
ap_1/an — 1, then D*(A) is dense in S*~! for every integer k > 2.

The case k = 2 of Theorem 1.5 was proved by Starni [19] (hereafter, we tacitly
express all the results about R(A) in terms of D?(A)), who also showed that the
condition is sufficient but not necessary.

Let P be the set of prime numbers. It is known that D*(P) is dense in S ' [13, 19] (see
also [5, 7, 16, 18] for similar results in number fields). Let p, be the nth prime number.
As a consequence of the prime number theorem, p, ~ nlogn [11, Theorem 8]. Hence,
Pn—-1/pn — 1 and thus Theorem 1.5 yields the following result.

CoroLLARY 1.6. DK(P) is dense in S*=', for every integer k > 2.
We leave the following questions to interested readers.

Question 1.7. What is a simple characterisation of the sets X € S*¥~!, k > 2, such that
there exists A C N satisfying X = D*¥(A)'?

QuesTion 1.8. Strauch and Téth [20] proved that if A € N has lower asymptotic density
at least 1/2, then D?(A) is dense in S!. Moreover, they showed that for every
0 €[0,1/2) there exists some A € N with lower asymptotic density equal to ¢ and
such that D?(A) is not dense in S '. How can these results be generalised to D¥(A) with
k>3?

QuesTioN 1.9. Bukor et al. [4] proved that N can be partitioned into three sets A, B,
C, such that none of D*(A), D*(B), D*(C) is dense in S '. Moreover, they showed that
such a partition is impossible using only two sets. How can these results be generalised
to D*(A) with k > 3?

Notation. We use N to denote the set of positive integers. We write vectors in bold
and we use subscripts to denote their components, so that x = (xy, ..., x;). Also, we

put [|x]| := 4 /x% +o+ x,f for the Euclidean norm of x. If X is a subset of a topological

space T, then X’ denotes the set of accumulation points of X. Given a sequence
x™ e T, we write x"Y -5 x to mean that X" — x as n — +oco0 and x # x for infinitely
many n.
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2. Proof of Theorem 1.2

Only if part. Suppose that X = DX(A)’ for some A C N. We shall prove that X satisfies
(1)—(iii). Clearly, X is closed, since it is a set of accumulation points. Hence, (i) holds.
Pick x € X. Then there exists a sequence a™ € AX such that p(a™) -» x. In particular,
this implies that ||| — +oo and that A is infinite. Let 7 be a permutation of {1,. .., k}.
Setting 5™ := n(a™), it follows easily that 5" € AX and p(b"™) - n(x). Consequently,
n(x) € X and (ii) holds. Finally, assume that I C {1,..., k} meets x. Up to passing to
a subsequence of a"”, we can assume that each sequence aE"), with i e {l,...,k}, is
nondecreasing. Recalling that A is infinite, this implies that we can fix k — #/ distinct
c;€ A,withie{l,...,k}\ I, such that d"™ e Ak for every sufficiently large n € N, where
d"™ e N* is defined by d;") = ai.") ifi €I, and d;”) :=c¢;if i ¢ I. Since I meets x, there

exists j € I such that x; # 0, which in turn implies that ai.”) — +o00 and consequently

ld™|| = +co. At this point, it follows easily that p(d™) = p;(x). Hence, p;(x) € X
and (iii) holds.

If part. Suppose that X C S*! satisfies (i)—(iii). We shall prove that there exists A C N
such that X = DX(A). Since X is a closed subset of S¥~!, it follows that X has a
countable dense subset, say ¥ := {y" : m € N}.

Claim 1. There exists a sequence ¢ such that:

(cl) ¢"™ e Nk for every m € N;

(c2) m > p(c™) is an injection;

(©3) 1(1/mHc™ — 3™ | — 0, for every i € {1, ..., k};
(c4) llp(e™) = y™|| - 0.

Proor. For every m € N and i € {1,...,k}, we define cgm) = I_m!yl(.m)J + ng) + £,
where s € N* and 1" € N will be chosen later. For each m € N, it is easy to see that
we can choose s € {1,..., k}* such that ¢™ € NE. (Note that this property does not
depend on ™) We make this choice so that (c1) holds. Now note that for every fixed
u,v € R*, with u # v, the function R* - R : 1+ (u +1)/(v + 1) is injective. Therefore,

for each m € N we can choose 7™ € {1, ..., m)} such that c(lm)/ c(zm) # cgf)/ c(zg) for every
positive integer ¢ < m. In turn, this choice implies that (c2) holds. At this point, both
(c3) and (c4) follow easily. This proves our claim. O

Claim 2. Define A := U?:l A;, where A; := {cgm) :meN}foreveryief{l,...,k}. We
claim that X = DX(AY’.

Proor. First, let us prove that X € DXA). Pick some x € X. Since Y is a dense
subset of X, there exists an increasing sequence of positive integers (m,),cy such that
y™) — x. By the definition of A and by (c1), ¢” € AX. Moreover, (c2) and (c4)
imply that p(c™)) - x. Hence, x € DX(AY’, as desired.

Now let us prove that DX(A)’ C X. Pick x € DX(A)’. Then there exists a sequence
a™ € Ak such that p(a™) - x. Up to passing to a subsequence, we can assume that
there exist some ji,..., jr € {1,...,k} such that a™ €Aj X---xAj forevery n € N.
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In turn, this implies that there exists a sequence m™ € N¥ such that " = cim ) for

everyn € Nandi € {l,...,k}. Thanks to (ii), without loss of generality, we can reorder

the entries of a®™. Hence, up to reordering and up to passmg to a subsequence,

(n) (n)
we can assume that there exists & € {1,...,k} such that y ), .. y(m ) # 0 and
(n) (n)
j’h’ihlﬂ) o= y(: ' 20 for every n € N. Similarly, again up to reordermg and up

to passing to a subsequence we can assume that there exists € € {1, ..., h} such that

m™ = =m” >m! > >m" for every n € N. In particular, since a® € A% for
every n € N, we see that jl, ..., je are pairwise distinct. Let 7 be any permutation
of {1,...,k} such that n(i) = j; for all i € I := {1, ..., £}. Note that I meets x(y"™")
for every n € N. Put z" := p;(n(y(min)))) for every n € N. Hence, by (ii) and (iii),

7" € X for every n € N. Thanks to (c3), |(1/m(1"))!al(,”) (m )| — 0 for each i € I,

and (l/m(]")!)agn) — 0 for each ie{l,...,k}\ I, as n — +oo. As a consequence,
llo(a™) = z|| = 0, which in turn implies that z’” — x. Finally, since X is closed
by (i), x € X, as desired. The proof is complete. O

Remark 2.1. We note that for k > 3 the statement of Theorem 1.2 is false if DX(A)
is replaced by D*(A). In fact, fix an integer k > 3 and let X be the subset of S*!
containing all the permutations of i := p(1, \/5 0,...,0)and p(1,0,...,0) (and nothing
else). It follows by Theorem 1.2 that there exists A C N such that X = DX(A)’. For the
sake of contradiction, let us suppose that there exists B C N such that X = D¥(BY’.
Since 7 € X, there exists a sequence b € B* such that p(b™) = 5. Let ¢™ € N* be
the sequence defined by c(") b(”) if i # 2, and c(") b(") if i = 2. Then ¢™ € B and

p(c™) = 6, where 0 := p(1, \/_ 2,1,...,1). (Here we have used the fact that 1, /n,
is irrational and consequently p(¢™) # 6.) Therefore, § € D¥(BY’ = X, which is a
contradiction.

3. Proof of Theorem 1.4

Let k > 3 be an integer and let A € N. Suppose that D*(A) is dense in S*~1. We
shall prove that D¥!(A) is dense in S¥~2. For every x € S¥72, let fi(x) € S*°! be
defined by fi(x) := p(x1, ..., Xx_1,0). Since D¥(A) is dense in S*~!, there exists a
sequence a” € A* such that p(a™) — fi(x). In turn, this implies that p(b™) — x,
where ™ € A" is defined by bg") = al(.") forie{l,...,k—1}. Hence, D*"'(A) is
dense in S¥2, as desired.

Given an integer k > 3, we shall prove that there exists A C N such that D¥"'(A) is
dense in S¥72, but D¥(A) is not dense in S¥~'. Let X := {x € S¥! : x; = 0 for some i}.
Clearly, X satisfies conditions (i)—(iii) of Theorem 1.2, and consequently there exists
A C N such that DEA) = X. Therefore, DX(A) is not dense in S*~! and, in light of
Proposition 1.3, neither is D¥(A) dense in S*~!. Finally, for every x € S¥-2 we have
fi(x) € X, and the same reasoning as in the previous paragraph shows that D¥"1(A) is
dense in $¥72.
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4. Proof of Theorem 1.5

Suppose that there exists an increasing sequence a, € A such that a,_;/a, — 1.
Fix an integer k > 2 and pick x € S¥! with xi,..., x; > 0. Clearly, for every integer
m>a; /[min{xy,..., X}, there exist integers m, ..., my > 2 such that a,,,_; < mx; < a,,
foreachi e {1,...,k}. Hence, foreveryie{l,..., k},

A, .
Xi< — < Xi.
m Ami—1

Since m; — +00 as m — +oo, these inequalities yield a,,, /m — x; as m — +oo. Putting
a™ :=(ap,,...,an), it follows that p(a”™) — x. Therefore, D*(A) is dense in S¥!,
as claimed.
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